诱变育种是指用物理、化学因素诱导植物的遗传特性发生变异,再从变异群体中选择符合人们某种要求的单株,进而培育成新的品种或种质的育种方法。
诱变剂有两大类:物理诱变剂和化学诱变剂。
常用的物理诱变剂有紫外线、x射线、γ射线(如Co60等)、等离子、快中子、α射线、β射线、超声波等。常用的化学诱变剂有碱基类似物、烷化剂、羟胺、吖定类化合物等。
2. 高中生物中常见的育种方法有哪些
1 诱变育种
原理:基因突变
优点:能提高变异频率,加速育种进程,可大幅度改良某些性状,创造人类需要的变异类型,从中选择培育出优良的生物品种;变异范围广。
缺点:有利变异少,须大量处理材料;诱变的方向和性质不能控制。改良数量性状效果较差,具有盲目性。
2 杂交育种
原理:基因重组
优点:使同种生物的不同优良性状集中于同一个个体,具有预见性。
缺点:育种年限长,需连续自交才能选育出需要的优良性状。
3 多倍体育种
原理:染色体变异
优点:可培育出自然界中没有的新品种,且培育出的植物器官大,产量高,营养丰富。
缺点:结实率低,发育延迟。
4 单倍体育种
原理:染色体变异
优点:自交后代不发生性状分离,能明显缩短育种年限,加速育种进程。
缺点:技术相当复杂,需与杂交育种结合,其中的花药离体培养过程需要组织培养技术手段的支持,多限于植物。
5 基因工程育种(转基因育种)
原理:基因重组
优点:目的性强,可以按照人们的意愿定向改造生物;育种周期短。
缺点:可能会引起生态危机,技术难度大。
6植物激素育种
原理:适宜浓度的生长素可以促进果实的发育
优点:由于生长素所起的作用是促进果实的发育,并不能导致植物的基因型的改变,所以该种变异类型是不遗传的。
缺点:该种方法只适用于植物。
7细胞工程育种 (分三种)
1 方式 植物组织培养 原理 植物细胞的全能性 优点 快速繁殖、培育无病毒植株等
缺点 技术要求高、培养条件严格
2方式 植物体细胞杂交 原理 植物细胞膜的流动性 优点 克服远缘杂交不亲和的障碍,培育出作物新品种 缺点 技术复杂,难度大;需植物组织培养等技术
3 方式 细胞核移植 原理 动物细胞核的全能性 优点 繁殖优良品种,用于保存濒危物种,有选择地繁殖某性别的动物 缺点 导致生物品系减少,个体生存能力下降。
这么麻烦的问题也不多给点分
3. 人工诱变的常用方法是
人工诱变的常用方法
1. 物理法:射线(紫外线、X光线、Y射线,中子线),激光微束,离子束,微波,超声波,热力等。
2. 化学诱变法:浸渍法、涂抹法、滴液法、注射法、施入法和熏蒸法。
化学诱变剂:碱基类似物、烷化剂,移码诱变剂,硫酸二乙酯(DFS)、5-溴尿嘧 啶(5-BU)、氮芥(Nm)、N'广甲基N'亚硝基胍(NTG)。
3. 生物法:空间条件处理诱变,病原微生物诱变,转基因诱变。
人工诱变
在人为的条件下,利用物理、化学等因素,诱发生物产生突变,从中选择、培育动植物和微生物的新品种。诱变育种是指用物理、化学因素诱导植物的遗传特性发生变异,再从变异群体中选择符合人们某种要求的单株,进而培育成新的品种或种质的育种方法。它是继选择育种和杂交育种之后发展起来的一项现代育种技术。
我们知道,常规助杂交育种基本上是染色体的重新组合,这种技术一般并不引起染色体发生变异,更难以触及到基因。而辐射的作用则不同,它们有的是与细胞中的原子、分子发生冲撞、造成电离或激发;有的则是以能量形式产生光电吸收或光电效应;还有的能引起细胞内的一系列理化过程。这些都会对细胞产生不同程度的伤害。对染色体的数目、结构等都会产生影响,使有的染色体断裂了;有的丢失了一段,有的断裂后在“自我修复”的过程中头尾接倒了或是“张冠李戴”分别造成染色体的倒位和易位。当然射线也可作用在染色体核苷酸分子的碱塞上,从而使基因(遗传密码)发生突变。至于化学诱变,有的药剂是用其烷基置换其它分子中的氢原子,也有的本身是核苷酸碱基的类似物,它可以“鱼目混珠”,造成DNA复制中的错误。无疑这些都会使植物的基因发生突变。理、化因索的诱导作用;使得植物细胞的突变率比平时高出千百倍,有些变异是其它手段难以得到的。当然,所产生的变异绝大多数不能遗传,所以,辐射后的早代一般不急于选择。
物理诱变
