导航:首页 > 使用方法 > 常用富集分离方法

常用富集分离方法

发布时间:2022-05-06 02:17:29

㈠ 在定量分析化学中常用的分离富集方法有哪些

【】沉淀富集法、萃取富集法、离子交换法,应用较多。
再看看别人怎么说的。

㈡ 共沉淀和沉淀分离富集法

用Te、Se、Hg、Bi、Cu、Mn等沉淀剂对铂族元素进行共沉定富集,是将铂族元素与其他贱金属分离的一种手段,此方法在地质样品的铂族元素分析中应用较广,其中硫脲沉淀和碲共沉淀应用较多。共沉淀法也可以采用有机试剂作为共沉淀剂富集贵金属。

㈢ 富集海水中微量元素的方法是

灵敏度足够高的海水微量元素的直接测定法不多,加上海水中有大量基体盐类存在,不易得到可靠的结果,常先用分离富集方法,消除干扰,并提高待测微量成分的浓度,然后进行测定。
富集分离法
常用的方法有:溶剂萃取法、离子交换法、共沉淀法和冻干法等。

溶剂萃取法。
例如吡咯烷基酸铵-甲基异丁基酮,可用于萃取海水中的镉、铜、镍、铅、锌、银、钴、铁等元素,供原子吸收光度法测定用。

离子交换法。纤维素交换法,可富集海水中的钴、铬、铜、铁、钼、镍、铅、锌、铀等元素,供X射线荧光法和中子活化法测定用;螯合树脂交换法,可富集镉、铬、铜、铁、锰、镍、铅、锌等元素,供原子吸收分光光度法测定用。

共沉淀法。用分光光度法、原子吸收法或中子活化法测定海水中微量元素之前,可用共沉淀法富集分离。例如用氢氧化铁为沉淀剂,分离海水中的砷、铕、镧、钌、锡、钽等成分之后,再用中子活化法测定它们的含量。

冻干法。可用于中子活化法测定海水中多种元素之前的富集,但不能分离出干扰元素。

㈣ 分离与富集

利用铊(Ⅲ)与亚铊(Ⅰ)性质上迥然不同的特性,选择某一价态的反应以达到分离的目的。若欲还原铊(Ⅲ),可在酸性介质中用亚硫酸还原之,再煮沸驱尽过剩亚硫酸。如欲氧化亚铊(Ⅰ),则应用溴、氯或王水并造成氧化环境下进行。

铊的分离与富集方法有沉淀分离、溶剂萃取、离子交换与吸附、金属接镀法等。

62.4.2.1 沉淀分离法

在经典的沉淀法中,只有铬酸盐沉淀法比较可靠。通常须先沉淀分离伴生元素,然后再用铬酸盐沉淀亚铊。常用的沉淀分离方法如下:

与银的分离。可在稀硝酸介质中用饱含氯的盐酸或王水沉淀银,铊(Ⅲ)可留于溶液中。

与砷和锑的分离。将溶液氨化,加1~2mL(6+94)H2O2,煮沸使砷和锑氧化至高价状态,再以铬酸盐沉淀亚铊。

与锡的分离。溶液经氢氧化铵中和后,用乙酸酸化并加水稀释至大体积,加2~3gNH4NO3,煮沸,则锡呈偏锡酸析出。滤液蒸发至适当体积,氨化后用铬酸盐沉淀亚铊。

与铅、铋、锰的分离。将硝酸盐中性溶液煮沸,加磷酸氢二铵首先沉淀铋,滤出,水洗。滤液中加20mL300g/L磺基水杨酸溶液,补加磷酸氢二铵并加氢氧化铵使铅和锰沉淀完全。滤液用铬酸盐沉淀亚铊。

与银、汞、铜的分离。溶液氨化后,加氰化钾将这些金属配位(络合),用铬酸盐沉淀亚铊。

与镓、铟、铝、铁、铬、锌、镉、镍、钴、硒的分离。在试液中加入20mL300g/L磺基水杨酸,加氢氧化铵氨化,用铬酸盐沉淀亚铊。若不含前面五种三价金属离子,只要加足够量的氢氧化铵和硝酸铵变可使二价金属离子保留于溶液中。

如伴生元素的存在情况不清楚,可用如下分离操作:

在硝酸介质中,加20~30mL300g/L磺基水杨酸溶液和过量的磷酸氢二铵,用氢氧化铵氨化之后,煮沸,放置过夜。过滤,用20g/LNH4NO3溶液洗涤,滤液蒸发缩小体积后,冷却。加氰化钾至游离金属离子的颜色褪去,用铬酸盐沉淀亚铊。

在含有酒石酸-氰化物的碱性介质中,可用乙硫醇酰萘(thionalide)沉淀铊(Ⅰ),这是一种特效沉淀剂。

矿石中铊含量甚微,可用共沉淀方法使之沉淀分离。例如用铬酸盐沉淀铊(Ⅰ)时,加铬酸钡作共沉淀剂。在0.2mol/LHCl中,TlCl-4与对二甲基氨基偶氮苯和甲基橙共沉淀,其中甲基橙为共沉淀剂。虽然沉淀铊还可应用其他共沉淀剂,但大多无实用意义,故不详述。

铊在稀盐酸或硫酸介质中,可被金属锌或金属镁还原成金属状态析出。

62.4.2.2 溶剂萃取法

矿石分析中最常用的分离方法是溶剂萃取法。

(1)卤化物的萃取

a.乙醚。铊(Ⅲ)的氯化物在2~6mol/LHCl中可为乙醚定量萃取而与铅等大量伴生元素分离,但在6mol/LHCl中,镓、锑(Ⅴ)、砷(Ⅲ)、锗、金(Ⅲ)、铁(Ⅲ)、钼(Ⅵ)和锡(Ⅱ)也被大量萃取。

b.乙醚或乙酸异戊酮。在1mol/LHBr中,用乙醚或乙酸异戊酮萃取铊(Ⅲ),可与锑、汞、铬、钒、钼、钨、铁、铟、锌、碲、镓等分离。只有金(Ⅲ)与铊(Ⅲ)一起被定量萃取。

c.甲基异丁基甲酮(MIBK)。在1.2mol/LHCl介质中,40g/L抗坏血酸-33.3g/LKI存在下,Ag、Cd、Tl均可被MIBK定量萃取,并与可能进入有机相中的Au、Te、Sb、As、Pb、Cu、Zn、In、Bi、Hg元素基本分离,能进入有机相中的干扰元素(1000倍量),不干扰用有机相直接AAS测定痕量Ag、Cd、Tl。

d.乙酸丁酯。Tl3+在0.2~0.5mol/LHBr中,能被乙酸丁酯完全萃取;酸度大于3.0mol/LHBr时,有部分In被萃取,至5.0mol/LHBr时,才有微量Ga被萃取。可在0.2mol/LHBr中萃取Tl3+,与Ga、In完全分离。在3.5mol/L(HCl+HBr)-333g/LNaCl介质中,Ga、In可定量被萃取,此时富集度最高。对50μgGa、In、Tl在抗坏血酸-柠檬酸存在下,可消除大部分基体干扰。当Zn大于20mg、Mg大于40mg、Mo大于2mg时,对有机相AAS测定Ga、In有负干扰。

e.TBP和TOA。TBP和TOA以苯作稀释剂,在盐酸或氯化锂介质中,文献研究了对Ga、In、Tl的萃取行为:TBP萃取金属Ga、In、Tl的效果依次为,低酸度下Tl>Ga>In,在高酸度时Ga>Tl>In;TOA萃取金属的效率依次是Tl>Ga>In。0.1mol/LHCl可反萃取Ga、In,0.1mol/LNaOH可反萃取Tl。

(2)硫代磷酸萃取

在不同硫酸介质中,研究了二(2-乙基己基)单硫代磷酸(D2EHMTPA)、二(2-乙基己基)二硫代磷酸(D2EHDTAP)和二(2-乙基己基)磷酸(D2EHPA)萃取Tl+的行为。当pH1.5~3时,D2EHMTPA和D2EHDTPA能完全萃取Tl+,而D2EHPA只能定量萃取Tl+,并且随着硫酸酸度的增加对Tl+的萃取能力逐渐下降,当酸度大于4mol/L时,Tl+萃取率为零,可以此作为Tl+的反萃剂。

