导航:首页 > 使用方法 > 存在异方差常用的估计方法

存在异方差常用的估计方法

发布时间:2022-04-23 19:17:41

❶ 举例说明什么是异方差性

异方差性(heteroscedasticity )是相对于同方差而言的。所谓同方差,是为了保证回归参数估计量具有良好的统计性质,经典线性回归模型的一个重要假定:总体回归函数中的随机误差项满足同方差性,即它们都有相同的方差。如果这一假定不满足,即:随机误差项具有不同的方差,则称线性回归模型存在异方差性。
若线性回归模型存在异方差性,则用传统的最小二乘法估计模型,得到的参数估计量不是有效估计量,甚至也不是渐近有效的估计量;此时也无法对模型参数的进行有关显着性检验。
对存在异方差性的模型可以采用加权最小二乘法进行估计。
异方差性的检测——White test
在此检测中,原假设为:回归方程的随机误差满足同方差性。对立假设为:回归方程的随机误差满足异方差性。判断原则为:如果nR^2>chi^2 (k-1),则原假设就要被否定,即回归方程满足异方差性。
在以上的判断式中,n代表样本数量,k代表参数数量,k-1代表自由度。chi^2值可由查表所得。
2含义
编辑

回归模型的随机扰动项ui在不同的观测值中的方差不等于一个常数,Var(ui)= 常数(i=1,2,…,n),或者Var(u ) Var(u )(i j),这时我们就称随机扰动项ui具有异方差性(Heteroskedasticity)。
在实际经济问题中,随机扰动项ui往往是异方差的,但主要在截面数据分析中出现。
例如
(1)调查不同规模公司的利润,发现大公司的利润波动幅度比小公司的利润波动幅度大;
(2)分析家庭支出时发现高收入家庭支出变化比低收入家庭支出变化大。
在分析家庭支出模型时,我们会发现高收入家庭通常比低收入家庭对某些商品支出有更大的方差;图5-1显示了一元线性回归中随机变量的方差ui随着解释变量 的增加而变化的情况。
异方差性破坏了古典模型的基本假定,如果我们直接应用最小二乘法估计回归模型,将得不到准确、有效的结果。
来源

1.模型中缺少某些解释变量,从而随机扰动项产生系统模式
由于随机扰动项ui包含了所有无法用解释变量表示的各种因素对被解释变量的影响,即模型中略去的经济变量对被解释变量的影响。如果其中被略去的某一因素或某些因素随着解释变量观测值的不同而对被解释变量产生不同的影响,就会使ui产生异方差性。
例如,以某一时间截面上不同收入家庭的数据为样本,研究家庭对某一消费品(如服装、食品等)的需求,设其模型为:
(5-1)
其中Qi表示对某一消费品的需求量,Ii为家庭收入,ui为随机扰动项。ui包括除家庭收入外其他因素对Qi的影响。如:消费习惯、偏好、季节、气候等因素,ui的方差就表示这些因素的影响可能使得Qi偏离均值的程度。在气候异常时,高收入家庭就会拿出较多的钱来购买衣服,而低收入的家庭购买衣服的支出就很有限,这时对于不同的收入水平Ii,Qi偏离均值的程度是不同的,Var(ui) 常数,于是就存在异方差性了。
再比如,以某一时间截面上不同地区的数据为样本,研究某行业的产出随投入要素的变化而变化的关系,建立如下模型:
(5-2)
其中Yi表示某行业的产出水平。Li表示劳动力对产出的影响。Ki表示资本对产出的影响,ui表示除劳动力和资本外其他因素对产出水平的影响,诸如地理位置、国家政策等。显然,对于不同的行业 ,这些因素对产出 的影响程度是不 同的,引起 偏离零均值的程度也是不同的,这就出现了异方差。
异方差性容易出现在截面数据中,这是因为在截面数据中通常涉及某一确定时点上的总体单位。比如个别的消费者及其家庭、不同行业或者农村、城镇等区域的划分,这些单位各自有不同的规模或水平,一般情况下用截面数据作样本时出现异方差性的可能性较大。
2.测量误差
测量误差对异方差性的作用主要表现在两个方面:一方面,测量误差常常在一定时间内逐渐积累,误差趋于增加,如解释变量X越大,测量误差就会趋于增大;另一方面,测量误差可能随时间变化而变化,如抽样技术或收集资料方法的改进就会使测量误差减少。所以测量误差引起的异方差性一般都存在于时间序列中。
例如,研究某人在一定时期内学习打字时打字差错数Yt与练习打字时间Xt之间的关系。显然在打字练习中随时间的增加,打字差错数将减少,即随着Xt的增加Yt将减小。这时Var(ut)将随Xt的增加而减少,于是存在异方差性。
不仅在时间序列上容易出现异方差性,利用平均数作为样本数据也容易出现异方差性。因为许多经济变量之间的关系都服从正态分布,例如不同收入组的人数随收入的增加是正态分布,即收入较高和较低的人是少数的,大部分人的收入居于较高和较低之间,在以不同收入组的人均数据作为样本时,由于每组中的人数不同,观测误差也不同,一般来说,人数多的收入组的人均数据较人数少的收入组的人均数据具有较高的准确性,即Var(ui)随收入Ii呈现先降后升的趋势,这也存在着异方差性。
3.模型函数形式设置不正确
模型函数形式的设定误差。如将指数曲线模型误设成了线性模型,则误差有增大的趋势。
4.异常值的出现
随机因素的影响,如政策变动、自然灾害、金融危机、战争和季节等。
类型