应用较多的是辐射诱变,即用α射线、β射线、γ射线、Χ射线、中子和其他粒子、紫外辐射以及微波辐射等物理因素诱发变异。当通过辐射将能量传递到生物体内时,生物体内各种分子便产生电离和激发,接着产生许多化学性质十分活跃的自由原子或自由基团。它们继续相互反应,并与其周围物质特别是大分子核酸和蛋白质反应,引起分子结构的改变。由此又影响到细胞内的一些生化过程,如 DNA合成的中止、各种酶活性的改变等,使各部分结构进一步深刻变化,其中尤其重要的是染色体损伤。由于染色体断裂和重接而产生的染色体结构和数目的变异即染色体突变,而DNA分子结构中碱基的变化则造成基因突变。那些带有染色体突变或基因突变的细胞,经过细胞世代将变异了的遗传物质传至性细胞或无性繁殖器官,即可产生生物体的遗传变异。
化学诱变
化学诱变除能引起基因突变外,还具有和辐射相类似的生物学效应,如引起染色体断裂等,常用于处理迟发突变,并对某特定的基因或核酸有选择性作用。
化学诱变剂:主要指某些烷化剂,碱基类似物,抗生素等化学药物。化学诱变剂在植物上的应用一般认为始于1943年,当时F·约克斯用马来糖(脲烷)诱发了月见草、百合和风铃草的染色体畸变。这些早期工作为确立诱变育种的地位奠定了基础。
化学诱变剂
(一)、烷化剂
烷化剂是栽培作物诱发突变的最重要的一类诱变剂。药剂带有一个或多个活泼的烷基。通过烷基置换,取代其它分子的氢原子称为"烷化作用"所以这类物质称烷化剂。
烷化剂分为以下几类:
1. 烷基磺酸盐和烷基硫酸盐
代表药剂:甲基磺酸乙酯(EMS)、硫酸二乙酯(DES)
2. 亚硝基烷基化合物
代表药剂:亚硝基乙基脲(NEH)、N-亚硝基-N-乙基脲烷(NEU)
3. 次乙胺和环氧乙烷类
代表药剂:乙烯亚胺(EI)
4. 芥子气类
氮芥类、硫芥类
烷化剂的作用机制--烷化作用重点是核酸,导致DNA断裂、缺失或修补。
(二)、核酸碱基类似物
这类化合物具有与DNA碱基类似的结构。
代表药剂:
5-溴尿嘧啶(BU)、5-溴去氧尿核苷(BudR) 为胸腺嘧啶(T)的类似物
2-氨基嘌呤(AP) 为腺嘌呤(A)的类似物
马来酰肼(MH) 为尿嘧啶(U)的异构体
作用机制:作为DNA的成份而渗入到DNA分子中去,使DNA复制时发生配对错误,从而引起有机体变异。
(三)、其它诱变剂
亚硝酸 能使嘌呤或嘧啶脱氨,改变核酸结构和性质,造成DNA复制紊乱。HNO2还能造成DNA双链间的交联而引起遗传效应。
叠氮化钠(NaN3) 是一种呼吸抑制剂,能引起基因突变,可获得较高的突变频率,而且无残毒。
提醒:有些化学诱变剂是有剧毒的。
4. 生物技术育种的主要方法有哪些,技术手段有哪些
折叠一、诱变育种
诱变育种
诱变育种
诱变育种是指利用人工诱变的方法获得生物新品种的育种方法。(这句话在中学领域来说应该是完全正确的,已经查阅相关资料。)其原理是基因突变。人工诱变的方法包括:物理方法(X射线、射线、紫外线、中子、激光、电离辐射等)、化学方法(碱基类似物、硫酸二乙酯、亚硝酸、秋水仙素等)。所处理的生物材料必须是正在进行细胞分裂的细胞、组织、器官或生物。处理的时期是细胞分裂的间期。(这句话主要是针对中学生,为了让学生能够更好的理解;主要是考虑到学生从“细胞分裂知识”理解。)经处理的生物材料经选择、培育才能获得需要的生物新品种。该方法的优点是可以提高突变频率,创造出人类需要的生物类型。缺点是必须处理大量的实验材料。
优点:变异频率高,育种技术简单,速度快,可大幅度改良某些性状;变异范围广。
局限性:诱发突变的方向难以掌握,诱变体难以集中多个理想性状。要想克服这些局限性,可以扩大诱变后代的群体,增加选择的机会。
折叠二、杂交育种
杂交育种
杂交育种
杂交育种是指利用具有不同基因组成的同种(或不同种)生物个体进行杂交,获得所需要的表现型类型的育种方法。其原理是基因重组。过程为:用具有相对性状的纯合体作亲本杂交获得子一代,子一代自交(动物则用具有相同基因型的雌雄个体杂交)获得子二代,从子二代中选择符合要求的表现型个体。如果需要的表现型是隐性性状育种就此结束,如果需要的表现型是显性性状则用子二代中选出的个体进行连续自交(动物同前),直至获得能稳定遗传的类型为止
优点:可定向培养需要的品种,操作简单易懂。
不足:周期长,不能产生新性状,工作量大。
折叠三、单倍体育种
单倍体育种是利用花药离体培养技术获得单倍体植株,再诱导其染色体加倍,从而获得所需要的纯系植株的育种方法。其原理是染色体变异。优点是可大大缩短育种时间;缺点是技术复杂,需要杂交育种配合。
优点:可缩短育种年限,并可得到纯合子植株,保持后代性状的稳定性,使得到人们所希望的品种.
