Ⅰ 蛋白质的水解反应
蛋白质都是由大量氨基酸缩合脱水得到的,水解反应就是它的逆反应.
蛋白质的典型一级结构(化学键)就是肽键R-CO-NH-R‘,每个肽键水解后生成一个氨基和一个羧基:
R-CO-NH-R' + H2O = R-COOH + NH2-R'
如果蛋白质完全水解,则得到氨基酸.
Ⅱ 蛋白质的三种水解类型
酸水解、碱水解、酶水解
Ⅲ 如何水解蛋白质
酸法水解:(通常以5-10倍的20%HCl煮沸回流16h-20h,或加压于120摄氏度水解12h,可将蛋白质水解成氨基酸)优点:水解彻底,水解的最终产物是L-氨基酸,没有旋光异构体的产生。缺点:营养价值较高的色氨酸几乎全部被破环,而与含醛基的化合物(如糖)作用生成一种黑色物质,称为腐黑质,因此水解液呈黑色。此外,含羟基的丝氨酸、苏氨酸、洛氨酸也有部分被破坏。此法常用于蛋白质的分析与制备。
碱法水解:(可用6摩尔每升NaOH或4摩尔每升氢氧化钡煮沸6小时即可完全水解得到氨基酸。优点:色氨酸不被破坏,水解液清亮。缺点:水解产生的氨基酸发生旋光异构作用,产物有D-型和L-型两类氨基酸。D-型氨基酸不能被人体分解利用,因而营养价值减半;此外,丝氨酸、苏氨酸、赖氨酸、胱氨酸等大部分被破坏,因此碱水解法一般很少使用。
蛋白酶法水解,优点:条件温和,常温(36-60摄氏度)\常压和PH值在2-8时,氨基酸完全不被破坏,不发生旋光异构现象。缺点:水解不彻底,中间产物较多。根据水解的程度分(蛋白质--膘--胨--多肽--二肽--氨基酸)蛋白质煮沸时可凝固,而膘、胨、肽均不能:蛋白质和膘可被饱和的硫酸铵和硫酸锌沉淀,而胨以下的产物均不能;胨可被磷钨酸等复盐沉淀,而肽类及氨基酸均不能,借此可将产物分开。
Ⅳ 蛋白质分解
蛋白质分解(proteolysis),即蛋白质的肽键水解。将蛋白质分解至最基本单位氨基酸的,称为完全水解,将达不到上述程度的水解,称为限量水解。
蛋白质分解
proteolysis
蛋白质的肽键水解。将蛋白质分解至最基本单位氨基酸的,称为完全水解,将达不到上述程度的水解,称为限量水解。可以用化学方法在酸或碱中加热进行分解(如6N盐酸,110℃,24小时),也可以用蛋白酶在温和的条件下进行分解。用适当的蛋白酶进行限量分解是确定蛋白质的氨基酸排列顺序所必要的方法。关于生物体内的蛋白质分解,可见“蛋白质代谢”。
Ⅳ 蛋白质的水解
由于组成蛋白质的基本结构是氨基酸,而氨基酸具有两性;(氨基酸为小分子的极性物质,因此在水中均有一定程度的溶解,在稀酸或稀碱中溶解度更大;但由于不同的氨基酸其R-基团的结构和大小不同,因此疏水性也不同,因此溶解度有较大的差异。)所以蛋白质也具有两性。也可在溶液中解离水解,但当蛋白质处于一定PH(其等电点)时,其水解成正负离子的趋势相等,成为兼性离子,所带电荷为0,会在溶液中沉淀下来。
水解彻底的话产物为各种的氨基酸。
Ⅵ 细胞内蛋白质降解的主要途径有哪些
真核细胞内蛋白质的降解途径主要有三种,溶酶体途径、泛素化途径和胱天蛋白酶(caspase)途径。
1、溶酶体途径:蛋白质在同酶体的酸性环境中被相应的酶降解,然后通过溶酶体膜的载体蛋白运送至细胞液,补充胞液代谢库。胞内蛋白:胞液中有些蛋白质的N端含有KFERQ信号,可以被HSC70识别结合,HSC70帮助这些蛋白质进入溶酶体,被蛋白水解酶降解。胞外蛋白:通过胞吞作用或胞饮作用进入细胞,在溶酶体中降解。