异方差一般可归结为三种类型:
(1)单调递增型:随X的增大而增大,即在X与Y的散点图中,表现为随着X值的增大Y值的波动越来越大
(2)单调递减型:随X的增大而减小,即在X与Y的散点图中,表现为随着X值的增大Y值的波动越来越小
(3)复杂型:与X的变化呈复杂形式,即在X与Y的散点图中,表现为随着X值的增大Y值的波动复杂多变没有系统关系。
检验存在的方法
事实也证明,实际经济问题中经常会出现异方差性,这将影响回顾模型的估计、检验和应用。因此在建立计量经济模型时应检验模型是否存在异方差性。关于异方差性检验的方法大致如下:图示检验法、Goldfeld - Quandt 检验法、White检验法、Park检验法和Gleiser检验法。
1)图示检验法。①相关图分析。方差为随机变量的离散程度,通过观察y和x的相关图,可以观察的离散程度和解释变量之间的相关关系。若随x的增加,y的离散程度呈逐渐增加或减少的趋势则表明模型存在着递增或者递减的异方差性。②残差图分析。通过对模型残差分布的观察,如果分布的离散程度有明显扩大的趋势,则表明存在异方差性。图示检验法只能较简单粗略判断模型是否存在着异方差性。
2)Goldfeld - Quandt 检验法。将解释变量排序,分成两个部分利用样本1 和样本2 分别建立回归模型,并求出各自残差平方 和,若误差项的离散程度相同,则 和 的值大致相同,若两者之间存在显着差异,则表明存在差异性。为在检验过程中“夸大”差异性,在样本中去掉c 个样本数据(c= n/4),则构造F统计量
对于给定显着水平,若,则表明模型存在异方差性,反之,则不存在。
3)怀特(white) 检验。White 检验是通过建立辅助回归模型的方法来判断异方差性。假设回归模型为二元线性回归模型 则White 检验的步骤为:估计回归模型,计算残差;估计辅助回归模型:即将残差平方关于解释变量的一次项,二次项和交叉乘积项进行回归;计算辅助回归模型的判断系数,可以证明在同方差的假定下( ) ,其中q 为辅助回归模型中自变量的个数:给定显着水平,若 ,则认为至少有一个不为0( ),存在异方差性。
4)帕克检验( Park test ) 和格里瑟检验( Glesgertest)。通过建立残差序列对解释变量的辅助回归模型,判断随机项的误差和解释变量之间是否有较强的相关关系,以此来判断模型是否存在异方差性。
Park检验:或 ;
Gleiser检验:h=±1,±2,±1/2,……,其中 是随机误差项,给定显着水平,若
经检验其中的某个辅助回归方程是显着的,则证明原模型存在异方差性。帕克检验和格里瑟检验可以判断模型是否存在异方差,而且可以探究模型异方差性的具体形式,这为后来解决异方差性打下基础
后果

在古典回归模型的假定下,普通最小二乘估计量是线性、无偏、有效估计量,即在所有无偏估量中,最小二乘估计量具有最小方差性——它是有效估计量。如果在其他假定不变的条件下,允许随机扰动项ui存在异方差性,即ui的方差随观测值的变化而变化,这就违背了最小二乘法估计的高斯——马尔柯夫假设,这时如果继续使用最小二乘法对参数进行估计,就会产生以下后果:
1.参数估计量仍然是线性无偏的,但不是有效的
2.异方差模型中的方差不再具有最小方差性
3.t检验失去作用
4.模型的预测作用遭到破坏