不足:技术复杂,成本大
四、多倍体育种
原理:染色体变异(染色体加倍)
方法:秋水仙素处理萌发的种子或幼苗。
折叠五、细胞工程育种
细胞工程育种是指用细胞融合的方法获得杂种细胞,利用细胞的全能性,用组织培养的方法培育杂种植株的方法。
物质基础是:所有生物的DNA均由四种脱氧核苷酸组成。其结构基础是:所有生物的DNA均为双螺旋结构。一种生物的DNA上的基因之所以能在其他生物体内得以进行相同的表达,是因为它们共用一套遗传密码。在该育种方法中需两种工具酶(限制性内切酶、DNA连接酶)和运载体(质粒),质粒上必须有相应的识别基因,便于基因检测。如人的胰岛素基因移接到大肠杆菌的DNA上后,可在大肠杆菌的细胞内指导合成人的胰岛素;抗虫棉植株的培育;将固氮菌的固氮酶基因移接到植物DNA分子上去,培育出固氮植物
5. 高中生物中常见的育种方法有哪些
高中生物中常见的育种方法:
1、诱变育种:(mutation breeding; selection by mutation)在人为的条件下,利用物理、化学等因素,诱发生物体产生突变,从中选择,培育成动植物和微生物的新品种。诱变育种是指用物理、化学因素诱导动植物的遗传特性发生变异,再从变异群体中选择符合人们某种要求的单株/个体,进而培育成新的品种或种质的育种方法。它是继选择育种和杂交育种之后发展起来的一项现代育种技术。
2、杂种优势育种:作物和家畜生产能力和强健性等一些对人类有利的性状,通过利用提高杂种优势,来对栽培作物和饲养动物的杂种进行育种称为杂种优势育种。由于杂种优势并不是牢固的,所以一般必须通过杂交来制备杂种。因此在杂种优势育种中,具备优良组合能力的亲本品种的培育,选定它们的组合,以及有效的杂种生产方法等就成为主要的课题。在杂交中,除人工杂交外,可以有效地利用雄性不育、自交不亲和性及雌性系等方法。根据亲本的组合方法,可以分成品种间杂交、自交系间杂交(单杂交、三系杂交、双杂交、多系杂交)品种和自交系之间的杂交(顶交)几种。美国的玉米,日本的蚕等都是利用杂种优势育种取得成果的代表性例子。
3、基因工程育种:随着 DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由 RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。
4、单倍体育种:单倍体育种(haploid breeding)是植物育种手段之一。即利用植物组织培养技术(如花药离体培养等)诱导产生单倍体植株,再通过某种手段使染色体组加倍(如用秋水仙素处理),从而使植物恢复正常染色体数。单倍体是具有体细胞染色体数为本物种配子染色体数的生物个体。
5、多倍体育种:多倍体(polyploid)是指由受精卵发育而来并且体细胞中含有三个或三个以上染色体组的个体。多倍体育种(polyploid breeding)利用人工诱变或自然变异等,通过细胞染色体组加倍获得多倍体育种材料,用以选育符合人们需要的优良品种。
6、细胞融合:细胞融合(cell fusion),细胞遗传学名词,是在自发或人工诱导下,两个不同基型的细胞或原生质体融合形成一个杂种细胞。基本过程包括细胞融合形成异核体(heterokaryon)、异核体通过细胞有丝分裂进行核融合、最终形成单核的杂种细胞。细胞融合可作为一种实验方法被广泛适用于单克隆抗体的制备,膜蛋白的研究。
7、核移植:核移植是将供体细胞核移入去核的卵母细胞中,使后者不经精子穿透等有性过程即可被激活、分裂并发育,让核供体的基因得到完全复制。培养一段时间后,在把发育中的卵母细胞移植到人或动物体内的方法。核移植的细胞来源主要分为:供体细胞来源和受体细胞的来源两种。核移植主要用于细胞移植和异种器官移植,细胞移植可以治疗由于细胞功能缺陷所引起的各种疾病。
6. 诱变育种的基本步骤有哪些关键是什么何故
诱变育种步骤主要包括诱变和筛选,其中诱变过程包括:出发菌株的选择、单孢子或单细胞悬浮液的制备、诱变剂及诱变剂量的选择、诱变处理等。
诱变育种(mutation breeding)在人为的条件下,利用物理、化学等因素,诱发生物体产生突变,从中选择,培育成动植物和微生物的新品种。
(6)诱变育种常用的三种方法扩展阅读:
诱变育种方法:
1、物理诱变
应用较多的是辐射诱变,即用α射线、β射线、γ射线、Χ射线、中子和其他粒子、紫外辐射以及微波辐射等物理因素诱发变异。当通过辐射将能量传递到生物体内时,生物体内各种分子便产生电离和激发,接着产生许多化学性质十分活跃的自由原子或自由基团[1]。
2、化学诱变
化学诱变除能引起基因突变外,还具有和辐射相类似的生物学效应,如引起染色体断裂等,常用于处理迟发突变,并对某特定的基因或核酸有选择性作用。化学诱变主要用于处理种子,其次为处理植株。
7. 高中生物中,有几种育种方法比如诱导育种
1、杂交育种(最简捷的育种方法,育种年限长,利用基因重组的原理)
2、诱变育种 (人工诱导突变,利用人工方法提高突变频率,从突变体中选择符合生产要求的品种,原理基因突变)
3、单倍体育种 (通常采用花药离体培养获得单倍体,再用秋水仙素诱导染色体加倍成正常二倍体,明显缩短育种年限,技术要求高,原理,染色体变异)
4、多倍体育种(诱导染色体加倍,多倍体茎秆粗壮、营养物质丰富等方面的优势,原理染色体变异)
5、基因工程育种(通过基因工程技术,定向改变生物性状,原理基因重组)
8. 诱变育种有几种方法,
诱变育种
开放分类: 生物、自然科学、生物学、变异、遗传
在人为的条件下,利用物理,化学等因素,诱发生物产生突变,从中选择,培育成动植物和微生物的新品种.
