A. 数列求和的方法
裂项法
裂项法求和
这是分解与组合思想在数列求和中的具体应用.
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.
通项分解(裂项)如:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5)
n·n!=(n+1)!-n!
[例]
求数列an=1/n(n+1)
的前n项和.
解:设
an=1/n(n+1)=1/n-1/(n+1)
(裂项)
则
Sn=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)
=
1-1/(n+1)
=
n/(n+1)
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
注意:
余下的项具有如下的特点
1余下的项前后的位置前后是对称的。
2余下的项前后的正负性是相反的。
一、基本概念
1、
数列的定义及表示方法:按一定次序排列成的一列数叫数列
2、
数列的项an与项数n
3、
按照数列的项数来分,分为有穷数列与无穷数列
4、
按照项的增减规律分为:递增数列,递减数列,摆动数列和常数列
5、
数列的通项公式an
6、
数列的前n项和公式Sn
7、
等差数列、公差d、等差数列的结构:an=a1+(n-1)d
8、
等比数列、公比q、等比数列的结构:an=a1·q^(n-1)
二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an=
Sn-Sn-1
10、等差数列的通项公式:an=a1+(n-1)d
an=ak+(n-k)d
(其中a1为首项、ak为已知的第k项)
当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn=a1·n+1/2·n·(n+1)·d
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
12、等比数列的通项公式:
an=
a1·q^(n-1)
an=
ak·q^(n-k)
(其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n
a1
(是关于n的正比例式);
当q≠1时,Sn=a1·(q^n-1)/(q-1)
三、有关等差、等比数列的结论
14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m
-
S3m、……仍为等差数列。
15、等差数列中,若m+n=p+q,则
am+an=ap+aq
16、等比数列中,若m+n=p+q,则
am·an=ap·aq
17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m
-
S3m、……仍为等比数列。
18、两个等差数列与的和差的数列{an+bn}仍为等差数列。
19、两个等比数列与的积、商、倒数组成的数列
{an·bn}、{an/bn}
、{1/(an·bn)}
仍为等比数列。
20、等差数列的任意等距离的项构成的数列仍为等差数列。
21、等比数列的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;
四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3
四、数列求和的常用方法:
公式法、裂项相消法、错位相减法、倒序相加法等。(关键是找数列的通项结构)
24、分组法求数列的和:如an=2n+3n
25、错位相减法求和:如an=n·2^n
26、裂项法求和:如an=1/n(n+1)
27、倒序相加法求和:如an=
n
28、求数列的最大、最小项的方法:
①
an+1-an=……
如an=
-2n2+29n-3
②
(an>0)
如an=
③
an=f(n)
研究函数f(n)的增减性
如an=
an^2+bn+c(a≠0)
29、在等差数列
中,有关Sn
的最值问题——常用邻项变号法求解:
(1)当
a1>0,d<0时,满足的项数m使得Sm取最大值.
(2)当
a1<0,d>0时,满足的项数m使得Sm取最小值.
在解含绝对值的数列最值问题时,注意转化思想的应用。
参考资料:http://ke..com/view/1101236.htm
B. 求高中数学数列求和方法
倒序相加法(等差数列前n项和公式推导方法)
错位相减法(等比数列前n项和公式推导方法)
分组求和法
拆项求和法
叠加求和法
数列求和关键是分析其通项公式的特点
9、一般数列的通项an与前n项和Sn的关系:an=
10、等差数列的通项公式:an=a1+(n-1)d
an=ak+(n-k)d
(其中a1为首项、ak为已知的第k项)
当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn=
Sn=
Sn=
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
12、等比数列的通项公式:
an=
a1
qn-1
an=
ak
qn-k
(其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n
a1
(是关于n的正比例式);
当q≠1时,Sn=
Sn=
三、有关等差、等比数列的结论
14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m
-
S3m、……仍为等差数列。
15、等差数列{an}中,若m+n=p+q,则
16、等比数列{an}中,若m+n=p+q,则
17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m
-
S3m、……仍为等比数列。
18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
19、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an
bn}、
、
仍为等比数列。
20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3
(为什么?)
24、{an}为等差数列,则
(c>0)是等比数列。
25、{bn}(bn>0)是等比数列,则{logcbn}
(c>0且c
1)
是等差数列。
26.
在等差数列
中:
(1)若项数为
,则
(2)若数为
则,
,
27.
在等比数列
中:
(1)
若项数为
,则
(2)若数为
则,
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。
28、分组法求数列的和:如an=2n+3n
29、错位相减法求和:如an=(2n-1)2n
30、裂项法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求数列{an}的最大、最小项的方法:
①
an+1-an=……
如an=
-2n2+29n-3
②
(an>0)
如an=
③
an=f(n)
研究函数f(n)的增减性
如an=
33、在等差数列
中,有关Sn
的最值问题——常用邻项变号法求解:
(1)当
>0,d<0时,满足
的项数m使得
取最大值.
(2)当
<0,d>0时,满足
的项数m使得
取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
C. 数列求和的方法有哪些
一般数列的求和方法
(1)直接求和法,如等差数列和等比数列均可直接求和.
