⑴ 搜索引擎常用的搜索技巧有哪些
双引号
把搜索词放在双引号中,代表完全匹配搜索,也就是说搜索结果返回的页面包含双引号中出现的所有的词,连顺序也必须完全匹配。bd和Google 都支持这个指令。例如搜索: “seo方法图片”
减号
减号代表搜索不包含减号后面的词的页面。使用这个指令时减号前面必须是空格,减号后面没有空格,紧跟着需要排除的词。Google 和bd都支持这个指令。
例如:搜索 -引擎
返回的则是包含“搜索”这个词,却不包含“引擎”这个词的结果
星号
星号*是常用的通配符,也可以用在搜索中。网络不支持*号搜索指令。
比如在Google 中搜索:搜索*擎
其中的*号代表任何文字。返回的结果就不仅包含“搜索引擎”,还包含了“搜索收擎”,“搜索巨擎”等内容。
inurl
inurl: 指令用于搜索查询词出现在url 中的页面。bd和Google 都支持inurl 指令。inurl 指令支持中文和英文。
比如搜索:inurl:搜索引擎优化
返回的结果都是网址url 中包含“搜索引擎优化”的页面。由于关键词出现在url 中对排名有一定影响,使用inurl:搜索可以更准确地找到竞争对手。
inanchor
inanchor:指令返回的结果是导入链接锚文字中包含搜索词的页面。网络不支持inanchor。
比如在Google 搜索 :inanchor:点击这里
返回的结果页面本身并不一定包含“点击这里”这四个字,而是指向这些页面的链接锚文字中出现了“点击这里”这四个字。
可以用来找到某个关键词的竞争对收,而且这些竞争对手往往是做过SEO 的。研究竞争对手页面有哪些外部链接,就可以找到很多链接资源。
intitle
intitle: 指令返回的是页面title 中包含关键词的页面。Google 和bd都支持intitle 指令。
使用intitle 指令找到的文件是更准确的竞争页面。如果关键词只出现在页面可见文字中,而没有出现在title 中,大部分情况是并没有针对关键词进行优化,所以也不是有力的竞争对手。
allintitle
allintitle:搜索返回的是页面标题中包含多组关键词的文件。
例如 :allintitle:SEO 搜索引擎优化
就相当于:intitle:SEO intitle:搜索引擎优化
返回的是标题中中既包含“SEO”,也包含“搜索引擎优化”的页面
allinurl
与allintitle: 类似。
allinurl:SEO 搜索引擎优化
就相当于 :inurl:SEO inurl:搜索引擎优化
filetype
用于搜索特定文件格式。Google 和bd都支持filetype 指令。
比如搜索filetype:pdf SEO
返回的就是包含SEO 这个关键词的所有pdf 文件。
site
site:是SEO 最熟悉的高级搜索指令,用来搜索某个域名下的所有文件。
linkdomain
linkdomain:指令只适用于雅虎,返回的是某个域名的反向链接。雅虎的反向链接数据还比较准 确,是SEO 人员研究竞争对手外部链接情况的重要工具之一。
related
related:指令只适用于Google,返回的结果是与某个网站有关联的页面。
上面介绍的这几个高级搜索指令,单独使用可以找到不少资源,或者可以更精确地定位竞争对 手。把这些指令混合起来使用则更强大。
⑵ 数据元素之间的关系在计算机中有几种表示方法各有什么特点
2. 数据元素之间的关系在计算机中有几种表示方法?各有什么特点?