诱变育种是指用物理、化学因素诱导植物的遗传特性发生变异,再从变异群体中选择符合人们某种要求的单株,进而培育成新的品种或种质的育种方法。它是继选择育种和杂交育种之后发展起来的一项现代育种技术。
诱发突变的物理因素主要指某些射线,如α射线、β射线、γ射线、X射线和中子流等;化学诱变剂主要指某些亚硝酸盐、烷化剂,碱基类似物,抗生素等化学药物。 物理诱变方法应用于植物始干1928年。 L.J·斯德勒首先证实了X射线对玉米和大麦有诱变效应。1930年和1924年H.尼尔逊·爱尔和D.托伦纳分别用辐射诱变技术获得了有实用价值的大麦突变体和烟草突变体。化学诱变剂在植物上的应用一般认为始于1943年,当时F·约克斯用马来糖(脲烷)诱发了月见草、百合和风铃草的染色体畸变。这些早期工作为确立诱变育种的地位奠定了基础。
通过近几十年的研究人们对诱变原理的认识也逐步加深。 我们知道,常规助杂交育种基本上是染色体的重新组合,这种技术一般并不引起染色体发生变异,更难以触及到基因。而辐射的作用则不同,它们有的是与细胞中的原子、分子发生冲撞、造成电离或激发;有的则是以能量形式产生光电吸收或光电效应;还有的能引起细胞内的一系列理化过程。这些都会对细胞产生不同程度的伤害。对染色体的数目、结构等都会产生影响,使有的染色体断裂了;有的丢失了一段,有的断裂后在“自我修复”的过程中头尾接倒了或是“张冠李戴”分别造成染色体的倒位和易位。当然射线也可作用在染色体核苷酸分子的碱塞上,从而使基因(遗传密码)发生突变。至于化学诱变,有的药剂是用其烷基置换其它分子中的 氢原子,也有的本身是核苷酸碱基的类似物,它可以“鱼目混珠”,造成DNA复制中的错误。无疑这些都会使植物的基因发生突变。 理、化因索的诱导作用;使得植物细胞的突变率比平时高出千百倍,有些变异是其它手段难以得到的。当然,所产生的变异绝大多数不能遗传,所以,辐射后的早代一般不急 于选择。
但是,可遗传的好性状一经获得便可育成品种或种质资源。 据世界原子能机构1985年统计,当时世界各国通过诱变已育成500多个品种,还有大量有价值的种质资源o 我国的 诱变育种同样成绩斐然,在过去的几十年中,经诱变育成的 品种数一直占到同期育成品种总数的10%左右。如水稻品种 原丰早,小麦品种山农辐63,还有玉米的鲁原单4号、大豆的铁丰18、棉花的鲁棉I号等都是通过诱变育成的。 当然与其它技术一样,诱变育种也有自身的弱点:一是诱变产生的有益突变体频率低;二是还难以有效地控制变异 的方向和性质;另外,诱发并鉴定出数量性状的微突变比较困难。因此,诱变育种应该与其它技术相结合,同时谋求技术上的自我完善。
9. 诱变育种的类型有哪些
一、诱变育种:
诱变育种是指利用人工诱变的方法获得生物新品种的育种方法。(这句话在中学领域来说应该是完全正确的,已经查阅相关资料。)其原理是基因突变。人工诱变的方法包括:物理方法(X射线、射线、紫外线、中子、激光、电离辐射等)、化学方法(碱基类似物、硫酸二乙脂、亚硝酸、秋水仙素等)。所处理的生物材料必须是正在进行细胞分裂的细胞、组织、器官或生物。处理的时期是细胞分裂的间期。(这句话主要是针对中学生,为了让学生能够更好的理解;主要是考虑到学生从“细胞分裂知识”理解。)经处理的生物材料经选择、培育才能获得需要的生物新品种。该方法的优点是可以提高突变频率,创造出人类需要的生物类型。缺点是必须处理大量的实验材料。
二、杂交育种:
杂交育种是指利用具有不同基因组成的同种(或不同种)生物个体进行杂交,获得所需要的表现型类型的育种方法。其原理是基因重组。过程为:用具有相对性状的纯合体作亲本杂交获得子一代,子一代自交(动物则用具有相同基因型的雌雄个体杂交)获得子二代,从子二代中选择符合要求的表现型个体。如果需要的表现型是隐性性状育种就此结束,如果需要的表现型是显性性状则用子二代中选出的个体进行连续自交(动物同前),直至获得能稳定遗传的类型为止
三、单倍体育种:
单倍体育种是利用花药离体培养技术获得单倍体植株,再诱导其染色体加倍,从而获得所需要的纯系植株的育种方法。其原理是染色体变异。优点是可大大缩短育种时间。
四、多倍体育种:
原理:染色体变异(染色体加倍)
方法:秋水仙素处理萌发的种子或幼苗。
五、细胞工程育种:
细胞工程育种是指用细胞融合的方法获得杂种细胞,利用细胞的全能性,用组织培养的方法培育杂种植株的方法。