(3)TritonX-114浊点萃取

在pH12.0的硼砂缓冲溶液中,90℃水溶2h,2g/LTritonX-114浊点可定量萃取Tl,与能和氢氧化物形成沉淀的干扰元素分离,方法用于石墨炉原子吸收法测定水中痕量铊(Ⅲ),加标回收率为98%~100%,检出限为0.018g/L,RSD≤13.7%。

(4)螯合物、离子缔合物的萃取

a.碱性染料。Tl3+的卤阴配离子与碱性染料阳离子形成的缔合物在表面活性剂存在下,被有机溶剂(苯、甲苯、二甲苯、乙酸异戊酯等)所萃取,与大量干扰离子分离,常被用于光度法测定Tl。

b.二硫腙。铊(Ⅰ)与二硫腙形成的螯合物易为某些溶剂所萃取。如在pH>8时,可为三氯甲烷萃取。当有氰化物作掩蔽剂,在pH11左右用四氯化碳长时间萃取铊可与许多元素,如银、汞(Ⅱ)、镍、铜(Ⅱ)、锌和镉等分离。铅、铋、锡(Ⅱ)和部分锰与铊一起被萃取。过多的锌、汞和镍存在使铊的萃取不完全。

62.4.2.3 离子交换与吸附法

(1)离子交换树脂分离

常用离子交换法使铊与其他元素分离。如在碱性溶液中,使用阳离子交换树脂使铊呈阳离子状态被交换树脂吸附,锑则以SbO3-3(或SbO2-4)阴离子状态保留于溶液中。在溶液中加入酒石酸、柠檬酸或草酸,则铊可与更多的元素分离。

亚铊(Ⅰ)与阳离子交换树脂的亲和力大于碱金属离子,小于银离子,其顺序为:

Ag+>Tl+>Cs+>Rb+>NH+4>K+>Na+>H+>Li+

在pH4的EDTA溶液中,强酸性阳离子交换树脂保留铊(Ⅰ)在柱上,而汞、铋、铜、铁、铅和锌通过交换柱。再用2mol/LHCl洗提铊(Ⅰ)。

铊(Ⅰ)在柠檬酸、乙二胺四乙酸、甘氨酸、邻苯二酚-3,5二磺酸、酒石酸、草酸和焦磷酸钠溶液中(pH3~5)均不形成配合物,能被阳离子交换树脂吸附,可与铜、铅、锌、镉、铁、锑等元素分离。

利用强碱性阴离子交换树脂进行交换,可使金与铊彼此分离;在0.05mol/LH2SO4中,金经静态交换被吸附除去。

(2)色谱分离

a.N263-P350混合色谱柱分离。以(X-5)型聚乙烯苯树脂为载体,负载N263-P350(2+1)组成的混合色谱柱,在1mol/LHCl-150g/LNaCl-0.05%H2O2-0.5g/LFeCl3存在下,Ga3+、In3+、Tl3+被混合色谱柱完全萃取。依次用1mol/LHBr解脱Ga3+,H2O2解脱In3+,10g/L抗坏血酸解脱Tl3+。当进行单元素或两个元素测定时,表62.11中条件均可获得满意结果。

表62.11 各种可行的流动相

注:①适用Fe3+小于3mg的试样。

b.TBP萃淋树脂分离。在!=2%~10%王水介质中,Tl3+可被定量吸附,以0.5~5g/L(NH4)2SO3溶液作洗脱液,Tl3+转为Tl+而被定量洗脱。对0.5μgTl进行分离富集,20mgPb、Zn、Cu、K+、Na+、Mg2+,10mgNi、Cr,30mgAl、Ca,1mgCd被分离,未发现干扰。

用磷酸三丁酯-聚三氟氯乙烯柱上萃取色谱,可从王水介质富集铊(Ⅲ)与金(Ⅲ),先用0.5mol/LHNO3(含10g/LNaCl)洗除汞(Ⅱ)等杂质,用0.0002mol/LEDTA洗提铊(Ⅲ),金滞留在柱上。

c.纸色谱分离。试液中的Tl3+由3号色谱纸在7.2mLMIBK-8mL乙醇-4.8mL1.0mol/LHBr(体积比为9+10+6)的展开相中,展开3h,用结晶紫显色后,剪下铊色带纸片,于25mL0.58g/LNa2SO3溶液中加热微沸5min至黄色褪去,Tl3+可被完全解析。用镉试剂2B光度法测定铊,对25mL体积8μgTl3+进行分离,30mgFe3+,5.3mgCa2+,50mgCu2+,5mgPO3-4,20mg柠檬酸根不影响测定。方法回收率98%~102%,相对标准偏差≤4%。

