⑴ 目前商用半导体单晶硅主要的晶体生长方法是什么
目前商用半导体单晶硅主要以真空电解和真空精炼来拉出晶圆柱,再反复精炼,使晶柱累积成长。
⑵ 晶体的生长
物质在一定温度、压力、浓度、介质、pH等条件下由气相、液相、固相转化,形成特定线度尺寸晶体的过程称为晶体生长。
其原理基于物种晶相化学势与该物种在相关物相中化学势间准平衡关系的合理维持。如在溶液中的晶体生长要求在平衡溶解度附近溶质有一定合宜的过饱和度。晶体生长方法是多样的,如水热法生长人工水晶,区域熔融法生长硅、锗单晶、氢氧焰熔融法生长轴承用宝石,航天失重法培养晶体以及升华法;同质或异质外延生长法等。
形成晶体的过程叫做结晶。在实际生产中,常常需要使物质从溶液中结晶析出,如从蔗汁中提取砂糖、从海水中提取精盐。
⑶ 晶体生长的方法有几种
1.
底部
籽晶
法
2.
冷坩埚法
3.
高温高压法
4.
弧熔法
5.
提拉法
6.
焰熔法
7.
熔剂
法
8.
水平区熔
9.
升华法
10.
水热法
生长晶体
11.
水溶液法生长晶体
12.
导向温梯法(TGT)
等等
⑷ Cz法的直拉法单晶生长的优点
主要有以下几个方面:
(1)可以方便地观察晶体生长过程;(2)晶体在熔体的自由表面处生长,而不与柑锅接触,可以减少热应力;(3)可以方便地使用定向籽晶和籽晶细颈工艺以减小晶体中的缺陷,得到所需取向的晶体;(4)较快的生长速度和较短的生长周期。
直拉法是生产lC电路所用硅片的常用方法。熔硅放在石英增竭里面,因为石英导致氧进入熔硅,因而单晶硅有高的氧含量。直拉法又分为非磁场拉晶法和磁场拉晶法。
⑸ 单晶炉中单晶硅棒时如何生长的
首先,把高纯度的多晶硅原料放入高纯石英坩埚,通过石墨加热器产生的高温将其熔化;然后,对熔化的硅液稍做降温,使之产生一定的过冷度,再用一根固定在籽晶轴上的硅单晶体(称作籽晶)插入熔体表面,待籽晶与熔体熔和后,慢慢向上拉籽晶,晶体便会在籽晶下端生长;接着,控制籽晶生长出一段长为100m 单晶硅生长炉
m左右、直径为3~5mm的细颈,用于消除高温溶液对籽晶的强烈热冲击而产生的原子排列的位错,这个过程就是引晶;随后,放大晶体直径到工艺要求的大小,一般为75~300mm,这个过程称为放肩;接着,突然提高拉速进行转肩操作,使肩部近似直角;然后,进入等径工艺,通过控制热场温度和晶体提升速度,生长出一定直径规格大小的单晶柱体;最后,待大部分硅溶液都已经完成结晶时,再将晶体逐渐缩小而形成一个尾形锥体,称为收尾工艺;这样一个单晶拉制过程就基本完成,进行一定的保温冷却后就可以取出。 直拉法,也叫切克劳斯基(J.Czochralski)方法。此法早在1917年由切克劳斯基建立的一种晶体生长方法,用直拉法生长单晶的设备和工艺比较简单,容易实现自动控制,生产效率高,易于制备大直径单晶,容易控制单晶中杂质浓度,可以制备低电阻率单晶。据统计,世界上硅单晶的产量中70%~80%是用直拉法生产的
⑹ 制备单晶的关键是什么,如何制备单晶
所谓单晶,即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。单晶整个晶格是连续的,具有重要的工业应用。由于熵效应导致了固体微观结构的不理想,例如杂质,不均匀应变和晶体缺陷,有一定大小的理想单晶在自然界中是极为罕见的,而且也很难在实验室中生产。另一方面,在自然界中,不理想的单晶可以非常巨大,例如已知一些矿物,如绿宝石,石膏,长石形成的晶体可达数米。
单晶生长制备方法大致可以分为气相生长、溶液生长、水热生长、熔盐法、熔体法。最常见的技术有提拉法、坩埚下降法、区熔法、定向凝固法等;