物质基础是:所有生物的DNA均由四种脱氧核苷酸组成。其结构基础是:所有生物的DNA均为双螺旋结构。一种生物的DNA上的基因之所以能在其他生物体内得以进行相同的表达,是因为它们共用一套遗传密码。在该育种方法中需两种工具酶(限制性内切酶、DNA连接酶)和运载体(质粒),质粒上必须有相应的识别基因,便于基因检测。如人的胰岛素基因移接到大肠杆菌的DNA上后,可在大肠杆菌的细胞内指导合成人的胰岛素;抗虫棉植株的培育;将固氮菌的固氮酶基因移接到植物DNA分子上去,培育出固氮植物
七、有关育种要注意的问题
1、育种的根本目的是培育具有优良性状(抗逆性好、品质优良、产量高)的新品种,以便更好地为人类服务。
2、选择育种方法要视具体育种目标要求、材料特点、技术水平和经济因素,进行综合考虑和科学决策:
①一般作物育种可选杂交育种和单倍体育种;
②为得到特殊性状可选择诱变育种(如航天育种)或多倍体育种;
③若要将特殊性状组合到一起,但又不能克服远缘杂交不亲和性,可考虑运用基因工程和细胞工程育种,如培育各种用于生物制药的工程菌。
3、从基因组成上看,育种目标基因型可能是:
①纯合体,便于制种、留种和推广; ②杂交种,充分利用杂种优势。
10. 何谓诱变育种
人为地利用物理、化学等因素诱导生物发生遗传性的变异,依据育种目标选择培育新品种的方法叫诱变育种。按照引起变异的因素不同,又可分为物理诱变和化学诱变两种。
物理诱变是利用超声波、高温、激光、各种射线等物理因素诱导生物发生变异的方法,其中应用最广的是辐射育种。
一、辐射育种
辐射育种是用放射线对植物种子、幼苗、花粉或营养体进行照射,使之发生遗传性变异,经人工选择培育新品种的方法。
辐射育种的射线,按其性质可分电磁波辐射和粒子辐射两大类。前者常用的有X射线、γ射线和无线电微波等;后者,带电的有α、β射线,不带电的有中子。上述各种射线中,以中子射线的诱变率最高,β射线次之,γ射线和X射线更低。但由于射线来源、设备条件及安全等多种原因,目前最常用的还是γ射线。
辐射之所以能引起变异,是因为生物体受到电离辐射,其体内的分子或原子也直接或间接地发生电离和激发,生物组织中的化学键可发生断裂,从而使分子结构或化学活性发生改变。有些射线如中子等还能和一些元素产生核反应,或者由于放射性元素的衰变而产生新的元素加入到有机体内改变了原有分子的组成。再者,生物细胞内的大量水分,在电离作用下,产生强烈的氧化还原反应,使新陈代谢发生变化,从而产生变异。
(一)药用植物辐射育种的发展概况
自从1895年伦琴发现X射线,1896年贝克勒尔发现天然放射性物质以后,生物工作者开始用电离辐射对微生物、昆虫和药用植物进行研究。1921年Blakesles首先用射线照射曼陀罗(Datura stramonium L.)的种子,获得了各种形态上的突变型。70年代以后Michalski用20kR剂量的γ射线照射毛花洋地黄(Digitalis lanata Ehrh.),获得了毛花样地黄有效成分含量高的品系。Parimoo用X射线处理罗芙木(Rauwolfia serpentina Benth.)的种子,所得突变体生物碱含量特别高。Deril等用γ射线照射一叶萩(Securinega ramiflora Muell.-Arg.)的种子,选育出了高产的一叶萩突变品系。Getsadze用10—11kR的γ射线照射香罗勒(Ocimum gratissimum L.)的种子得到的突变体,不但具有高精油含量,而且具有抗尖镰孢菌的能力。
我国的辐射育种开始于1957年,目前全国几乎每个省、市、自治区都安装了60Co-γ射线源,有的还安装了137CS源、中子源和γ圃,为辐射育种提供了物质基础,并取得了一定的成绩。例如,用提纯的紫皮阿城大蒜为材料,用60Co-γ射线照射,育成了阿辐4号大蒜新品种,其蒜头平均鲜重是对照品种的2倍以上,不仅抗病耐贮,而且提前成熟8天。四川省中药研究所用CO2激光照射薏苡种子,育成四激薏78—1号新品种,具有植株矮、分蘖多、千粒重大等优点。其它药用植物如人参、元胡等的辐射育种工作已经开始。
(二)辐射的剂量单位和照射剂量
1.辐射的剂量单位
居里(Ci)
是表示放射性物质的放射强度单位,1Ci表示放射性同位素每秒钟有3.7×1010次核衰变。
克镭当量
是放射物放出的γ射线强度一定重量的镭放出γ射线强度之比所得的放射强度单位。
伦琴(R)