(2)部分求和法将一个数列分成两个可直接求和的数列,而后可求出数列的前n项的和.
(3)并项求和法将数列某些项先合并,合并后可形成直接求和的数列.
(4)裂项求和法将数列各项分裂成两项,然后求和.
(5)错位相减求和法.用Sn乘以q,若数列{an}为等差数列,{bn}为等比数列,则求数列{anbn}的前n项的和均可以采用此方法.
(6)拟等差,写成一堆式子再相加。(叠加)
(7)累乘法
D. 数列求和有哪五种方法
一、利用常用求和公式求和
利用下列常用求和公式求和是数列求和的最基本最重要的方法.
1、 等差数列求和公式:
2、 等比数列求和公式:
自然数方幂和公式:
3、 4、
5、
[例] 求和1+x2+x4+x6+…x2n+4(x≠0)
∴该数列是首项为1,公比为x2的等比数列而且有n+3项
当x2=1 即x=±1时 和为n+3
评注:
(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x是否为0进行讨论.
(2)要弄清数列共有多少项,末项不一定是第n项.
对应高考考题:设数列1,(1+2),…,(1+2+ ),……的前顶和为 ,则 的值.
二、错位相减法求和
错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容.需要我们的学生认真掌握好这种方法.这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an�� bn}的前n项和,其中{ an }、{ bn }分别是等差数列和等比数列.求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比 ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法.
[例] 求和:( )………………………①
由题可知,{ }的通项是等差数列{2n-1}的通项与等比数列{ }的通项之积
设 ……………………….② (设制错位)
①-②得 (错位相减)
再利用等比数列的求和公式得:
∴
注意、1 要考虑 当公比x为值1时为特殊情况
2 错位相减时要注意末项
此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘.
对应高考考题:设正项等比数列 的首项 ,前n项和为 ,且 .(Ⅰ)求 的通项; (Ⅱ)求 的前n项和 .
三、反序相加法求和
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个 .
[例] 求证:
证明:设 …………………………..①
把①式右边倒转过来得
(反序)
又由 可得
…………..……..②
①+②得 (反序相加)
∴
四、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
若数列 的通项公式为 ,其中 中一个是等差数列,另一个是等比数列,求和时一般用分组结合法.
[例]:求数列 的前n项和;
分析:数列的通项公式为 ,而数列 分别是等差数列、等比数列,求和时一般用分组结合法;
[解] :因为 ,所以
(分组)
前一个括号内是一个等比数列的和,后一个括号内是一个等差数列的和,因此
五、裂项法求和
这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:
(1) (2)
(3) (4)
(5)
[例] 求数列 的前n项和.
设 (裂项)
则 (裂项求和)
=
=
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了.只剩下有限的几项.
注意:余下的项具有如下的特点
1余下的项前后的位置前后是对称的.
2余下的项前后的正负性是相反的.
[练习] 在数列{an}中,,又 ,求数列{bn}的前n项的和.
E. 高中数列问题常用解题方法
数列的求和
求数列的前n项和Sn,重点应掌握以下几种方法:
1.倒序相加法:如果一个数列{an},与首末两项等距的两项之和等于首末两项之和,可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法.
2.错位相减法:如果一个数列的各项是由一个等差数列与一个等比数列对应项乘积组成,此时求和可采用错位相减法.
3.分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两部分,使其转化为等差或等比数列,这一求和方法称为分组转化法.
4.裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.
5.公式法求和:所给数列的通项是关于n的多项式,此时求和可采用公式法求和,常用的公式有:
6.无穷递缩等比数列求和公式:
考点练习
1.数列{an}的前n项和Sn=n2+1,则an= _____________.
2.已知{an}的前n项和Sn=n2-4n+1,则|a1|+|a2|+…|a10|=( )
(A)67 (B)65
(C)61 (D)56
3.一个项数是偶数的等比数列,它的偶数项的和是奇数项和的2倍,又它的首项为1,且中间两项的和为24,则此等比数列的项数为( )
(A) 12 (B) 10
(C) 8 (D) 6
4.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(111…11)2位转换成十进制形式是( )
(A) 217-2 (B) 216-2 (C) 216-1 (D)215-1
5.数列 的前n项之和为Sn,则Sn的值得等于( )
(A) (B)
(C) (D)
6、设 利用课本中等差数列前n项和公式的推导方法,求
f(–5)+f(–4)……+f(0)+……+f(5)+f(6)的值为__________.
典型题选讲
1.求下列各数列前n项的和Sn:
(1) 1×4,2×5,3×6,…n(n+3);
(2)
(3)
【解题回顾】对类似数列(3)的求和问题,我们可以推广到一般情况:设{an}是公差为d的等差数列,则有
特别地,以下等式都是①式的具体应用:
上述方法也称为“升次裂项法”.
2.求数列a,2a2,3a3,…,nan,…(a为常数)的前n项的和.
【解题回顾】若一个数列的各项是由一个等差数列与一个等比数列的对应项乘积组成,则求此数列的前n项和多采用错位相减法.
3.已知数列{an}中的a1=1/2,前n项和为Sn.若Sn=n2an,求Sn与an的表达式.