答:四种表示方法 (1)顺序存储方式。数据元素顺序存放,每个存储结点只含一个元素。存储位置反映数据元素 间的逻辑关系。存储密度大,但有些操作(如插入、删除)效率较差。 (2)链式存储方式。每个存储结点除包含数据元素信息外还包含一组(至少一个)指针。指针 反映数据元素间的逻辑关系。这种方式不要求存储空间连续,便于动态操作(如插入、删除等), 但存储空间开销大(用于指针),另外不能折半查找等。 (3)索引存储方式。除数据元素存储在一地址连续的内存空间外,尚需建立一个索引表,索引 表中索引指示存储结点的存储位置(下标)或存储区间端点(下标),兼有静态和动态特性。 (4)散列存储方式。通过散列函数和解决冲突的方法,将关键字散列在连续的有限的地址空间 内,并将散列函数的值解释成关键字所在元素的存储地址,这种存储方式称为散列存储。其特点 是存取速度快,只能按关键字随机存取,不能顺序存取,也不能折半存取。
⑶ 逻辑关系的五种表示方法是什么
1、布尔代数法:按一定逻辑规律进行运算的代数。与普通代数不同,布尔代数中的变量是二元值的逻辑变量。
2、真值表法:采用一种表格来表示逻辑函数的运算关系,其中输入部分列出输入逻辑变量的所有可能组合,输出部分给出相应的输出逻辑变量值。
3、逻辑图法:采用规定的图形符号,来构成逻辑函数运算关系的网络图形。
4、卡诺图法:卡诺图是一种几何图形,可以用来表示和简化逻辑函数表达式。
5、硬件设计语言法:是采用计算机高级语言来描述逻辑函数并进行逻辑设计的一种方法,它应用于可编程逻辑器件中。采用最广泛的硬件设计语言有ABLE-HDL、VHDL等。
逻辑关系运算
1、对于AND函数,如果所有条件参数的逻辑值都为真,则返回TURE,只要有一个参数的逻辑值为假,则返回结果FALSE,在逻辑上称为"与运算"。
2、对于OR函数,如果所有条件参数的逻辑值都为假,则返回FALSE,只要有一个参数的逻辑值为真,则返回结果TURE,在逻辑上称为"或运算"。
3、对于NOT函数,如果其条件参数的逻辑值都为真时返回结果为假,反之亦然,可以将表达式的原有逻辑值反转,在逻辑上称为"非运算"。
逻辑"与运算"可以使用AND函数或逻辑判断式之间的乘法进行判断,逻辑"或运算"可以使用OR函数或逻辑判断式之间的加法进行判断。由于AND函数、OR函数的运算结果只能是单值,而不能返回数组结果,因此当逻辑与、逻辑或运算需要返回多个结果时,必须使用数组间的乘法、加法运算。
⑷ 关系模型的基本数据结构是
单一的数据结构——关系。现实世界的实体以及实体间的各种联系均用关系来表示,从用户角度看,关系模型中数据的逻辑结构是一张二维表。
关系模型中的关系操作能力早期通常是用代数方法或逻辑方法来表示,分别称为关系代数和关系演算。关系代数是用对关系的代数运算来表达查询要求的方式;关系演算是用谓词来表达查询要求的方式。另外还有一种介于关系代数和关系演算的语言称为结构化查询语言,简称SQL。
(4)常用的关系查询表示方法扩展阅读
关系模型中无论是实体还是实体间的联系均由单一的结构类型——关系来表示。在实际的关系数据库中的关系也称表。一个关系数据库就是由若干个表组成。关系模型给出了关系操作的能力,但不对RDBMS语言给出具体的语法要求。
关系模型中常用的关系操作包括:选择(select)、投影(project)、连接(join)、除(Divide)、并(Union)、交(Intersection)、差(Difference)等查询(Query)操作和增加(Insert)、删除(Delete)、修改(Update)操作两大部分。
查询的表达能力是其中最重要的部分。
⑸ 英语中的几种所属关系的表示方法
英语所属关系有三种表示方法:
1、形容词性物主代词表示所属关系。形容词性物主代词是表示事物所属关系的,具有形容词性质的一类代词。其特点是具有形容词的性质对事物起修饰和限定的的作用。这里的限定就是限定其所修饰事物的归属问题。这类词翻译成汉语多了一个“的”。
2、名词所有格表示所属关系。名词所有格是在名词后加’s,即(n.+’s)的形式表示事物的所属关系(一般表示的是有生命的事物的所属关系)。其中的’s相当于汉语中的“的”。
3、介词of表示无生命事物的所属关系,相当于汉语的“的”。其中有些习惯用语用介词to表示所属关系,而不使用介词of。
(5)常用的关系查询表示方法扩展阅读:
在所属关系中,有些情况,该名词没有生命,但也会使用-'s来表所属关系,即采用所有格的用法
1、表示时间和距离的名词。 如:
Where is today's newspaper? 今天的报纸在哪儿?