是只用于X射线和γ射线的照射单位,它表示入射的辐射量。在1g空气中能产生83Gy的射线能量即为1R。
拉特(rad)
是任何辐射都适用的单位。它表示被照射物吸收剂量的单位。任何1g被照射的物质吸收照射能100Gy时的剂量称为1rad。
积分流量
即单位平方厘米的中子数(中子数/cm2)。中子的单位一般用它或用拉特来表示。
2.辐射的剂量
半致死照射剂量
即经过照射后植株成活率占50%的照射量。
致死照射量
即经过照射后,引起植株全部死亡的照射量。
临界照射量
即照射后植株成活率占40%的照射量。一般采用临界照射剂量作为辐射育种的适宜照射量。但也有用“半致死照射量”或更高照射量的。
照射剂量率
表示单位时间内的照射剂量。常用单位为R/h,R/min,R/s。
辐射育种的适宜照射剂量及剂量率随不同植物而异,一般说来十字花科有较高的耐辐射能力,豆科耐辐射能力较低。同一物种中,多倍体比二倍体耐辐射,二倍体比单倍体耐辐射。植物的不同发育阶段其耐辐射能力不同,分裂旺盛的细胞和组织对辐射比老化细胞和组织敏感。细胞核比细胞质敏感。
在一定的照射范围内,突变量随照射剂量的增加而增高,但是损伤效应也随之提高,因此一定要选用适宜的照射剂量和剂量率,以便达到既有较高的突变率又有足够的植株供选择。例如中国医学科学院药用植物资源开发研究所1979—1982年在北京和吉林省集安县国营一参场,经多次试验摸索出用60Co-γ射线照射人参裂口种子,在50R/min剂量率下,照射剂量以1500—2000R为好。在此剂量下出苗率为对照的83.3%和37.5%,一年生幼苗的叶片几乎都有不同程度的变异。正常情况为三小叶,照射后多变为一小叶、二小叶、长尾叶或很不规则的三小叶,有的叶面凸出,有的叶缘缺刻,有变异的植株占出苗株数的79%以上(表8—3)。试验表明,高于10000R不出苗,低于500R叶片的变异率很低。
表8—3 人参种子用60Co-γ射线照射试验
(三)辐射育种的基本方法
1.辐射材料的选择辐射育种是在常规育种的基础上发展起来的新技术,因此对材料的要求应该高些。辐射育种最适于改变一、二个不良性状,只有选用综合性状优良、需要克服的缺点明确的材料,才能收到预期的效果。
2.辐射的处理方法
(1)外照射
用X射线、γ射线和中子照射植物的种子、花粉、子房及营养器官。
(2)内照射
其方法有多种。
①将82P、35S等放射性同位素配成适当比强的溶液浸泡种子或营养器官。
②将放射性同位素施放于土壤中,让植物吸收。
③将放射性同位素溶液注射到植物的有关部位。
④供给植物带14C的CO2,将14C同位素同化到代谢产物中去。
⑤将放射性同位素通过一定方式贴在植物的花芽或生长点上,使之产生芽变。
采用上述方法需要一定的防护设备,严防放射性物质的污染。处理过的材料不能食用或饲用。
3.辐射后代的选育
辐射育种的选择方法和杂交育种大致相同,但由于辐射后代遗传特性和杂种后代不完全一样,因此后代的处理方法也有区别。
(1)辐射一代的处理
辐射后代一般用M表示,辐射的一、二、三代分别用M1、M2、M3表示;也可用射线名称的第一个字母表示,如用X1、γ1、n1分别表示X、γ、中子照射的第一代。
由于M1代的性状多呈隐性不能表现出来,因此一般不进行选择。如果人力、物力不足,可一株留一至数粒种子,但供M2代选择的个体一般情况下不能少于1000株。
(2)M2代的选择
M2代是分离最大的一个世代,能遗传的变异大多在M2代表现出来,因此M2代应大量选择单株,淘汰不良的个体。
(3)M3代的选育
M3代仍有分离,但分离较小,因此M3代以选择优良系统为主,在优良系统中可继续选单株,供下一代继续鉴定评选。
(4)M4代以后性状基本稳定,以后的选育程序同常规育种。
(5)辐射营养器官的选育
无性繁殖的药用植物,其遗传基础大多是异质结合的,辐射变异一经发生M1代就表现出来,因此M1代就要选择,以后继续无性繁殖不会发生分离。但是无性繁殖的器官如果发生了变异,细胞分裂较慢,生活力弱,生长发育不如正常细胞,为了给变异细胞创造生长发育的良好条件,可采用多次剪顶芽、剪侧枝的办法,促使变异茎部多长侧枝,然后将其扦插或嫁接繁殖,以增加选择的机会。
二、化学诱变育种
(一)发展概况