d.硅胶-P350萃取色谱分离

在不小于1mol/LHBr介质中,Tl3+、In3+、Au3+可被硅胶-P350树脂萃取,以1mol/LHBr为淋洗液,用水洗脱In3+,而把Tl3+、Au3+留在柱上;再用1.5mol/LNaAc洗脱Tl3+,最后用10g/LNa2SO3溶液洗脱Au3+,实现了Tl3+、In3+、Au3+的连续色谱分离。用二甲酚橙光度法测铟,结晶紫光度测定铊,孔雀绿光度法测定Au,对20μg的Tl3+、In3+、Au3+进行分离富集,至少能分离100mgK+、Na+、Fe3+、Cu2+、Pb2+、Zn2+、Ni2+、Co2+,50mgCa2+、Al3+,20mgAs5+、Mn2+,2mgSb5+、Sn4+、Bi3+、Hg2+,0.5mgCr6+、Cd2+、Ag+,200mgCl-、SO2-4、NO-3

(3)吸附分离

a.泡沫塑料吸附分离。在(1+9)王水介质中,用聚胺酯泡塑(动态吸附30min)可定量吸附Tl3+;泡塑在还原剂(亚硫酸钠、硫脲等)存在下,100℃水浴保持20min,Tl3+转为Tl+而被解脱,此时大量杂质保持在泡塑上,对分离测定Tl较为有利。Tl的回收率恒定在85%左右。用镉试剂2B光度法测定铊,对25mL含10μgTl3+进行回收,在三乙醇胺-氰化钠掩蔽下,1000mgFe3+,5mgAl3+,1mgZn2+,0.1mg的Pb2+、Cu2+,50μgTi4+、Co2+,20μgCd2+、Hg2+、Ag+及一般阴离子(未做最大量)不干扰测定,方法加标回收率为97%~106%,相对标准偏差≤4.1%。

b.活性炭吸附。在0.6~3.6mol/LHCl介质中,Tl3+可被活性炭定量吸附。在加热煮沸10min或室温搅拌20min后,两者吸附率基本相同,吸附率为96%~99.5%,动态吸附容量在20mg/g以上;40~60℃的0.5g/L的(NH4)2C2O4溶液,可定量解脱Tl3+。用于8羟基喹啉紫外光度法测定痕量Tl,Cu2+、Fe3+、Ag+干扰允许量得到极大提升。

c.聚酰胺树脂分离。在!=0.1%~20%王水,0.01~2.0mol/LHCl介质中,Tl3+的吸附率在97%~103%之间。用0.025mol/LNa2SO3-0.025mol/L抗坏血酸-0.02mol/LH2SO4混合液,Tl3+可定量洗脱。在吸附过程中常见离子不被吸附,只吸附贵金属离子,解脱时,控制适当酸度。Pd2+、Pt2+、Au3+和Ag+有部分吸附。

62.4.2.4 液膜分离法

(1)正十六胺载体膜

以正十六胺-L113B-煤油(体积比为6+5+89)为膜相,0.040mol/LNaOH溶液为内相,油内比为(体积)1+1;0.040mol/LKCl-0.060mol/LHCl溶液为外相,乳水比(体积)为3+40。以200r/min速度搅拌7min,Tl3+的迁移率达99.5%以上,Na+、K+、Cu2+、Pb2+、Cd2+、Co2+、Ni2+均不迁移。可用于分离黄铁矿及其焙烧灰渣中的Tl,回收率为98.6%~99.7%。