❷ 试归纳检验异方差方法的基本思想,并指出这些方法的异同.2.简述什么是异方差

1.答:各种异方差检验的共同思想是,基于不同的假定,分析随机误差项的方差与解释变量之间的相关性,以判断随机误差项的方差是否随解释变量变化而变化。其中,戈德菲尔德-跨特检验、怀特检验、ARCH检验和Glejser检验都要求大样本,其中戈德菲尔德-跨特检验、怀特检验和Glejser检验对时间序列和截面数据模型都可以检验,ARCH检验只适用于时间序列数据模型中。戈德菲尔德-跨特检验和ARCH检验只能判断是否存在异方差,怀特检验在判断基础上还可以判断出是哪一个变量引起的异方差。Glejser检验不仅能对异方差的存在进行判断,而且还能对异方差随某个解释变量变化的函数形式进行诊断。
2.答 :设模型为[图片],如果其他假定均不变,但模型中随机误差项的方差为[图片],则称[图片]具有异方差性。

❸ 异方差分析可以通过两种方式实现什么和什么

Bootstrap方法根据给定的原始样本复制观测信息对总体的分布特性进行统计推断,不需要额外的信息,Efron(1979)认为该方法也属于非参数统计方法。Bootstrap方法从观察数据出发,不需任何分布假定,针对统计学中的参数估计及假设检验问题,利用Bootstrap方法产生的自举样本计算的某统计量的数据集可以用来反映该统计量的抽样分布,即产生经验分布,这样,即使我们对总体分布不确定,也可以近似估计出该统计量及其置信区间,由此分布可得到不同置信水平相应的分位数——即为通常所谓的临界值,可进一步用于假设测验。因而,Bootstrap方法能够解决许多传统统计分析方法不能解决的问题。在Bootstrap的实现过程中,计算机的地位不容忽视(Diaconisetal.,1983),因为Bootstrap涉及到大量的模拟计算。可以说如果没有计算机,Bootstrap理论只可能是一纸空谈。随着计算机的快速发展,计算速度的提高,计算费时大大降低。在数据的分布假设太牵强或者解析式太难推导时,Bootstrap为我们提供了解决问题的另一种有效的思路。因此,该方法在生物科学研究中有一定的利用价值和实际意义非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法,也称为自助法.其核心思想和基本步骤如下:(1)采用重抽样技术从原始样本中抽取一定数量(自己给定)的样本,此过程允许重复抽样.(2)根据抽出的样本计算给定的统计量T.(3)重复上述N次(一般大于1000),得到N个统计量T.(4)计算上述N个统计量T的样本方差,得到统计量的方差.应该说Bootstrap是现代统计学较为流行的一种统计方法,在小样本时效果很好.通过方差的估计可以构造置信区间等,其运用范围得到进一步延伸.具体抽样方法举例:想要知道池塘里面鱼的数量,可以先抽取N条鱼,做上记号,放回池塘.进行重复抽样,抽取M次,每次抽取N条,考察每次抽到的鱼当中有记号的比例,综合M次的比例,在进行统计量的计算.。

❹ 什么是异方差

异方差(heteroscedasticity )是为了保证回归参数估计量具有良好的统计性质。经典线性回归模型的一个重要假定是:总体回归函数中的随机误差项满足同方差性,即它们都有相同的方差。如果这一假定不满足,则称线性回归模型存在异方差性。 若线性回归模型存在异方差性,则用传统的最小二乘法估计模型,得到的参数估计量不是有效估计量,甚至也不是渐近有效的估计量;此时也无法对模型参数的进行有关显着性检验。 对存在异方差性的模型可以采用加权最小二乘法进行估计。

❺ 检验异方差性的方法有哪些

一、检验异方差性的方法有:

1、图示检验法:相关图分析;残差图分析。

2、Goldfeld - Quandt 检验法。

3、怀特(white) 检验。

4、帕克检验( Park test ) 和格里奇检验( Glejser test)。

❻ 异方差的解决方法

异方差性的检测方法
1、残差图

通过绘制残差图,将残差项分别与模型的自变量X或者因变量Y,作散点图,查看散点是否有明显的规律性。

残差图
通常存在异方差时,散点图会呈现出自变量X值越大,残差项越大/越小的分布规律。如上图中散点图呈现出这样的规律性,说明模型具有异方差性。

2、white检验

怀特检验是最常用于检验异方差的方法。SPSSAU中会自动输出怀特检验结果。

3、BP检验

除此之外,也可用BP检验结果判断,SPSSAU中会自动输出此结果。如果BP结果与white检验结果出现矛盾,建议以怀特检验结果为准。

通过案例也许能够能清楚地说明,以下是关于工资的影响因素的OLS回归分析。共涉及四个因素分别是起始工资、性别、受雇月数和受教育年限。采用OLS回归,得到如下结果:

SPSSAU分析界面

SPSSAU-OLS回归分析结果
由上图可得到起始工资、受雇时间、受教育时间对当前工有显着的正向影响关系。

但根据异方差检验结果显示,White检验和BP检验均拒绝原假设(P<0.05)(原假设为模型没有异方差),说明模型存在异方差问题,因此需要进一步处理。

异方差性处理方法
解决异方差问题一般有三种办法,分别是数据处理(取对数)、Robust稳健标准误回归和FGLS法;三种办法可以同时使用去解决异方差问题。

1. 对原数据做对数处理

针对连续且大于0的原始自变量X和因变量Y,进行取自然对数(或10为底对数)操作,如果是定类数据则不处理。

取对数可以将原始数据的大小进行‘压缩’,这样会减少异方差问题。事实上多数研究时默认就进行此步骤处理。负数不能直接取对数,如果数据中有负数,研究人员可考虑先对小于0的负数,先取其绝对值再求对数,然后加上负数符号。

❼ 什么是异方差的稳健标准误方法

异方差的稳健标准误是经济学术语,英文全称为Heteroskedasticity-Robust+Standard+Error。

异方差—稳健标准误是指其标准差对于模型中可能存在的异方差或自相关问题不敏感,基于稳健 标准差计算的稳健t统计量仍然渐进分布t分布。在Stata中利用robust选项可以得到异方差—稳健标准误估计量。

异方差的稳健标准误方法的提出:

Huber (1967)、Eicker (1967) 和 White
(1980)提出了异方差—稳健方差矩阵估计,该方法能够在考虑异方差情况下求出稳健标准误。

利用异方差稳健标准误对回归系数进行t检验和F检验都是渐近有效的。在STATA中,异方差—稳健标准误可以在“reg”或者“xtreg”语句后,加选择性命令“robust”即可得到。但是这一方法有一个假设的前提:残差项是独立分布的。

(7)存在异方差常用的估计方法扩展阅读:

异方差处理的方法:

在进行计量分析时,若数据存在异方差问题,那么简单的OLS估计就会失效。对此,有两种处理方法:

1、使用OLS+稳健标准误的方法(Robust)。

2、加权最小二乘法(WLS)。

由于方差较小的数据提供的信息较多,而方差较大的数据提供的信息较少,WLS据此对数据进行加权处理。一般而言,第一种方法更为稳健,可适用于一般情形,而第二种方法更为有效。

❽ 检验异方差有哪些方法

异方差检验主要有三种方法
1 Park-Gleiser检验
2 Goldfeld-Quandt 检验(缺点,只能处理单升和单降型的异方差)
3 White 检验
最着名最常用的是第三种怀特检验。核心原理是判断ui由xi解释程度的高低,越高越有异方差。
具体的方法这里不好打,你可以查一下相关资料。
希望帮到你

❾ 回归模型中出现异方差时怎样估计参数

这个是错误的,广义最小二乘法可用于修正异方差的情况
在最小二乘法估计中,参数估计值=(x'x)^(-1)x'y,
参数方差为=sigma*(x'x)^(-1)
其中sigma是误差项的协方差矩阵
如果是多重共线性,(x'x)
的逆不存在,或者非常大,估计参数不稳定,精度差
如果存在虚列相关和异方差,sigma就不是对角线元素完全相同的对角阵,这时候可以通过变换将其转变成满足经典假设的形式,同时对数据x、y进行变换,然后再用ols,这种方法称为gls
gls无法处理多重共线问题,多重共线只能通过减少回归元进行处理
还是多看看教材吧。书上面讲的很清楚

阅读全文

与存在异方差常用的估计方法相关的资料

热点内容
中式棉袄制作方法图片 浏览:63
五菱p1171故障码解决方法 浏览:858
男士修护膏使用方法 浏览:546
电脑图标修改方法 浏览:607
湿气怎么用科学的方法解释 浏览:537
910除以26的简便计算方法 浏览:805
吹东契奇最简单的方法 浏览:704
对肾脏有好处的食用方法 浏览:98
电脑四线程内存设置方法 浏览:512
数字电路通常用哪三种方法分析 浏览:13
实训课程的教学方法是什么 浏览:525
苯甲醇乙醚鉴别方法 浏览:82
苹果手机微信视频声音小解决方法 浏览:700
控制箱的连接方法 浏览:75
用什么简单的方法可以去痘 浏览:789
快速去除甲醛的小方法你知道几个 浏览:803
自行车架尺寸测量方法 浏览:124
石磨子的制作方法视频 浏览:152
行善修心的正确方法 浏览:403
薯仔炖鸡汤的正确方法和步骤 浏览:276