某些化学药剂有诱导遗传变异的作用,早在1910年就有过少量的研究。1911年麦克顿高尔(Mcdongl),1916年鲍尔(Baur),1936年萨哈洛夫(Sacharov)等人都发现化学物质能提高动植物的突变率,但在植物中一般认为利用化学物质诱发突变的工作应从约克斯(Oehlkers)1943年用乌来糖(Urethane脲烷)诱发月见草、百合及风铃草染色体畸变的工作开始。
药用植物上的化学诱变育种在70年代才发展起来。Kaul等用0.025%和0.05%的次乙亚胺处理颠茄种子所得的突变体植株高,分枝多,产量显着提高,生物碱含量提高47.3—72.7%。Kohgpatehko用0.05%的亚硝基乙基脲(NEU)处理欧茜草(Rubia tinctorum L.)的种子获得了根中蒽醌衍生物的含量比对照组增加0.38%的品系。Arinshtein用亚硝基甲基脲(NMU)在欧丹参(Salvia sclarea L.)上诱发出早开花、迟开花、单位叶面积油腺多、抗病强等各类突变体。还获得了适于机械化收获的重衣草及高产精油的蔷薇突变体。
(二)常用的药用植物育种化学诱变剂
近年来化学诱变剂的发展很快,只要浓度适当,化学药品诱发的突变率较高。加之化学药品较各种射线源容易得到,且使用方便,故应用者较多。
目前在药用植物育种中主要使用烷化剂,它们都有活跃的烷基,借助于磷酸基、嘌呤基的烷化,与DNA或RNA起作用,引起基因的突变。例如,硫芥的产物能在DNA双螺旋的两条链之间形成“交联”,阻止DNA双链的分开,妨碍正常复制的进行而导致遗传密码的改良。常用的化学诱变剂有以下几类:
1.芥子气类,如氮芥类、硫芥类的许多化合物。
2.次乙亚胺(EI)、环氧乙烷。
3.烷基磺酸盐类和烷基硫酸盐类,如甲基磺酸乙烷(EMS)、乙基磺酸乙烷(EES)、硫酸二甲酯(DMS)、硫酸二乙酯(DES)、硫酸甲乙酯(MES)等。
4.亚硝基烷基化合物,如亚硝基甲基脲(NMU)、亚硝基乙基脲(NEU)等。
农作物上使用的种类尚有与核酸类似的碱基化合物、简单的无机化合物、各种麻醉剂、抗生素及某些中草药中的高分子化合物如长春花碱、石蒜碱等。
(三)化学诱变的处理方法
植株的各部分都可用适当的方法进行处理,处理最多的是种子,其次是营养器官。植株的处理可将劈开一半的茎插入含有诱变溶液的管子内使它慢慢吸收,或者用棉团把诱变剂溶液引入植物体内,还可注射或涂抹在植物器官内外。当归的同源四倍体就是选用储存越冬中等大小的栽子,用刀片纵切栽子顶端中部3—5mm至顶端生长点,然后浸于0.01%富民农溶液中浸泡72小时诱导而成。
种子处理一般用浸泡法。药剂浓度和浸泡时间对不同药剂及不同处理对象来说是不同的,一般都要通过试验找出最佳条件。
花粉的处理可在密闭系统内,把花粉铺成单层用诱变剂蒸汽进行熏蒸。
使用化学诱变剂一定要小心谨慎,有些是致癌物,切忌接触皮肤或吸入体内,并防止环境污染。
三、多倍体育种
多倍体育种是诱变育种中使细胞染色体加倍以后,再经选择培育而成为新品种的方法。自从1937年有人首先利用秋水仙素处理曼陀罗一举获85%的四倍体以来,药用植物的多倍体育种得到了蓬勃的发展。我国药用植物资源丰富,多倍体育种具有广阔的前景,目前已获得牛膝和当归的多倍体。
(一)多倍体的概念
各种生物的染色体数目是相对稳定的,任何植物的细胞染色体数与该物种的染色体基数(X)呈倍数性关系。一般植物体细胞的染色体数目为染色体基数的2倍,称为“二倍体”;染色体数目为基数的3倍或3倍以上的称为“多倍体”。配子细胞的染色体因减数分裂而减半,因此体细胞染色体数目是配子细胞染色体数目的2倍。通常用X表示物种的染色体基数,n表示配子细胞的染色体数。2n表示体细胞的染色体数。例如曼陀罗的染色体n=x=12,2n=2x=24。当归的染色体n=x=11,2n=2x=22。染色体多倍化的现象广泛存在于植物界,被子植物中有一半以上是多倍体。目前栽培的经济作物大多数为多倍体。药用植物的多倍体也不少,例如分布在北美的委陵菜属中就存在这种以种的形式发生的多倍化系列,区域委陵菜(Potentilla finifima 2n=2x=14)是二倍体;宾洲委陵菜(P.pensylvanica 2n=4x=28)为四倍体;二回羽状委陵菜(P.bripinnatifida 2n=8x=56)为八倍体。据观察,我国药用元胡的染色体也存在多倍化系列,全叶延胡(Corydalis repens Mandl.et Muchld.)、齿办延胡索(C.turtschaninovii Bess.)为二倍体,2n=2x=16;延胡索(C.yanhusuo W.T.Wang)夏天无〔C.decumbens(Thunb)Pers.〕为四倍体,2n=4x=32;圆齿办延胡索(C.remota var.rotundiloba Maxim.)为六倍体,2n=6x=48。