目前除了众多的实际工程应用方法外,借助于计算机和数值计算方法的发展,也诞生了不同的晶体生长数值模拟方法。特别是生产前期的分析和优化大直径单晶时,数值计算尤为重要。
一、挥发法
原理:依靠溶液的不断挥发,使溶液由不饱和达到饱和过饱和状态 。
条件:固体能溶解于较易挥发的有机溶剂理论上,所有溶剂都可以,但一般选择60~120℃ 。
注意:不同溶剂可能培养出的单晶结构不同方法:将固体溶解于所选有机溶剂,有时可采用加热的办法使固体完全溶解,冷却至室温或者再加溶剂使之不饱和,过滤,封口,静置培养 。
二、扩散法
原理:利用二种完全互溶的沸点相差较大的有机溶剂。固体易溶于高沸点的溶剂,难溶或不溶于低沸点溶剂。
⑺ 单晶材料的单晶制备方法:
此法为最常用方法,是从结晶物质的熔体中生长晶体。适用于光学半导体,激光技术上需要的单晶材料。
(一)晶体生长的必要条件。
根据晶体生长时体系中存在的——由熔体(m)向晶体(C)自发转变时——两相间自由焓的关系:Gm(T)>Gc(T),即△G=Gc(T)-Gm(T)≈△He-Te△Se-△T△Se=△T△Se<0。结晶时, △Se>0,只有△T<0 。熔体单晶体生长的必要条件是:体系温度低于平衡温度。体系温度低于平衡温度的状态称为过冷。△T的绝对值称为过冷度。过冷度作为熔体晶体生长的驱动力。一般情况:该值越大,晶体生长越快。当值为零时,晶体生长停止。
(二)晶体生长的充分条件
晶体生长是发生在固-液(或晶-液)界面上。通常为保证晶体粒生长只需使固-液界面附近很小区域熔体处于过冷态,绝大部分熔体处于过热态(温度高于Te )。已生长出的晶体温度又需低于Te。就是说整个体系由熔体到晶体的温度由过热向过冷变化。过热与过冷区的界面为等温区。此面与晶体生长界面间的熔体为过冷熔体。且过冷度沿晶体生长反方向逐渐增大。晶体的温度最低。这种由晶体到熔体方向存在的温度梯度是热量输运的必要条件。热量由熔体经生长面传向晶体,并由其转出。
晶体生长的充分条件:(dT/dz)c一定、(dT/dz)m为零时,整个区域熔体处于过冷态,晶体生长速率最大。对于一定结晶物质,过冷度一定时,决定晶体生长速率的主要因素是晶体与熔体温度梯度(dT/dz)c与(dT/dz)m的相对大小。只有晶体温度梯度增大,熔体温度梯度减少,才能提高晶体生长速度。需指出:晶体生长速度并非越大越好,太大会出现不完全生长,影响质量。
(三)晶体生长方法
1 提拉法:提拉法适于半导体单晶Si、Ge及大多数激光晶体。
工艺流程:
1)同成分的结晶物质熔化,但不分解,不与周围反应。
2)预热籽晶,旋转着下降后,与熔体液面接触,待熔后,缓慢向上提拉。
3)降低坩埚温度或熔体温度梯度,不断提拉籽晶,使其籽晶变大。
4)等径生长:保持合适的温度梯度与提拉速度,使晶体等径生长。
5)收晶:晶体生长所需长度后,拉速不变,升高熔体温度或熔体温度不变,加快拉速,使晶体脱离熔体液面。
6)退火处理晶体。
2 坩埚下降法:
在下降坩埚的过程,能精密测温,控温的设备中进行。过热处理的熔体降到稍高于凝固温度后,下降至低温区,实现单晶生长,并能继续保持。
3 泡生法:
过热熔体降温至稍高于熔点,降低炉温或冷却籽晶杆,使籽晶周围熔体过冷,生长晶体。控制好温度,就能保持晶体不断生长。
4 水平区熔法:
盛有结晶物质的坩埚,在带有温度梯度的加热器,从高温区向低温区移动,完成熔化到结晶过程。
以上四种晶体生长使用的坩埚,应具备:熔点高于工作温度200℃,不与熔体互熔起化学反应,良好的加工性及抗热震性,热膨胀系数与结晶物质相近,常用铂、铱、钢、石墨、石英及其它高熔点氧化物。 以水、重水或液态有机物作溶剂的溶液中,可生长完整均匀的大尺寸单晶体。