2、泛素-蛋白水解酶途径:一种特异性降解蛋白的重要途径,参与机体多种代谢活动,主要降解细胞周期蛋白Cyclin、纺锤体相关蛋白、细胞表面受体如表皮生长因子受体、转录因子如NF-KB、肿瘤抑制因子如P53、癌基因产物等;应激条件下胞内变性蛋白及异常蛋白也是通过该途径降解。该通路依赖ATP,有两步构成,即靶蛋白的多聚泛素化?多聚泛素化的蛋白质被26S蛋白水解酶复合体水解。
(1)、物质基础:
泛素(ubiquitin):一种76个氨基酸组成的蛋白质,广泛存在于真核生物中,又称遍在蛋白。在一系列酶的作用下被转移到靶蛋白上,介导靶蛋白的降解。
蛋白水解酶(proteasome):识别、降解泛素化的蛋白质的复合物,由30多种蛋白质及酶组成,其沉降系数为26S,又称26S蛋白酶体,由20S的圆柱状催化颗粒和19S的盖状调节颗粒组成,是一个具有胰凝乳蛋白酶、胰蛋白酶、胱天蛋白酶等活性的多功能酶。所有蛋白酶体的活性中心都含有Thr残基。经泛素化的底物蛋白可以被26S蛋白酶体的盖状调节颗粒识别,并被运送到20S的圆柱状核心内,在多种酶的作用下水解为寡肽,最后从蛋白酶体中释放出来。泛素则在去泛素化酶的作用下与底物解离后回到胞质重新利用。
(2)、具体过程:
①靶蛋白的多聚泛素化:泛素激活酶E1利用ATP在泛素分子C端Gly残基与其自身的半胱氨酸的SH间形成高能硫脂键,活化的泛素再被转移到泛素结合酶E2上,在泛素连接酶E3的作用下,泛素分子从E2转移到靶蛋白,与靶蛋白的Lys的ε-NH2形成异肽键,接着下一个泛素分子的C-末端连接到前一个泛素的lys48上,完成多聚泛素化(一般多于4个)
②多聚泛素化的蛋白质被26S蛋白水解酶复合体水解:经泛素化的底物蛋白可以被26S蛋白酶体的盖状调节颗粒识别,并被运送到20S的圆柱状核心内,在多种酶的作用下水解为寡肽,最后从蛋白酶体中释放出来。泛素则在去泛素化酶的作用下与底物解离后回到胞质重新利用。
3、胱天蛋白酶(caspase)途径:细胞凋亡的蛋白质降解途径。
Caspase的含义指该类蛋白酶的活性部位为极为保守的半胱氨酸(cysteine)及特异性切割底物的天冬氨酸(aspase),简称caspase。根据其具体功能分为调控caspase(caspase1,2,4,5,8,9,10)和效应caspase(caspase3,6,7,11)。
Caspase以酶原形式存在于正常细胞中,细胞凋亡启动后被激活。一条途径是由死亡信号分子和受体结合后的死亡结构域介导,使caspase-8自身催化成为具水解酶活性的蛋白酶,水解下游的caspase-3,6,7等,caspase-3,6,7作用于底物使其降解,导致细胞凋亡;另一条途径由位于线粒体上的细胞色素C介导,激活caspase-9,活化的caspase-9进而激活caspase-3。细胞凋亡中被降解的蛋白有:DNA损伤修复酶、U1小核核糖核蛋白组分、核纤层蛋白、肌动蛋白和胞衬蛋白等,这些酶及蛋白的降解导致细胞形成凋亡小体,最终被吞噬细胞吞噬消化。
4、其他:有些细胞器具有特有的蛋白水解酶,确保细胞内各项代谢活动有条不紊地进行。如线粒体的La蛋白酶、高尔基体内Kex2水解酶、细胞膜表面的水解酶系统等。
Ⅶ 蛋白质水解方程式
蛋白质水解方程式:
H-[-NH2CH2CO-]n-OH + nH2O= nNH2CH2COOH
蛋白质在酸、碱或酶的作用下发生水解反应,经过多肽,最后得到多种α-氨基酸。蛋白质水解时,应找准结构中键的“断裂点”,水解时肽键部分或全部断裂。
(7)蛋白质水解的常用方法扩展阅读:
蛋白质的性质:
1、两性
蛋白质是由α-氨基酸通过肽键构成的高分子化合物,在蛋白质分子中存在着氨基和羧基,因此跟氨基酸相似,蛋白质也是两性物质。
2、胶体性质