(2)TBP+N503载体膜

以(5+1)TBP-MIBK-N503-聚丁二烯-磺化煤油(体积比为5+2+3+90)为膜相,内相为0.4g/L硫脲-10mg/LNa2SO3溶液,油内体积比为1+1;外相为2.5mol/LHNO3-9.6g/LNH4F溶液,乳水体积比为1+5。温度20~35℃,以250r/min转速搅动拌8min,Tl3+回收率达99.4%以上。在选定条件下,迁移0.5mgTl3+,25mg的碱金属和碱土金属,10mg的Cu2+、Pb2+、Co2+、Ni2+、Cd2+、Al3+、Mn2+、SiO2-3、NO-3都不影响迁移富集Tl3+。Au3+、Sn4+对迁移有影响,但在NH4F存在下,至少能阻止4mgAu3+、20mgSn4+。1mgPt4+、Pd2+、Rh3+和Ir3+不影响Tl3+的分离富集。大量Cl-、ClO-4对迁移Tl3+有影响,尽量少引入。用于工业废水中Tl的分离,回收率为99.4%~100.6%。

62.4.2.5 金属接镀分离法

在盐酸溶液中利用金属铜接镀,可使铊与某些干扰元素分离。铜的标准氧化还原电位E(Cu2+/Cu)=+0.344V,汞、银、金和锑的氧化还原电位分别为E(Hg2+/Hg)=+0.791V、E(Ag+/Ag)=+0.800V、E(AuCl-4/Au)=+1.00V、Sb5+/Sb3+=+0.75V。用甲基紫比色法测定铊时,可用铜丝接镀以消除金、汞和锑(Ⅴ)的干扰。铜丝接镀要求的酸度约为0.15~0.2mol/LHCl。接镀后的溶液,应逐滴加入(3+7)H2O2使铜盐溶解,再过量5~6滴使铊氧化,静置30~40min后进行比色测定。

铜丝接镀分离不适用于有大量汞、锑等存在的试样,因需数次接镀,且不易分离完全,使铊的测定结果偏低,遇此情况宜在溶解试样后加氢溴酸-硫酸冒烟挥发除去。金也可用氯化亚锡还原成元素状态,过滤与铊分离。用氢氧化钠沉淀铊(Ⅲ),可使铊与金、钨、钼分离。

㈤ 分离和富集

矿石中镭的富集一般采用在钡盐存在下加入硫酸溶液,铁、铀等进入溶液,钡和铅以硫酸盐形式沉淀而载带镭共沉淀,与大多数元素分离。另一种常用方法是用碱和碳酸钠分解试样,碳酸钡作载体,用水提取后,镭以碳酸钡(镭)形式沉淀富集与主体元素分离。

阳离子交换树脂色层柱可以使钡和镭分离,用EDTA、柠檬酸或柠檬酸铵洗脱,首先洗脱锶,然后是钡,最后是镭。用阳离子交换树脂色层法分离镭和钍时,70g/L的草酸溶液在80℃下洗脱钍,用HCl洗脱镭。

根据钡和镭的铬酸盐的溶解度差异,可分离钡和镭,也可以通过加入氨羧配位剂Ⅲ来分离镭,氨羧配位剂与铅、钋和铋形成稳定的配合物与镭分离。

㈥ cofs材料是如何实现目标分析物的分离富集

摘要 常用方法有:沉淀分离法,挥发和蒸馏分离法、液液萃取分离法、离子交换分离法、色谱分离法、气浮分离法等。详情参见http://wenku..com/link?url=yN3ecaQZkhWfS8a-h56WF61vTGVc5vxcTEaka

㈦ 要实现对镁离子的富集,分离有哪些方案

1.富集有蒸发溶剂法:就是将溶液的溶剂蒸发进而使溶液浓缩
2.化学法有沉淀法:如加入沉淀剂将海水中镁离子先沉淀下来,沉淀剂的选择应考虑沉淀能力及工业成本,通常选用的是石灰.
3.、也可以先将溶剂蒸发后再加入沉淀剂反应呢,所发生反应是:
Mg2+ + 2OH- = Mg(OH)2 ↓

㈧ 常见的分离与富集方法有哪些

常见的分离有:
过滤、萃取、蒸馏、分液
常见的富集:
蒸发浓缩

㈨ 蒸馏分离富集法

通常是将试样称量于二球或一球玻管中,与铁粉混匀,灼烧,使硫化汞分解呈金属汞升华冷凝于玻管内壁,达到试样分解和分离富集的目的。同时逸出的只有少量砷、锑和硫,加入活性炭可抑制其挥发。含大量有机物的试样可加入氯化锌或活性炭防止有机物逸出。此法既可用于常量汞的分离和富集,也可用于化探试样中微量汞的分离与测定。