(一)晶体生长基本原理
1 晶体生长的必要条件:一定温度条件下,溶液的浓度大于该温度下的平衡浓度(即饱和浓度)称过饱和,其大于的程度称过饱和度,它是溶液法晶体生长的驱动力。
2 晶体生长的充分条件:把溶液的过饱和状态控制在亚稳定区内,避免进入不稳定或稳定区。
(二)晶体生长方法
1 降温法:利用不断降温并维持溶液亚稳过饱和态,以实现晶体不断生长的方法。
2 流动法:控制饱和槽和生长槽间温差及流速并使其处于亚稳过饱和态。维持晶体不断生长。
3 蒸发法:利用不断蒸发溶剂,并控制蒸发速度,维持溶液处于亚稳的过饱和状态,实现晶体的完全生长。
4 电解溶剂法:利用电解原理,不断从体系中去除溶剂,以维持溶液过饱和状态,实现晶体不断生长。关键是控制电解电流,即溶剂电解速度保持体系处于亚稳区。
5 凝胶法:两物质的溶液通过凝胶扩散,相遇,经化学反应,生成结晶物质,并在凝胶中成核,长大。 (一)基本原理
高温溶液法生长的结晶物质,须在高温下,溶于助溶剂,形成过饱和溶液。因此,助溶剂选择,溶液相关系的确定,是溶液生长晶体的先决条件。
助溶剂应具备的条件:
1)对结晶物质有足够大溶解度,并在生长温度范围内,有适宜的溶解度温度系数。
2)与溶质的作用应是可逆的,形成的晶体是唯一、稳定的。
3)具有尽可能高的沸点及尽可能低的溶点。
4)含有与结晶物质相同的离子。
5)粘滞性不大,利于溶质扩散和能量运输。
6)无毒、无腐蚀性。
7)可用适当溶液或溶剂溶解。
(二) 晶体生长方法
1 缓冷法及改进技术
以0.2-5℃/h的速度,使处在过饱和态的高温溶液降温,先慢后快,防止过多成核。温度降到出现其它相或溶解的温度系数近于0时,较快速降温。并用适当的溶剂溶掉凝固在晶体周围的溶液,便得晶体。
改进技术
(1)坩埚局部过冷(2)采用复合助熔剂(3)变速旋转坩埚(4)刺破坩埚以利于分离。
2 助溶剂挥发法:恒温下借助助溶剂的挥发,使溶液保持亚稳定过饱和态,以保持晶体生长。
3 籽晶降温法:引入籽晶后,靠不断降温维持溶液的亚稳定过饱和度,保持晶体不断生长。
晶体是十分奇妙、美丽而又用途巨大,而自然界中天然形成的晶体多含有大量的缺陷,从而影响到它的应用。在实验室中,采用精巧的设备,严格设定晶体生长所需的温度、气氛和组分,通过严格控制的条件可以生长出符合需要的高质量晶体。 (一)基本原理
利用运输反应来控制反应的进行,其生成物必须是挥发性的,且要有唯一稳定的固体相(所希望的)生成,ΔG→0?反应易为可逆,平衡时,反应物与生成物有足够的量。
(二) 晶体生长方法
1 升华法
将固体顺着温度梯度通过晶体在管子的冷端从气相中生长的方法。
即:在高温区蒸发原料,利用蒸气的扩散,让固体顺着温度梯度通过晶体在冷端形成并生长的方法。
固→气→固常压升华
常压升华(P>1 atm):As、P、CdS
减压升华(P<1 atm):雪花、ZnS、CdSe、HgI2
2 蒸气运输法
在一定的环境相下?利用运载气体来帮助源的挥发和运输?从而促进晶体生长的方法。通常采用卤素作运输剂。在极低的氯气压力下观察钨的运输?发现在加热的钨丝中,钨从较冷的一根转移到较热的一根上。
冷端:W+3Cl2↹WCl6
W以氯化物的形式挥发;热端、分解、沉积出W,规则排列,生长出单晶体。此法常用来提纯材料和生长单晶体。不仅可以生长纯金属单晶,也可用于生长二元或三元化合物。如:ZnIn2S4、HgGa2S2、ZnSiP2。
3 气相反应生长法让各反应物直接进行气相反应生成晶体的方法。成为工业上生产半导体外延晶体的重要方法之一,常用于制膜,如TiC、GaAs。