【解题回顾】
当本题解出Sn+1/Sn=(n+1)2/(n+2)n,下面要想到迭代法求Sn,(即选乘),同样如得出Sn+1-Sn=f(n),可用迭差.
4.若数列{an}中,an=-2[n-(-1) n],
求S10和S99 .
【解题回顾】若构成数列的项中含有(-1)n,则在求和Sn时,一般要考虑n是奇数还是偶数.
5.等比数列的首项为a,公比为q,Sn为前n项的和,求S1+S2+……+Sn.
6.在数列{an}中,an>0, 2√Sn = an +1(n∈N)
①求Sn和an的表达式;
②求证:
【解题回顾】利用 ,再用裂项法求和.利用
此法求和时,要细心观察相消的规律,保留哪些项等.必要时可适当地多写一些项,防止漏项或增项.
误解分析
1.求数列通项时,漏掉n=1时的验证是致命错误.
2.求数列前n项和时,一定要数清项数,选好方法,否则易错.
F. 高中数列求和有哪些方法
1、倒序相加法
倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。
2、分组求和法
分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。
3、错位相减法
错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。
4、裂项相消法
裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。
5、乘公比错项相减(等差×等比)
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。
解析:数列{cn}是由数列{an}与{bn}对应项的积构成的,此类型的才适应错位相减,(课本中的的等比数列前n项和公式就是用这种方法推导出来的),但要注意应按以上三种情况进行分类讨论,最后再综合成三种情况
6、公式法
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
7、迭加法
主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。
G. 谁帮我总结下高中数学中常用的数列求和裂
大约共有五种方法:
一。公式法
当你确定一个数列是等差或等比数列时,直接用等差或等比数列的前n项和公式去求
二。分组求和
当一个数列是由等差或等比数列相加而得时,用分组转化法分别求和再相加
三。错位相减
当一个数列是由一个等差和一个等比相乘而得时,用错位相减法
四。裂项相消法
当一个数列是分式的形式时,一般用裂项相消
五。并项求和法
当一个数列的项是正负相间时,可以两项并一项
H. 高中数列求和的几种方法
1.
公式法:
等差数列求和公式:
sn=n(a1+an)/2=na1+n(n-1)d/2
等比数列求和公式:
sn=na1(q=1)sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)
(q≠1)
2.错位相减法
适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式
{
an
}、{
bn
}分别是等差数列和等比数列.
sn=a1b1+a2b2+a3b3+...+anbn
例如:
an=a1+(n-1)d
bn=a1·q^(n-1)
cn=anbn
tn=a1b1+a2b2+a3b3+a4b4....+anbn
qtn=
a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1)
tn-qtn=
a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1)
tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn)
=a1b1-an·b1·q^n+d·b2[1-q^(n-1)]/(1-q)
tn=上述式子/(1-q)
3.倒序相加法
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)
sn
=a1+
a2+
a3+......
+an
sn
=an+
a(n-1)+a(n-3)......
+a1
上下相加
得到2sn
即
sn=
(a1+an)n/2
4.分组法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
例如:an=2^n+n-1
5.裂项法
适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。
常用公式:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5)
n·n!=(n+1)!-n!
[例]
求数列an=1/n(n+1)
的前n项和.
解:an=1/n(n+1)=1/n-1/(n+1)
(裂项)
则sn
=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)=
1-1/(n+1)=
n/(n+1)
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
注意:
余下的项具有如下的特点
1余下的项前后的位置前后是对称的。
2余下的项前后的正负性是相反的。
6.数学归纳法
一般地,证明一个与正整数n有关的命题,有如下步骤:
(1)证明当n取第一个值时命题成立;
(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。
例:求证:1×2×3×4
+
2×3×4×5
+
3×4×5×6
+
……
+
n(n+1)(n+2)(n+3)
=
[n(n+1)(n+2)(n+3)(n+4)]/5
证明:
当n=1时,有:
1×2×3×4
+
2×3×4×5
=
2×3×4×5×(1/5
+1)
=
2×3×4×5×6/5
假设命题在n=k时成立,于是:
1×2×3×4
+
2×3×4×5
+
3×4×5×6
+
……
+
k(k+1)(k+2)(k+3)
=
[k(k+1)(k+2)(k+3)(k+4)]/5
则当n=k+1时有:
1×2×3×4
+
2×3×4×5
+
3×4×5×6
+
……
+
(k+1)(k+2)(k+3)(k+4)
=
1×2×3×4
+
2×3×4*5
+
3×4×5×6
+
……
+
k(k+1)(k+2)(k+3)
+
(k+1)(k+2)(k+3)(k+4)
=
[k(k+1)(k+2)(k+3)(k+4)]/5
+
(k+1)(k+2)(k+3)(k+4)
=
(k+1)(k+2)(k+3)(k+4)*(k/5
+1)
=
[(k+1)(k+2)(k+3)(k+4)(k+5)]/5
即n=k+1时原等式仍然成立,归纳得证
7.通项化归
先将通项公式进行化简,再进行求和。
如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。
8.并项求和:
例:1-2+3-4+5-6+……+(2n-1)-2n
(并项)
求出奇数项和偶数项的和,再相减。