㈩ 火法分离富集法

火法试金是铂族元素分解和富集的最有效方法,它在铂族元素测定中占有重要地位。

64.2.1.1 铅试金法

用于富集铂、钯、铑、铱4个非挥发性铂族元素,一次试金能捕集90%以上。铅试金熔剂对铬铁矿很难分解,夹在铬铁矿颗粒中的铂族元素很难捕集。硫化铜镍矿中的硫和镍对铅试金的干扰也不容忽视。因大量硫在熔炼过程中形成的冰铜相会捕集部分铂族元素,故铜镍矿试样必须减少还原剂的加入量,利用氧化铅使硫氧化。如硫含量很高,则可不加还原剂,甚至还要加入硝酸钾以氧化部分硫。镍可能进入铅扣,影响灰吹。当铅扣中镍在0.03g以上时,生成的氧化镍会粘在灰皿壁上造成灰吹无法进行。对于镍含量高的试样,需在熔剂中加入氧化铅的用量,过量的氧化铅使镍排入熔渣中。过量的氧化铅质量不应少于镍质量的100倍。铜量在2g以内对铅试金的影响可以忽略。

为了获得流动性很好的熔渣,加入活性助熔剂(碳酸钠、硼砂和过量氧化铅)的总量应达到称取试样质量的2.5倍,并加入玻璃粉使熔渣的硅酸度(熔渣中酸性氧化物所含氧原子物质的量与碱性氧化物所含氧原子物质的量的比值)在1~1.5之间。

铅试金法可分为熔炼和灰吹两个步骤。熔炼是将氧化铅、还原剂和助熔剂与试样混匀,置于试金坩埚中,在1000~1200℃高温炉中熔融,试样分解并逐步形成硅酸盐相(熔渣),贵金属化合物和氧化铅被还原为金属而形成金属相。捕集了铂族元素的金属铅沉到底部。当熔体倒入铁模中冷却后可取出已捕集贵金属的金属铅,称之为铅扣。灰吹是将铅扣放入预热的骨灰皿中或镁砂灰皿中,在900℃左右进行氧化熔炼,使熔融的金属铅氧化为氧化铅而渗入多孔的灰皿中,最后仅有金属珠(合粒)留在灰皿内。铅试金富集即告完成。

当铅扣中含有毫克量银时,灰吹得到的是银(含金)粒,银对铂、钯的灰吹有良好的保护作用,有利于后续的测定。但是铑和铱因不能像钯和铂能与银形成合金,故此时铑、铱在灰吹时损失可达50%。为了避免铑、铱的损失,可在熔炼时加入毫克量的铂,灰吹时形成铂粒,铂在灰吹的后期以铂铅互化物形成析出,带下一部分铂和铱。灰吹结束时,铂粒中还阻留相当量的铅,对铑、铱也有保护作用,故加铂灰吹,铱的损失仅在5%左右,而铑的损失更小。若加入6mg铂和4mg钯灰吹,效果更好。

铅试金法称取试样的量可高达100g,故取样的代表性好,取样误差可以不予考虑,富集的效果好,配料比较复杂。

试剂

硝酸银溶液(10g/L),稀硝酸介质。

铂溶液(5mg/mL)称取2.5g铂,置于500mL烧杯中,用王水溶解。加1gNaCl,蒸发至近干,取下,置于水浴上蒸干,用(1+1)HCl赶硝酸3次,取下。加入10mgFeCl3、10mgNiCl2、几滴HCl和300mL水,煮沸使盐类溶解。加10mL100g/LNaBr溶液,再煮沸使沉淀凝聚。用Na2CO3溶液调节pH至7,煮沸10min,再用Na2CO3溶液调节pH至8~9,保温30min。过滤以除去含铑、铱的沉淀,用100g/LNaCl溶液洗涤沉淀2次,用HCl中和滤液,移入500mL容量瓶中,用水稀释至刻度,摇匀。

分析步骤

(1)配料

以40g试样计,熔剂的大致组成为:Na2CO360g;Na2B4O720g;PbO50g,其中35g被还原为金属,15g造渣;若含铜、镍的试样,则氧化铅要适当过量,过量氧化铅应大于铜、镍质量的200倍;玻璃粉,加入量以调节硅酸度在1~1.5之间;面粉或硝石,调节还原能力,以产生30gPb为宜。