目前人类科技的镍基单晶材料共有五代。
⑻ 提拉法和导模法生长宝石晶体
“晶体提拉法”是利用籽晶从熔体中提拉生长出晶体的方法。该方法能在短期内生长出大而无位错的高质量单晶,是由J.丘克拉斯基(J.Czochralski)在1917年首先发明的,所以又称丘克拉斯基法。大多数氧化物类晶体如红宝石、蓝宝石、人造钇铝榴石(YAG)、人造钆镓榴石(GGG)、金绿宝石、尖晶石等,都能用晶体提拉法生长。
导模法是晶体提拉法的一个变种。
一、晶体提拉法的原理与装置
(一)晶体提拉法的原理
晶体提拉技术的原理可以用图4-1-4来说明。生长设备包括:坩埚、熔体(原料)、籽晶与晶体提拉机构、加热器及功率控制、温度控制系统、炉体及氧气控制系统、后加热器等,将待生长的原料放在合适的坩埚内熔化,装上定向的籽晶,降下籽晶杆,接种、放肩,然后等径生长出达到要求的晶体。
图4-1-4 晶体提拉法装置示意图
这种方法的主要特点是:
1)晶体生长过程直观,便于观察。
2)短时间内可长出高质量的大晶体。
3)可以定向等径生长,但是受坩埚材料污染、熔体对流及饱和蒸气压低、熔体挥发等的影响,给定向等晶生长晶体带来困难。
(二)晶体提拉法的主要装置
1.坩埚
坩埚是放熔体的器皿,应具有耐高温、抗熔体腐蚀、加工容易、不污染晶体等特点,不同宝石晶体使用不同的坩埚,常用的坩埚及生长的宝石材料见表4-1-5。
表4-1-5 常用于生长人工宝石的坩埚材料
铂、铱、钼等金属材料,延展性好,容易制造成各种形状,可重复使用,是首选材料。石墨加工容易,耐高温,可用于不与其发生氧化反应的材料的生长,但石墨较易氧化或脱落(即使在还原条件下),容易造成污染。
2.加热器及功率控制
晶体生长的关键是必须保持稳定的温场,功率也必须严格控制,射频加热、电阻加热是最常用的方法。射频加热的电源有中频和高频两种,由于坩埚导电性能较好,为了克服“集肤效应”而均匀加热,现在大都采用中频加热,特别是用在YAG、合成金绿宝石的生长时更是如此。感应加热的感应器应合理设计,以保持稳定合理的温场。电阻加热也是常用的方法,在宝石晶体生长中常用的加热器材料有石墨和钨两种。石墨耐高温,易加工,寿命长,但有污染;钨耐热温度高、不污染,但加工困难。
加热器功率的自动控制十分重要,只有保证熔体的温度稳定,才能培育出好的晶体,一般要求稳定在±0.2℃。
3.保护环境
一般晶体生长炉都有水冷的不锈钢外壳,内部可以加保温材料,还可以用保护气体,如氯、氦、氮、氢等改变炉内的气氛。所用流量和气体分压也都视材料而定,如在生长合成蓝宝石时,使用微量O2[w(O2)=0.5%]的Ar-O2或N2-O2混合气体,防止Al2O3脱氧。石墨加热时则使用Ar做保护气体。YAG、合成金绿宝石多用纯Ar来做保护气体。充气之前应先抽成真空,因此炉子还必须有真空系统。
4.提拉、转动机构及其控制
晶体提拉机构是一组精密的机械装置,不但要求机械加工精度高,而且机电拖动系统也要自动控制,还要与坩埚、晶体的电子称重系统形成自动调节,因此,这部分是现代提拉炉的最重要部分之一。
拉速和转速影响着固液界面的形状,界面状态是晶体生长的关键因素。晶体应在平界面生长,弯曲界面会引起径向杂质不均匀,合成宝石晶体内外颜色不一致。如晶体凸入熔体,容易形成小面,特别是GGG和合成红宝石的生长中有这种情况。转速除改变界面形状外,还引起熔体对流,因此必须设计合理的转速。
提拉速度主要决定于:待生长的晶体直径、炉体的温度、晶体质量要求、组分过冷等。
提拉速度和转速一般由试验决定(见表4-1-6)。
表4-1-6 材料与转速、拉速之间的关系
5.后加热器