在多倍体中,根据染色体组的来源和性质分为同源多倍体和异源多倍体两大类。
1.同源多倍体
染色体组的来源相同,并超过二个染色体组以上的多倍体称为同源多倍体。正常二倍体细胞的染色体加倍以后就成为同源四倍体。同源四倍体和正常的二倍体杂交则可产生同源三倍体。三倍体植物因减数分裂时染色体混乱,不能配对,表现高度不育。
2.异源多倍体
染色体组来源不同,并超过二个染色体组以上的多倍体称为异源多倍体。异源多倍体一般是由不同种属间杂交所产生的杂种再通过染色体加倍而成。
多倍体和二倍体植物相比,在形态和生理上都有许多优点,一般具有较大的细胞和营养器官,抗病力较强,生物合成能力较高,因而有较高的有效成分含量。但并不是染色体增加的倍数越高越好,而是有一定的限度。一般认为三倍体和四倍体有最大的优势。
(二)多倍体育种的应用方式
人们掌握了多倍体形成和控制其发生的规律以后,多倍体育种已成为培育良种的重要手段。目前主要有以下几个方面的应用。
(1)通过远缘杂交,对不孕杂种进行染色体加倍,克服远缘杂种不育不孕性。我国小麦和黑麦杂交培育出世界着名的抗逆性强、产量和蛋白质含量都高的小黑麦新品种,就是一个典型的例子。药用植物澳洲茄两个变种杂交(Solanum aviculare var.albiflorum XS.aviculare var.brisbanense)也获得人工异源多倍体。
(2)将二倍体药用植物诱导成同源多倍体加以利用。例如铃鹿等对曼陀罗(D.stramonium)的腋芽,用秋水仙素进行点滴处理,育成四倍体植株(2n=4x=48),其生药叶重约为二倍体的1.7倍。光岗祐彦对含有消炎作用成分甘菊环的母菊(Matricaria thamomilla 2n=18)育成的四倍体(2n=36)花的大小和有效成分含量上均优于2倍体。由胡椒薄荷诱发出的多倍体(2n=144)品系不但精油含量高,而且抗旱、耐寒、抗病。
我国梁可均等用秋水仙碱诱导的牛膝多倍体和二倍体相比,根肥大,木质化轻,产量高。
(3)利用三倍体的杂种优势及无子性,三倍体植物具有明显的杂种优势,由于不孕而没有种子。经济作物甜菜和无籽西瓜是三倍体应用的典型例子。在药用植物上,Trease等认为在罂粟的各倍性水平中,三倍体含吗啡因的量最高。Jankulov报道毛曼陀罗的三倍体杂种平均生物碱的得率超过二倍体的4倍,四倍体的3倍。
(三)人工诱导多倍体的方法和原则
1.常用药品及使用方法
目前应用最普遍、效果好的多倍体诱变剂是0.05—0.2%的秋水仙素水溶液,其次是0.01—0.03%的富民隆水溶液。秋水仙易溶于水,毒性很大,少量药液进入眼睛会导致失明,应特别小心。秋水仙素诱变的作用在于阻止细胞分裂中期纺锤丝的形成,染色体不能分配到两个细胞中而形成多倍体。富民隆效果好,价格低,容易推广,但不溶于水,使用时可称取纯的药粉1g,倒入25ml丙酮中,放80℃水浴上加热,摇动容器促使溶解,趁热将已溶解的药液倒入1000ml蒸馏水中,不断搅拌即得0.1%富民隆原液,然后稀释到需要的浓度使用。
处理方法一般采用浸渍法,也可用点滴、注射、涂抹、喷雾等方法。
2.人工诱变多倍体的原则
(1)诱变材料
同一类植物,染色体少的比染色体多的种类容易产生多倍体,而且所产生的多倍体在形态和生理上容易表现出优势。已经是多倍体了,进一步多倍化有可能表现不良。因此,宜选择染色体数较少的种类作诱变材料。
(2)处理时间
处理时间长短要根据不同药用植物种类及所处状态而定。处于休眠状态的种子或种栽处理时间宜长,已发芽的种子或生长期的幼苗要适当缩短时间。由于植物的嫩芽或幼根对毒性和缺氧耐受力弱,可在药液中浸泡一段时间(如12小时),在空气中保湿一段时间(如12小时),如此共3—4天效果较好。
(3)处理温度
以植物细胞分裂最适温度下处理为好,如人参裂口种子以10℃左右为好,黄芪、枸杞等以20℃左右为好。在处理后的恢复时期以低温、高湿为宜。
(四)多倍体的鉴定
多倍体的特点是植株、叶片、花器官、花粉粒等都较大,叶片较厚,表皮细胞单位面积内气孔及叶绿体数与二倍体有区别,这些特征都可作鉴别多倍体的依据,但最可靠的方法是观察细胞的染色体数目。