(2)熔炼

将混合均匀的试样与熔剂置于试金坩埚中。测定铂、钯时加入3滴10g/LAgNO3溶液;测定铑、铱则加入1mL5mg/mL铂溶液。将坩埚置于800℃试金炉中熔融30min,然后升温至1100℃,保持20min。将熔融体倒入铁模中,冷却,取出铅扣,砸去熔渣。

(3)灰吹

将骨灰皿放入高温炉中于900℃灼烧30min,取出,放入铅扣,再置于高温炉中,关闭炉门,升温至熔铅发亮,微启炉门,在900℃灰吹至尽。取出灰皿,冷却,将合粒取出。

64.2.1.2 锍试金法

用镍的硫化物作为捕集剂的主要成分,得到的锍扣能捕集6个铂族元素,是目前应用较多的一种火法试金。铂族元素以硫化物的状态进入锍扣而与脉石分离。扣中的贱金属硫化物可被盐酸分解,而铂族元素保留在残渣中。扣中硫化铁的含量很低的称硫化镍扣,呈黄色,坚硬光亮,很容易与熔渣分离,但是必须经过机械破碎才能被盐酸分解。扣中硫化铁含量高的称镍铁锍扣,若扣中硫化铁的含量小于40%,也易于同熔渣分离;这种扣在空气中易风化,只要硫化铁含量大于20%,浸入水中几小时即可松散,无需机械破碎。对于超基性岩和硫化铜镍矿原矿,含硫化物不多而称样量较大,熔炼成镍铁锍扣是合适的;对于硫化矿精矿,因其含量很高,最好熔炼为硫化镍扣;利用试样中的硫同氧化镍反应,而在配方中不另加硫化铁,若过多的硫化铁留在熔渣中会引起铂族元素的损失。

锍扣破碎后其中的硫化亚铁、硫化亚镍可被6mol/LHCl溶解,在溶解过程中会生成絮状的硫化镍(β,γ-NiS),它不溶于HCl而溶于热的FeCl3溶液;但在FeCl3溶液中,铂族元素硫化物的溶解度增大,尤其是锇,其损失可达10%,这点尤需引起重视。若在试金熔剂中加入0.2g左右的锑,则铂族元素的损失小于5%。

铬铁矿试样需先用过氧化钠和氧化钙混匀后在850~950℃高温炉中焙烧2~3h后再进行锍试金。锍试金需加入熔剂、还原剂、氧化剂、硫化剂、捕集剂和覆盖剂等多种试剂。

石英粉和硼砂属酸性熔剂,前者能与许多金属氧化物化合生成硅酸盐,同时能得到流动性好的熔渣。当加入量过多时,会使渣的黏度增加,影响熔渣与试金扣的分离。也可以用玻璃粉代替,但其酸性较弱,1g玻璃粉的作用相当于0.3~0.5g石英粉。硼砂中的B2O3可与金属氧化物生成硼酸盐渣,其造渣能力比石英粉强,对试样的分解能力也比较强,形成的硼酸盐的熔点也比相应的硅酸盐低。碳酸钠既是碱性熔剂,又是脱硫剂。在试金配料中加入面粉是作为还原剂,将金属氧化物还原为金属或合金,借以捕集贵金属,同时将高价氧化物还原为低价,有利于与二氧化硅造渣。硫磺作为硫化剂在高温时能与镍等金属或金属氧化物形成硫化物。硫化镍或镍锍(Ni3S2)是贵金属捕集剂,理论上有96%以上的贵金属被其捕获。镍锍是硫化剂与镍的化合物在熔炼时形成的。必须特别注意,一般的镍试剂中往往含有较高的铂族元素,造成相当高的试剂空白,无法用于痕量铂族元素分析,需要经过较繁琐的提纯才能使用。羰基镍粉(用羰基法生产的镍粉)空白很低,可以直接用于锍试金法分析痕量铂族元素。

硼砂〔(Na2B4O7·10H2O)100℃烘烤脱水,研碎后备用〕、硼砂-碳酸钠(1+1)或食盐,作为覆盖剂可起到隔绝金属的作用,同时防止熔炼时熔融物的溅失。

熔渣的性质(还原性、硅酸度)对贵金属捕集的影响不容忽视。良好的熔渣应在炉内能迅速低温造渣,以有利于贵金属捕集;熔渣的流动性好;对坩埚内壁腐蚀较轻;熔渣的密度相对较小。熔渣的硅酸度(熔渣中所有酸性氧化物中氧原子物质的量)/(熔渣中所有碱性氧化物中氧的原子物质的量),以1.5~2为宜。