由晶体提拉法生长的晶体,在离开熔融的液面后,不能直接进入室温的空间,否则会因为温度急剧变化而产生内应力使晶体破裂。所以,应在设备上考虑保温装置,使晶体逐渐冷却,这个装置就是后加热器(简称后热器)。后加热器的主要作用是调节晶体和熔体之间的温度梯度,以得到合适的纵向温度梯度,防止晶体开裂。
后热器可分为自热式和隔热式两种。自热式为圆柱状或伞状;隔热式后热器可用高熔点氧化物如氧化锆、氧化铝、合成刚玉陶瓷等制成,也可以由多层钼片、铂片反射器组成,所以隔热式后热器也叫保温盖。
通常后热器放在坩埚的上部,生长的晶体逐渐进入后热器,生长完毕后就在后热器中冷却至室温。
二、晶体提拉法生长宝石晶体实例
1.α-Al2O3(包括合成蓝宝石和红宝石,现以合成蓝宝石为例)晶体生长
原料:焰熔法白色合成蓝宝石碎块+TiO2+Fe2O3,TiO2、Fe2O3的配比视颜色而定。也可以用α-Al2O3(已掺杂)的烧结块。
坩埚:钼。
加热器:石墨。
温场设计:符合界面设计要求。
设备:真空充Ar晶体提拉炉。
工艺参数:温度2050℃以上,转速10~15r/min,拉速1~10mm/h可调。
将原料放入坩埚,加热到2060℃,熔化原料,已装好籽晶(定向)的提拉杆下降使籽晶接触熔体,控制温度略高于熔点,接种后,慢慢提拉、转动,小心降低功率,使晶体变粗。经过调节功率,实现接种—缩颈—放肩—等径生长—收尾的全部生长过程。在生长过程中观察生长情况,用红外传感器测量固-液界面的亮光环温度作为测温等径生长的采样,实现自动调节生长。
2.GGG晶体生长
人造钆镓榴石GGG是一种人造宝石,它与人造钇铝榴石(YAG)、人造钇铁榴石(YIG)等构成一系列具有石榴石结构的晶体。由于GGG可以掺入Cr、Nd等稀土和过渡族元素,因此颜色品种多而且色泽艳丽。研究这种晶体主要出于工业目的,它是很好的磁泡材料和激光基质材料,副产品可用于宝石,特别是绿色和蓝色的晶体。
GGG的分子式为Gd3Ga5O12,是等轴晶系,晶胞常数123.8nm。其生长工艺已经成熟,与YAG一样,掺入Cr3+成绿色,掺入Nd3+成紫色,掺入Er3+为粉红色等。
典型工艺中频感应加热,铱坩埚80mm(d)×80mm(h),充保护气体N2+O2[w(O2)%],拉速6mm/h,转速30r/min,籽晶定向,[111]方向生长,长成晶体长20~25mm,宽60mm。
主要缺点原料价格太贵,影响了它的推广应用。
3.YAG的提拉法生长
人造钇铝榴石(YAG),成分为Y3Al5O12,立方结构。作为激光器的晶体掺入Nd,显紫色;掺Co3+变蓝;掺入Ti3+变绿(有Fe);掺入Mn3+变绿(有Fe);掺入Mn3+变红;掺入Ti3+变黄。YAG颜色丰富,特别是绿色YAG可作为祖母绿代用品。
YAG的生长基本与GGG相同,配料为3Y2O3·5Al2O3。目前已研制了专门的中频加热的提拉炉,炉子带坩埚称重、晶体称重和等径生长控制,气氛是N2+Ar充气,铱坩埚,生长出大晶体已无困难,重要的是在宝石晶体生长时调正颜色色调,使其接近所替代的天然宝石颜色。
4.合成金绿宝石的提拉法生长
合成金绿宝石成分为Be Al2O4,掺入Cr3+、V3+离子晶体可产生变色效应,目前已有合成变石投放市场。
因BeO有毒,原料制备在封闭的环境中进行,Al2(SO4)3(NH4)2SO4·24H2O、Be SO4·4H2O及掺杂元素NH4Cr2O7+NH4VO3,按要求称重混合放入蒸发器,加热8h慢慢升温至1000~11000C,继而保温4h,使其完全分解为氧化物。将反应产品研碎并压块,在1300℃下灼烧10h,作为生长晶体的原料。也可以用α-Al2O3和BeO的粉末按1:1混合,加入掺杂剂Cr2O3和V2O5,混合压片,并在1200~1300℃温度条件下进行灼烧形成BeAl2O4多晶料。