有些蛋白质能够溶解在水里(例如鸡蛋白能溶解在水里)形成溶液。蛋白质的分子直径达到了胶体微粒的大小(10-9~10-7m)时,所以蛋白质具有胶体的性质。
3、沉淀
原因:加入高浓度的中性盐、加入有机溶剂、加入重金属、加入生物碱或酸类、热变性少量的盐(如硫酸铵、硫酸钠等)能促进蛋白质的溶解。如果向蛋白质水溶液中加入浓的无机盐溶液,可使蛋白质的溶解度降低,而从溶液中析出,这种作用叫做盐析。
参考资料来源:网络—蛋白质
Ⅷ 水解蛋白质成氨基酸的方法,如何判断水解终点
蛋白质可以被酸、碱或蛋白酶催化水解。
酸水解
一般用6mol/LHCl或4mol/LH2SO4回流20hr左右,蛋白质完全水解,不引起消旋,得到的是L-型氨基酸型氨基酸。但色氨酸色氨酸完型氨基酸色氨酸全被破坏,羟基氨基酸羟基氨基酸部分被分解,天羟基氨基酸天冬酰胺和谷氨酰胺的酰胺基酰胺基被水解下来。
碱水解
与5mol/LNaOH共煮10-20hr,完全水解,多数氨基酸不同程度的被破坏,得到的是L型和D型的混合物;精氨酸脱氨,但色氨酸稳定。
酶水解
不产生消旋,不破坏氨基酸。部分水解。
完全水解:彻底水解得到的水解产物为各种氨基酸的混合物。
部分水解:不完全水解得到的水解产物是各种大小不等的肽段和单个氨基酸。
Ⅸ 生物样品中蛋白质的处理方法有哪些
一。蛋白质沉淀方法
1.中性盐盐析法
⑴在一定的
ph值及温度条件下,改变盐的浓度(即离子强度)达到沉淀的目的,称为“ks”分级盐析法。
(ks盐析:固定ph,
温度,改变盐浓度)
⑵在一定的离子强度下,改变溶液的ph值及温度,达到沉淀的目的,称为“β”分级盐析法。
(β盐析:固定离子强度,改变ph及温度。)
2.等电点沉淀法
蛋白质等电点沉淀法是基于不同蛋白质离子具有不同等电点这一特性,依次改变溶液ph值的办法,将杂蛋白沉淀除去,最后获得目标产物。
3.有机溶剂沉淀法
许多能与水互溶的有机溶剂如乙醇、丙酮、甲醇和乙腈,常用于低盐浓度下沉淀蛋白质。
4.非离子型聚合物沉淀法
20世纪60年代非离子型聚合物开始用于分离血纤维蛋白原和免疫球蛋白,从此高相对分子质量非离子聚合物沉淀蛋白质的方法被广泛使用,如:聚乙二醇(peg)、聚乙烯吡咯烷酮(pvp)、葡聚糖等。
5.金属沉淀法
能与羧基、胺基等含氮化合物以及含氮杂环化合物强烈结合的金属离子,如:mn2+、fe2+、co2+、ni2+、cu2+、zn2+、cd2+;
能与羧酸结合而不与含氮化合物结合的金属离子,如:ca2+、ba2+、mg2+、pb2+;
与巯基化合物强烈结合的金属离子,如:hg2+、ag+、pb2+。
实际使用时,金属离子的浓度常为0.02
mol/l。
6.亲和沉淀
初始阶段:将一个目标蛋白质与键合在可溶性载体上的亲和配体络合成沉淀;
所得沉淀物用一生中适当的缓冲溶液进行洗涤,洗去可能存在的杂质;
用一种适当的试剂将目标蛋白质从配体中离解出来。
7.选择性变性沉淀法
(1)例如对于α-淀粉酶等热稳定性好的酶,可以通过加热进行热处理,使大多数杂蛋白受热变性沉淀而被除去。
(2)根据欲分离物质所含杂质的特性,通过改变ph值或加进某些金属离子等使杂蛋白变性沉淀而被除去。
8.反胶束萃取蛋白质
菌体细胞提取
固液分离是生物产品生产中的重要单元操作。培养基、发酵液、某些中间产品和半成品等都需进行固液分离。发酵液由于种类多、粘度大及成分复杂,其固液分离最为困难。
固液分离的方法很多,生物工业中常规的方法有分离筛、重力沉降、浮选分离、离心分离和过滤等,其中用于发酵液固液分离的方法主要是离心分离和过滤。
二。超滤膜滤去。