‘壹’ 故障诊断的故障诊断方法
近代故障诊断技术的发展已经历30年,但形成一门“故障诊断学”的综合性新学科,还是近几年逐步发展起来的,以不同的角度来看,有多种故障诊断的分类方法,这些方法各有特点。
概括而言,故障诊断方法可以分成两大类:基于数学模型的故障诊断方法、基于人工智能的故障诊断方法。
基于专家系统的诊断方法是故障诊断领域中最为引人注目的发展方向之一,也是研究最多、应用最广的一类智能型诊断技术。它大致经历了两个发展阶段:基于浅知识领域专家的经验知识的故障诊断系统、基于深知识诊断对象的模型知识的故障诊断系统。
(1)基于浅知识的智能型专家诊断方法
浅知识是指领域专家的经验知识。基于浅知识的故障诊断系统通过演绎推理或产生式推理来获取诊断结果,其目的是寻找一个故障集合,使之能对一个给定集合产生的原因作出最)包括存在的和缺席的(的征兆佳解释。
基于浅知识的故障诊断方法具有知识直接表达、形式统一、高模组性、推理速度快等优点。但也有局限性,如知识集不完备,对没有考虑到的问题系统容易陷入困境;对诊断结果的解释能力弱等缺点。
(2)基于深知识的智能型专家诊断方法
深知识则是指有关诊断对象的结构、性能和功能的知识。基于深知识的故障诊断系统,要求诊断对象的每一个环境具有明显的输入输出表达关系,诊断时首先通过诊断对象实际输出与期望输出之间的不一致,生成引起这种不一致的原因集合,然后根据诊断对象领(域中的第一定律知识)及其具有明确科学依据的知识他内部特定的约束联系,采用一定的算法,找出可能的故障源。
基于深知识的智能型专家诊断方法具有知识获取方便、维护简单、完备性强等优点,但缺点是搜索空间大,推理速度慢。
(3)基于浅知识和深知识的智能型专家混合诊断方法
基于复杂设备系统而言,无论单独使用浅知识或深知识,都难以妥善地完成诊断任务,只有将两者结合起来,才能使诊断系统的性能得到优化。因此,为了使故障智能型诊断系统具备与人类专家能力相近的知识,研发者在建造智能型诊断系统时,越来越强调不仅要重视领域专家的经验知识,更要注重诊断对象的结构、功能、原理等知识,研究的重点是浅知识与深知识的整合表示方法和使用方法。事实上,一个高水平的领域专家在进行诊断问题求解时,总是将他具有的深知识和浅知识结合起来,完成诊断任务。一般优先使用浅知识,找到诊断问题的解或者是近似解,必要时用深知识获得诊断问题的精确解。 知识获取上,神经网络的知识不需要由知识工程师进行整理、总结以及消化领域专家的知识,只需要用领域专家解决问题的实例或范例来训练神经网络;在知识表示方面,神经网络采取隐式表示,并将某一问题的若干知识表示在同一网络中,通用性高、便于实现知识的总动获取和并行联想推理。在知识推理方面,神经网络通过神经元之间的相互作用来实现推理。
前在许多领域的故障诊断系统中已开始应用,如在化工设备、核反应器、汽轮机、旋转机械和电动机等领域都取得了较好的效果。由于神经网络从故障事例中学到的知识只是一些分布权重,而不是类似领域专家逻辑思维的产生式规则,因此诊断推理过程不能够解释,缺乏透明度。 人工智能技术的发展,特别是专家系统在故障诊断领域中的应用。此项概念将原来以数值计算与信号处理为核心的诊断过程,被以知识处理和知识推理为核心的诊断过程所代替。目前已有了一些成功的系统,使智能型诊断成为当前诊断技术发展的新方向。
‘贰’ 汽轮机在运行时常发生的故障有哪些
汽轮机在运行时常发生的故障有:
(一)汽轮机(辅机)异常震动
汽轮机的异常振动由气流激振、转子热变形、摩擦振动等原因引起。如果是气流激振引起的会出现较大量的低频分量或受运行参数影响振动明显增大;转子的热变形与转子温度和蒸汽参数密切相关,转子的热变形会引起一倍频振幅的增加,且待机组冷态启机定速符合后,机组发生异常振动;摩擦会产生抖动、涡动等现象,使得转子内部受温不均匀,最终也会造成转子弯曲的热弹性弯曲(热变形)。