典型工艺是:射频加热,60mm(d)×80mm(h)铱坩埚,抽真空后充102k Pa的Ar,加热到1870℃将原料熔化,再升温到1900℃,保温1h,然后降温30~50℃,接种籽晶(001),经放肩、提拉、等径、收尾等过程而长出晶体。转速25~40r/mim,拉速2.5mm/h,固-液界面温度梯度小于10℃/mm,这样可以生长出直径20~25mm的晶体。
三、导模法生长宝石晶体
导模法全名应为边缘限定薄膜供料提拉生长技术(简称EFG法),它是熔体提拉法的一个变种,特别适用于片状、管状和异型截面的晶体生长,这种方法可以生长合成蓝宝石、合成红宝石、YAG、合成金绿宝石等。
导模法的原理如图4-1-5所示,它与其他提拉法不同的是,在熔体中放入一个导模,上部边缘就是将要生长的晶体的截面形状,导模与熔体以毛细管或狭缝相通,熔体因毛细现象而沿毛细管上升,在顶部可用种晶引晶,在晶体与模之间有一液态的薄膜,液体在晶体和模顶面之间扩散到边缘,所以固化后就和模子的边缘形状一样。
图4-1-5 导模法提拉晶体
晶体生长的关键是导模设计和炉内温场的设计。导模设计要考虑熔体与模具材料是否浸润;温场设计要保证模口的温度合适。
由于手表工业的发展,合成蓝宝石表蒙大量使用白色合成蓝宝石,加之工业上用它作SOS基片,因此,板状晶体生长需求量剧增。目前已实现多片同时生长,高速提拉,并可生长出宽近100mm,长达1000mm,同时7~10片的合成蓝宝石晶体。表4-1-7是用导模法生长的一些宝石晶体的工艺条件。
表4-1-7 导模法生长宝石晶体部分工艺条件
四、提拉法和导模法生长宝石晶体的鉴别
(一)提拉法生长宝石晶体的鉴别
1.成分分析
用X射线荧光分析或电子探针方法可检测出提拉法生长的宝石晶体中存在有钼、钨、铱、铂等金属元素。
2.放大检查
用放大镜或显微镜观察,晶体内部有云朵状气泡群及条帚状包体,或者可见拉长的气态包体和很细的、弯曲成圆弧状的不均匀生长条纹。
利用超标准暗域或倾斜光纤照明技术观察,提拉法生长的宝石晶体偶尔可见一些细微的、类似于烟雾般的微白色云状物质。
(二)导模法生长宝石晶体的鉴别
1.包体
导模法生长的晶体,通常不存在未熔化的粉料包体,但可能存在导模金属的固体包体和气态包体。晶体内部可发现直径0.25~0.5µm大小的气泡,且气泡分布不均匀。
2.存在籽晶及其缺陷
因为熔体导模法与提拉法一样使用了籽晶,所以生长出的晶体必然有籽晶的痕迹,并且籽晶的缺陷也可进入导模法生长的晶体中。
⑼ 单晶的单晶制备方法
单晶生长制备方法大致可以分为气相生长、溶液生长、水热生长、熔盐法、熔体法。最常见的技术有提拉法、坩埚下降法、区熔法、定向凝固法等;
目前除了众多的实际工程应用方法外,借助于计算机和数值计算方法的发展,也诞生了不同的晶体生长数值模拟方法。特别是生产前期的分析和优化大直径单晶时 ,数值计算尤为重要。
一、挥发法
原理:依靠溶液的不断挥发,使溶液由不饱和达到饱和过饱和状态 。
条件:固体能溶解于较易挥发的有机溶剂理论上,所有溶剂都可以,但一般选择60~120℃ 。
注意:不同溶剂可能培养出的单晶结构不同方法:将固体溶解于所选有机溶剂,有时可采用加热的办法使固体完全溶解,冷却至室温或者再加溶剂使之不饱和,过滤,封口,静置培养 。
二、扩散法
原理:利用二种完全互溶的沸点相差较大的有机溶剂。固体易溶于高沸点的溶剂,难溶或不溶于低沸点溶剂。在密封容器中,使低沸点溶剂挥发进入高沸点溶剂中,降低固体的溶解度,从而析出晶核,生长成单晶。液体等。一般选难挥发的溶剂,如DMF,DMSO,甘油甚至离子 。