配料是试金中的关键步骤。不同的试样,配料有所不同。对于硅酸盐试样,需加入较多的碳酸钠和适量的硼砂;碳酸盐试样需加入较多的石英粉和硼砂;含有较多赤铁矿和磁铁矿的氧化矿试样,应适当增加还原剂用量;硫化物试样有较强的还原性,需要加大碳酸钠和二氧化硅的量,同时减少或不加硫化剂。如试样硫含量高时,则少加硫化剂。

常规试样的锍试金熔剂配方见表64.1。

表64.1 锍试金熔剂配比 (mB:g)

分析步骤

称取10~40g(精确至0.1g)试样,与试金配料混匀后倒入试金坩埚中,于900℃试剂炉内熔炼。再升温至1000℃并保持20~30min,待熔体平静后出炉,将熔体倒入铁模中,冷却后取出锍扣,剔除熔渣。

将锍扣置于烧杯中用水浸泡至完全松散成粉末,用盐酸溶解。

64.2.1.3 锑试金法

用锑捕集铂族元素的火法试金称之为锑试金。它能捕集全部贵金属元素,灰吹时包括锇在内的铂族元素均无明显的损失,这是锑试金的优点;其缺点是捕集贵金属同时,铜、镍、钴、铋和铅也同时被捕集,又不能灰吹除去。故应用受到了限制,仅适用于组成简单的铂族元素单矿物或催化剂中铂族元素的测定。

锑试金的熔炼条件和铅试金类似,是用三氧化二锑代替氧化铅。熔炼温度为900~1000℃,锑试金要求高温进炉,快速熔炼。在熔剂中加入一定量的钾碱代替部分碳酸钠,可提高熔渣的流动性。只要熔渣流动性好,其硅酸度在0.8~1.7之间,对锑捕集能力无显着影响。

锑扣的灰吹在仰放的瓷坩埚盖上进行。三氧化二锑用挥发除去。铂族元素以及铜、镍、钴等元素以锑化物形式留在合粒中。灰吹温度在700~950℃对结果没有影响。铅、铋在锑之后被氧化,如果铅、铋量多,则它们最终会完全取代锑,锇则会全部损失;保留锇的关键是有锑。锑扣中有毫克量的铜或金对铂族元素有保护作用。

合粒中的铂族元素便于用光谱法测定。

分析步骤

称取5g以下(精确至0.1g)试样,与12gNa2CO3、4gK2CO3、4gNa2B4O7、2g玻璃粉、7gSb2O3和2g面粉成分混匀后倒入50mL坩埚中,加1滴氯化铜溶液(相当于1mgCu),将坩埚置于950℃高温炉中熔融至熔体平静,取出,将熔融体倒入铁模中,冷却后取出锑扣。

将锑扣放在仰放的瓷坩埚盖上,于850~900℃高温炉中灰吹。剩下约1.5mm的亮点取出坩埚盖,冷却,剔出合粒。供测定用。

阅读全文

与常用富集分离方法相关的资料

热点内容
酷派感应在哪里设置方法 浏览:148
手机uc浏览器版本查看方法 浏览:284
研究中国股市的有效性问题的方法 浏览:658
天然气洗澡的使用方法 浏览:790
工业盐使用方法 浏览:143
锻炼基础腹肌方法视频教程 浏览:201
介入方法是什么意思 浏览:645
汽车阻尼器的安装方法 浏览:153
论文设计并运用相关研究方法 浏览:558
js封装的方法如何在页面内调用 浏览:539
定量和定性研究方法的种类 浏览:950
腰间盘如何锻炼方法 浏览:609
过河的简单方法 浏览:588
传播研究方法教材 浏览:283
骨科治疗腱鞘炎的方法 浏览:597
电脑突破网络限速的方法 浏览:160
溶液中锂离子浓度检测方法 浏览:164
红杉树树皮的食用方法 浏览:733
剔除离散值计算方法 浏览:624
seo有哪些重要的方法 浏览:739