(二)汽轮机(辅机)油系统故障
汽轮机(辅机)油系统在火电厂汽轮机组安装过程中或中轴颈部分容易进入杂质导致轴颈划伤,油系统故障还可能造成汽轮机组中压主汽门伺服阀门卡死、伺服机构节流孔堵等故障,严重影响机组的运行。要注重汽轮机组油系统故障的分析及排除,保障汽轮机安全稳定的运行。
(三)汽轮机辅机凝汽器真空偏低
凝汽器是汽轮机辅机凝汽设备的组成部分之一,还包括凝结水泵、循环水泵和抽气装置等部分。凝汽设备主要在汽轮机排汽口建立并维持高度真空,使进入汽轮机的蒸汽能膨胀为相对较低的排气压力,提高汽轮机的热效率;并将汽轮机排汽凝结成洁净的凝结水作为锅炉给水,循环使用。其中,汽轮机凝汽器排汽压力的高低对于汽轮机的效率有着重要影响。凝汽器真空度能直接影响汽轮机的正常运转,当真空度降低时,会使得排汽温度升高、机组出现振动等相关故障,并且其在高温环境下影响越大。因为外界温度越高时,循环水温也会越高,它影响凝汽器的吸热量和蒸汽的冷凝温度,使得排气压力升高,进而造成凝汽器内的真空度降低。综上所述,真空气密性、凝汽器结垢等原因皆可导致汽轮机凝汽器真空度偏低。
(四)汽轮机(辅机)调速系统摆动
汽轮机轴瓦振动会因为汽轮机组高压调速汽门在运行过程中经常出现摆动的现象而加大,严重影响着汽轮机组安全稳定地运行。高压调速汽门在机组运行期间出现摆动,阀门振动特别厉害,严重时可造成轴瓦损坏。
‘叁’ 气缸故障都有哪些解决方法
气缸故障的解决方案:
1、汽缸变形较大或漏汽严重的结合面,采用研刮结合面的方法
如果上缸结合面变形在0.05mm范围内,以上缸结合面为基准面,在下缸结合面涂红丹或是压印蓝纸,根据痕迹研刮下缸。如果上缸的结合面变形量大,在上缸涂红丹,用大平尺研出痕迹,把上缸研平。或是采取机械加工的方法把上缸结合面找平,再以上缸为基准研刮下缸结合面。汽缸结合面的研刮一般有两种方法:
⑴是不紧结合面的螺栓,用千斤顶微微推动上缸前后移动,根据下缸结合面红丹的着色情况来研刮。这种方法适合结构刚性强的高压缸。
⑵是紧结合面的螺栓,根据塞尺的检查结合面的严密性,测出数值及压出的痕迹,修刮结合面,这种方法可以排除汽缸垂弧对间隙的影响。
2、采用适当的汽缸密封材料
因汽轮机汽缸密封剂还没有统一的国家标准和行业标准,制作原料和配方也各不相同,产品质量参差不齐;在选择汽轮机汽缸密封剂时,就要选在行业内有口碑,产品质量有保证的正规生产厂家,以保证检修处理后汽缸的严密性。
3、局部补焊的方法
由于汽缸结合面被蒸汽冲刷或腐蚀出沟痕,选用适当的焊条把沟痕添平,用平板或平尺研出痕迹,研刮焊道和结合面在同一平面内。汽缸结合面变形较大或是漏汽严重时,在下缸的结合面补焊一条或两条10—20mm宽的密消除间隙封带,然后用平尺或是扣上缸测量,并涂红丹研刮,直到消除间隙。此操作的工艺也很简单,焊前预热汽缸至150℃,然后在室温下进行分段退焊或跳焊。选用奥氏体焊条,如A407、A412,焊后用石棉布覆盖保温缓冷。待冷却室温后进行打磨修刮。
4、汽缸结合面的涂镀或喷涂
当汽缸结合面大面积漏汽,间隙在0.50mm左右时,为了减少研刮的工作量,可用涂镀的工艺。用汽缸做阳极,涂具做阴极,在汽缸的结合面上反复涂刷电解溶液,涂层的厚度要根据汽缸结合面间隙的大小而定,涂层的种类要根据汽缸的材料和修刮的工艺而定。喷涂就是用专用的高温火焰喷枪把金属粉末加热至熔化或达到塑性状态后喷射于处理过的汽缸表面,形成一层具有所需性能的涂层方法。其特点就是设备简单,操作方便涂层牢固,喷涂后汽缸温度仅为70℃—80℃不会使汽缸产生变形,而且可获得耐热,耐磨,抗腐蚀的涂层。注意的是在涂渡和喷涂前都要对缸面进行打磨、除油、拉毛,在涂渡和喷涂后要对涂层进行研刮,保证结合面的严密。