条件:固体在难挥发的溶剂中溶解度较大或者很大,在易挥发溶剂中不溶或难溶。经验:固体在难挥发溶剂中溶解度越大越好。培养时,固体在高沸点溶剂中必须达到饱和或接近过饱和 。
方法:将固体加热溶解于高沸点溶剂,接近饱和,放置于密封容器中,密封容器中放入易挥发溶剂,密封好,静置培养 。
三、温差法
原理:利用固体在某一有机溶剂中的溶解度,随温度的变化,有很大的变化,使其在高温下达到饱和或接近饱和,然后缓慢冷却,析出晶核,生长成单晶。一般,水,DMF,DMSO,尤其是离子液体适用此方法。条件:溶解度随温度变化比较大。经验:高温中溶解度越大越好,完全溶解。推广:建议大家考虑使用离子液体做溶剂,尤其是对多核或者难溶性的配合物 。
四、接触法
原理:如果配合物极易由二种或二种以上的物种合成,选择性高且所形成的配合物很难找到溶剂溶解,则可使原料缓慢接触,在接触处形成晶核,再长大形成单晶。一般无机合成,快反应使用此方法 。
方法:1.用U形管,可采用琼脂降低离子扩散速度。2.用直管,可做成两头粗中间细。3.用缓慢滴加法或稀释溶液法(对反应不很快的体系可采用)4.缓慢升温度(对温度有要求的体系适用)经验:原料的浓度尽可能的降低,可以人为的设定浓度或比例。0.1g~0.5g的溶质量即可 。
五、高压釜法
原理:利用水热或溶剂热,在高温高压下,是体系经过一个析出晶核,生长成单晶的过程,因高温高压条件下,可发生许多不可预料的反应。方法:将原料按组合比例放入高压釜中,选择好溶剂,利用溶剂的沸点选择体系的温度,高压釜密封好后放入烘箱中,调好温度,反应1~4小时均可。然后,关闭烘箱,冷至室温,打开反应釜,观察情况按如下过程处理:1.没有反应——重新组合比例,调节条件,包括换溶剂,调pH值,加入新组分等。2.反应但全是粉末,且粉末什么都不溶解,首先从粉末中挑选单晶或晶体,若不成,A:改变条件,换配体或加入新的盐,如季铵盐,羧酸盐等;B:破坏性实验,设法使其反应变成新物质。3.部分固体,部分在溶液中:首先通过颜色或条件变化推断两部分的大致组分,是否相同组成,固体挑单晶,溶液挥发培养单晶,若组成不同固体按1或2的方法处理。4.全部为溶液——旋蒸得到固体,将固体提纯,将主要组成纯化,再根据特点接上述四种单晶培养方法培养单晶 。
⑽ 求助金属配合物的单晶培养方法
金属配合物的单晶培养方法:
方法一:挥发
用金属配合物的良溶剂将其溶解在小烧杯中,小烧杯的内表面越光滑单晶性越好,否则晶体形状不好缺陷多就会给后面的收单晶衍射数据带来麻烦,甚至会造成无法解晶体结构,那将是非常可惜的;烧杯用滤纸或塑料薄膜封口防止灰尘落入,同时减慢挥发速度,长出较好晶形的单晶,一般挥发性稍差的溶剂用滤纸,如,水等。静置至发现满意的晶体出现。
方法二:扩散
用金属配合物的良溶剂将其溶解在小烧杯或广口瓶中,塑料薄膜封口(用针戳3-5个小孔),放于盛有该金属配合物的挥发性不良溶剂(一般用乙醚)的大瓶子中。静置至发现满意的晶体出现。
方法三:分层
将金属的水溶液放于试管下层,配体的有机溶剂溶液放于试管上层,中间是水和有机溶剂的混合溶剂,封口。操作要小心,最好是用滴管伸进试管靠近液面缓慢滴加。静置至发现满意的晶体出现。
以上是我在培养配合物单晶常用的方法,一般是几种方法同时做,不是每种方法都能或总能培养出单晶,更多的是取决于配合物的结晶性好坏。总之就是多试:不同的温度、溶剂、混合溶剂的比例……