An hour's walk isn't far. 一小时的路程不远。
2、有些无生命东西的名词,如国家,城市季节,太阳,月亮,大地,江河,海洋,船等名词也可用's,表示所有关系。如:
China's population(中国人口)
The city's life(城市生活)
The airport's waiting hall(机场候机大厅)
⑹ 何为关系数据库请大家介绍的详细一些,与一般的数据库还有什么不同
◆关系模型概述
◆关系数据结构
◆关系的完整性
◆关系代数
◆关系演算
关系数据库系统:是支持关系模型的数据库系统
◣关系模型的组成
1.关系数据结构
单一的数据结构----关系
现实世界的实体以及实体间的各种联系均用关系来表示
数据的逻辑结构----二维表
从用户角度,关系模型中数据的逻辑结构是一张二维表。
2.关系操作集合
1)常用的关系操作
◇查询:选择、投影、连接、除、并、交、差
◇数据更新:插入、删除、修改
查询的表达能力是其中最主要的部分
2)关系操作的特点
集合操作方式,即操作的对象和结果都是集合。
(非关系数据模型的数据操作方式:一次一记录文件系统的数据操作方式)
3)关系数据语言的种类
◇关系代数语言
用对关系的运算来表达查询要求
典型代表:ISBL
◇关系演算语言:用谓词来表达查询要求元组关系演算语言
谓词变元的基本对象是元组变量
典型代表:APLHA, QUEL
◇域关系演算语言
谓词变元的基本对象是域变量
典型代表:QBE
◇具有关系代数和关系演算双重特点的语言
典型代表:SQL
4)关系数据语言的特点
◇关系语言是一种高度非过程化的语言
a.存取路径的选择由DBMS的优化机制来完成
b.用户不必用循环结构就可以完成数据操作
◇能够嵌入高级语言中使用
◇关系代数、元组关系演算和域关系演算三种语言在表达能力上完全等价
3.关系完整性约束
1)实体完整性
通常由关系系统自动支持
2)参照完整性
早期系统不支持,目前大型系统能自动支持
3)用户定义的完整性
反映应用领域需要遵循的约束条件,体现了具体领域中的语义约束
用户定义后由系统支持
◣关系数据结构
关系模型建立在集合代数的基础上
关系数据结构的基本概念
1.关系
1)域(Domain)
域是一组具有相同数据类型的值的集合。
例:整数,实数,介于某个取值范围的整数,长度指定长度的字符串集合,{‘男’,‘女’},介于某个取值范围的日期等
2)笛卡尔积(Cartesian Proct)
给定一组域D1,D2,…,Dn,这些域中可以有相同的。D1,D2,…,Dn的笛卡尔积为:
D1×D2×…×Dn={(d1,d2,…,dn)|diDi,i=1,2,…,n}
所有域的所有取值的一个组合
不能重复
◇元组(Tuple)
笛卡尔积中每一个元素(d1,d2,…,dn)叫作一个n元组(n-tuple)或简称元组。
◇分量(Component)
笛卡尔积元素(d1,d2,…,dn)中的每一个值di叫作一个分量。
◇基数(Cardinal number)
若Di(i=1,2,…,n)为有限集,其基数为Mi(i=1,2,…,n)
在上例中,基数:2×2×3=12,即D1×D2×D3共有2×2×3=12个元组
◇笛卡尔积的表示方法
笛卡尔积可表示为一个二维表。表中的每行对应一个元组,表中的每列对应一个域。
3)关系(Relation)
◇关系
D1×D2×…×Dn的子集叫作在域D1,D2,…,Dn上的关系,表示为 : R(D1,D2,…,Dn)
(R:关系名;n:关系的目或度(Degree))
注意:
关系是笛卡尔积的有限子集。无限关系在数据库系统中是无意义的。
由于笛卡尔积不满足交换律,即
(d1,d2,…,dn )≠(d2,d1,…,dn )
但关系满足交换律,即
(d1,d2 ,…,di ,dj ,…,dn)=(d1,d2 ,…,dj,di ,…,dn) (i,j = 1,2,…,n)
解决方法:为关系的每个列附加一个属性名以取消关系元组的有序性