1.制备结晶,要注意选择合宜的溶剂和应用适量的溶剂。合宜的溶剂,最好是在冷时对所需要的成分溶解度较小,而热时溶解度较大。溶剂的沸点亦不宜太高。一般常用甲醇、丙酮、氯仿、乙醇、乙酸乙醋等。但有些化合物在一般溶剂中不易形成结晶,而在某些溶剂中则易于形成结晶。
2.制备结晶的溶液,需要成为过饱和的溶液。一般是应用适量的溶剂在加温的情况下,将化合物溶解再放置冷处。如果在室温中可以析出结晶,就不一定放置于冰箱中,以免伴随结晶析出更多的杂质。“新生态”的物质即新游离的物质或无定形的粉未状物质,远较晶体物质的溶解度大,易于形成过饱和溶液。一般经过精制的化合物,在蒸去溶剂抽松为无定形粉未时就是如此,有时只要加入少量溶剂,往往立即可以溶解,稍稍放置即能析出结晶。
3.制备结晶溶液,除选用单一溶剂外,也常采用混合溶剂。一般是先将化合物溶于易溶的溶剂中,再在室温下滴加适量的难溶的溶剂,直至溶液微呈浑浊,并将此溶液微微加温,使溶液完全澄清后放置。
4.结晶过程中,一般是溶液浓度高,降温诀,析出结晶的速度也快些。但是其结晶的颗粒较小,杂质也可能多些。有时自溶液中析出的速度太快,超过化合物晶核的形成劝分子定向排列的速度,往往只能得到无定形粉未。有时溶液太浓,粘度大反而不易结晶化。如果溶液浓度适当,温度慢慢降低,有可能析出结晶较大而纯度较高的结晶。有的化合物其结晶的形成需要较长的时间。
5.制备结晶除应注意以上各点外,在放置过程中,最好先塞紧瓶塞,避免液面先出现结晶,而致结晶纯度较低。如果放置一段时间后没有结晶析出,可以加入极微量的种晶,即同种化合物结晶的微小颗粒。加种晶是诱导晶核形成常用而有效的手段。一般地说,结晶化过程是有高度选择性的,当加入同种分子或离子,结晶多会立即长大。而且溶液中如果是光学异构体的混合物,还可依种晶性质优先析出其同种光学异构体。没有种晶时,可用玻璃棒蘸过饱和溶液一滴,在空气中任溶剂挥散,再用以磨擦容器内壁溶液边缘处,以诱导结晶的形成。如仍无结晶析出,可打开瓶塞任溶液逐步挥散,慢慢析晶。或另选适当溶剂处理,或再精制一次,尽可能除尽杂质后进行结晶操作。
6.在制备结晶时,最好在形成一批结晶后,立即倾出上层溶液,然后再放置以得到第二批结晶。晶态物质可以用溶剂溶解再次结晶精制。这种方法称为重结晶法。结晶经重结晶后所得各部分母液,再经处理又可分别得到第二批、第三批结晶。这种方法则称为分步结晶法或分级结晶法。晶态物质在一再结晶过程中,结晶的析出总是越来越快,纯度也越来越高。分步结晶法各部分所得结晶,其纯度往往有较大的差异,但常可获得一种以上的结晶成分,在未加检查前不要贸然混在一起。
7.化合物的结晶都有一定的结晶形状、色泽、熔点和熔距,一可以作为鉴定的初步依据。这是非结晶物质所没有的物理性质。化合物结晶的形状和熔点往往因所用溶剂不同而有差异。原托品碱在氯仿中形成棱往状结晶,熔点207℃;在丙酮中则形成半球状结晶,熔点203℃;在氯仿和丙酮混合溶剂中则形成以上两种晶形的结晶。所以文献中常在化合物的晶形、熔点之后注明所用溶剂。一般单体纯化合物结晶的熔距较窄,有时要求在0.5℃左右,如果熔距较长则表示化合物不纯。
不知这些可否对各位朋友有些许帮助?
单晶培养的具体操作方法:四条注意事项:1、结晶容器的选择(敞口烧杯,既不能用从未使用过的新烧杯,也不能用很旧的烧杯。可能原因为,烧杯太新,不利于晶核的形成,而太旧则形成晶核的部位太多,不利于单晶的生长。) 2、溶剂的选择(合适的溶剂将物质溶解,溶解性不能太好也不能太差且具有一定的挥发性,不能挥发太快也不能太慢)3、结晶速度(尽量慢的让溶剂挥发,一旦析出结晶,过滤,可能得到单晶也可能是混晶,千万别用母液洗晶体)4、环境的选择(放在一个平稳的地方,千万不能有一丝一毫的震动,否则即使得到单晶也全完了)