◇元组
关系中的每个元素是关系中的元组,通常用t表示。
◇单元关系与二元关系
当n=1时,称该关系为单元关系(Unary relation)。
当n=2时,称该关系为二元关系(Binary relation)。
◇关系的表示
关系也是一个二维表,表的每行对应一个元组,表的每列对应一个域。
◇属性
关系中不同列可以对应相同的域,为了加以区分,必须对每列起一个名字,称为属性(Attribute)。
n目关系必有n个属性
◇码
候选码(Candidate key)
若关系中的某一属性组的值能唯一地标识一个元组,则称该属性组为候选码。
在最简单的情况下,候选码只包含一个属性。称为全码(All-key)。
在最极端的情况下,关系模式的所有属性组是这个关系模式的候选码,称为全码(All-key)。
主码
若一个关系有多个候选码,则选定其中一个为主码(Primary key),
主码的诸属性称为主属性(Prime attribute)。
不包含在任何候选码中的属性称为非码属性(Non-key attribute)。
◇三类关系
基本关系(基本表或基表):实际存在的表,是实际存储数据的逻辑表示
查询表:查询结果对应的表
视图表:由基本表或其他视图表导出的表,是虚表,不对应实际存储的数据
2.关系数据库
1)关系数据库
在一个给定的应用领域中,所有实体及实体之间联系的关系的集合构成一个关系数据库。
2)关系数据库的型与值
关系数据库的型称为关系数据库模式,是对关系数据库的描述,若干域的定义,在这些域上定义的若干关系模式。
关系数据库的值是这些关系模式在某一时刻对应的关系的集合,通常简称为关系数据库。
⑺ 关系模型由关系数据结构,_____和____三个部分组成
关系模型由关系数据结构、(关系操作集合)和(关系完整性约束)三部分组成。
关系实际上就是关系模式在某一时刻的状态或内容。也就是说,关系模式是型,关系是它的值。关系模式是静态的、稳定的,而关系是动态的、随时间不断变化的,因为关系操作在不断地更新着数据库中的数据。但在实际当中,常常把关系模式和关系统称为关系,读者可以从上下文中加以区别。
(7)常用的关系查询表示方法扩展阅读:
一、优点
(1) 数据结构单一
关系模型中,不管是实体还是实体之间的联系,都用关系来表示,而关系都对应一张二维数据表,数据结构简单、清晰。
(2)关系规范化,并建立在严格的理论基础上
构成关系的基本规范要求关系中每个属性不可再分割,同时关系建立在具有坚实的理论基础的严格数学概念基础上。
(3)概念简单,操作方便
关系模型最大的优点就是简单,用户容易理解和掌握,一个关系就是一张二维表格,用户只需用简单的查询语言就能对数据库进行操作。
二、组成
1、关系数据结构
单一的数据结构——关系
现实世界的实体以及实体间的各种联系均用关系来表示,从用户角度看,关系模型中数据的逻辑结构是一张二维表。
2、关系操作集合
常用的关系操作包括查询操作和插入、删除、修改操作两大部分。其中查询操作的表达能力最重要,包括:选择、投影、连接、除、并、交、差等。
关系模型中的关系操作能力早期通常是用代数方法或逻辑方法来表示,分别称为关系代数和关系演算。关系代数是用对关系的代数运算来表达查询要求的方式;关系演算是用谓词来表达查询要求的方式。另外还有一种介于关系代数和关系演算的语言称为结构化查询语言,简称SQL。
3、关系的数据完整性
包括:域完整性、实体完整性、参照完整性和用户自定义的完整性。
域完整性:指属性的取值范围,如性别取值应为男或女。
实体完整性(Entity Integrity)规则:若属性A是基本关系R的主属性,则属性A不能取空值。例如:在课程表(课程号,课程名,教师,周课时数,备注)中,“课程号”属性为主键,则“课程号”不能取相同的值,也不能取空值。
⑻ 数据库里的关系代数的五种基本查询操作
选择,投影,并,差,笛卡尔积
刚教过不久
⑼ 关系代数数据库中两个条件查询语言怎么表达
[例]设教学数据库中有3个关系:
学生关系S(SNO,SNAME,AGE,SEX)
学习关系SC(SNO,CNO,GRADE)
课程关系C(CNO,CNAME,TEACHER)
下面用关系代数表达式表达每个查询语句。
(1) 检索学习课程号为C2的学生学号与成绩。
πSNO,GRADE(σ CNO='C2'(SC))
(2) 检索学习课程号为C2的学生学号与姓名
πSNO,SNAME(σ CNO='C2'(SSC))
由于这个查询涉及到两个关系S和SC,因此先对这两个关系进行自然连接,同一位学生的有关的信息,然后再执行选择投影操作。
此查询亦可等价地写成:
πSNO,SNAME(S)(πSNO(σ CNO='C2'(SC)))
这个表达式中自然连接的右分量为"学了C2课的学生学号的集合"。这个表达式比前一个表达式优化,执行起来要省时间,省空间。
(3)检索选修课程名为MATHS的学生学号与姓名。
πSNO,SANME(σ CNAME='MATHS'(SSCC))
(4)检索选修课程号为C2或C4的学生学号。
πSNO(σ CNO='C2'∨CNO='C4'(SC))
(5) 检索至少选修课程号为C2或C4的学生学号。
π1(σ1=4∧2='C2'∧5='C4'(SC×SC))
这里(SC×SC)表示关系SC自身相乘的乘积操作,其中数字1,2,4,5都为它的结果关系中的属性序号。
⑽ 数据库常用的关系运算是什么
在关系数据库中,基本的关系运算有三种,它们是选择、投影和连接。关系的基本运算有两类:一类是传统的集合运算(并、差、交等),另一类是专门的关系运算(选择、投影、连接、除法、外连接等),有些查询需要几个基本运算的组合,要经过若干步骤才能完成。
一、传统的集合运算
1、并(UNION)设有两个关系R和S,它们具有相同的结构。R和S的并是由属于R或属于S的元组组成的集合,运算符为∪。记为T=R∪S。
2、差(DIFFERENCE)R和S的差是由属于R但不属于S的元组组成的集合,运算符为-。记为T=R-S。
3、交(INTERSECTION)R和S的交是由既属于R又属于S的元组组成的集合,运算符为∩。记为T=R∩S。R∩S=R-(R-S)。
二、选择运算
从关系中找出满足给定条件的那些元组称为选择。其中的条件是以逻辑表达式给出的,值为真的元组将被选取。这种运算是从水平方向抽取元组。在FOXPRO中的短语FOR和WHILE均相当于选择运算。
如:LISTFOR出版单位='高等教育出版社'AND单价<=20
三、投影运算
从关系模式中挑选若干属性组成新的关系称为投影。这是从列的角度进行的运算,相当于对关系进行垂直分解。在FOXPRO中短语FIELDS相当于投影运算。如:LISTFIELDS单位,姓名
四、连接运算
连接运算是从两个关系的笛卡尔积中选择属性间满足一定条件的元组。
五、除法运算
在关系代数中,除法运算可理解为笛卡尔积的逆运算。
设被除关系R为m元关系,除关系S为n元关系,那么它们的商为m-n元关系,记为R÷S。商的构成原则是:将被除关系R中的m-n列,按其值分成若干组,检查每一组的n列值的集合是否包含除关系S,若包含则取m-n列的值作为商的一个元组,否则不取。
(10)常用的关系查询表示方法扩展阅读:
数据库除运算:
除运算的含义–给定关系R (X,Y) 和S (Y,Z),其中X,Y,Z为属性组。R中的Y与S中的Y可以有不同的属性名,但必须出自相同的域集。R与S的除运算得到一个新的关系P(X),P是R中满足下列条件的元组在X属性列上的投影:元组在X上分量值x的象集Yx包含S在Y上投影的集合。
R÷S的结果为a1,x相当于A y 相当于B,C z相当于D,按照除运算规则,我们不必关注D。只需比较B,C当S关系中的B,C所有的组合(b1,c2)(b2,c3)(b2,c1)都出现在R关系中时,结果才为A
R÷S = {tr[X] | trÎR∧πY (S) íYx },Yx:x在R中的象集,x = tr[X]。除操作是同时从行和列角度进行运算。