5、结合面加垫的方法
如果结合面的局部间隙泄漏不是很大,可用80—100目的铜网经热处理使其硬度降低,然后剪成适当的形状,铺在结合面的漏汽处,再配以汽缸密封剂。如果结合面的间隙较大,泄漏严重,可在上下结合面开宽50mm深5mm的槽,中间镶嵌IGr18Ni9Ti的齿形垫,齿形垫的厚度一般比槽的深度大0.05—0.08mm左右,并可用同等形状的不锈钢垫片做以调整。
6、控制螺栓应力的方法
如果汽缸结合面的变形较小,而且很均匀,可在有间隙处更换新的螺栓,或是适当的加大螺栓的预紧力。按从中间向两边同时紧固,也就是从垂弧最大处或是受力变形最大的地方紧固螺栓。理论上来说,控制螺栓的预紧力可用公式d/L≤A来计算,但由于此计算的数据与测量的手段还在研究当中,没有达到推广,多在螺栓的允许的最大应力内根据经验而定。
7、新时期采用的高分子材料方法
随着技术的进一步发展,高分子复合材料逐渐在气缸维护中取得了成功的应用。相对于传统手段相比,高分子复合材料具有较为优异的耐温性能,良好的耐压性能,以及更为出色的密封性能,且具有良好的塑变性,受热不会固化,密封膜不会被破坏,从而保证了机件密封面的密封;加之易于清除,使用过的密封面可以用无水乙醇或丙酮轻易的擦去,而不会附着于密封面;由于其优异的性能,逐渐受到越来越多气缸企业的青睐。
‘肆’ 汽轮机冲转时,转子冲不动的原因有哪些
1、汽轮机动静部分发生摩擦现象或抱死;2、排气压力高、主蒸汽参数低。3、主汽门未打开、或阀芯脱落。4、调速阀故障等。
‘伍’ 汽轮机的调速汽门卡涩后如何处理
由于调节汽门经常处理变化之中,因此一旦出现卡涩,造成的后果也是很严重的,下面将从汽轮机调节汽门卡涩的原因、危害和防范措施加以简单的讨论:
一、汽轮机调速汽门的卡涩的原因有哪些?
1、汽轮机负荷长期处于一定负荷,导致调门长期在一个开度,活动幅度较小。
2、EH油油质量不合格,颗粒度增加,导致杂物进入油动机。
3、阀杆与阀套之间间隙过小。
4、阀杆发生弯曲或者偏斜导致动作受阻。
5、热工元件故障(包括LVDT位移传感器外套脱落,VCC卡故障和传输线路出现问题)。
6、油动机卡涩和伺服阀故障等等。
根据我厂发生调速汽门卡涩的情况来看大部分都是由于DDV阀(电液伺服阀)和EH油油质恶化引起。
二、汽轮机调速汽门卡涩的危害有哪些?
(1)该过程伴随着一次较大的机械冲击。甩负荷后由于机组负荷的突然改变,使流经汽轮机通流部分的蒸汽流量和状态随之改变,则作用于转子上的轴向推力也发生了变化,轴向位移指示值发生突变,使推力轴承和联轴器螺栓受到一次较大的机械冲击。
(2)对汽轮发电机转子构成一次较大的扰动。运行中机组突然甩负荷后,会使原来运行相对平稳的转子受到一次不平衡的汽流冲击,诱发机组振动突变,极有可能发生振动保护动作,引起汽轮机跳闸。
(3)极有可能造成机组超速,超速的结果往往会造成超速保护动作而停机,甚至还会造成汽轮发电机组因飞车而毁坏。这是调门卡涩最大的安全隐患。
(4)对机组形成了一次较大的热冲击。甩负荷后机组负荷发生了大幅度的变化,进入汽轮机的蒸汽量随之减小,由于调速汽门的节流作用,通过汽轮机通流部分的蒸汽温度将发生大幅度的降低,使汽缸、转子表面急剧冷却,致使其中产生很大的热应力。
有数据表明,运行中机组突然甩去50%负荷时,在汽缸、转子金属部件中产生的热应力最为严重。
(5)形成压力容器超压运行,轻者引起安全阀启跳,重者造成压力容器变形或爆破。
三、汽轮机调速汽门卡涩后的处理:
部分调门卡涩:
1、部分调速汽门卡涩,部分调速汽门卡涩是指1到3个调速汽门出现卡涩,但至少一个调速汽门能正常工作的情况。
2、当发现汽轮机调速汽门部分卡涩后,立即汇报值长,要求退出CCS,稳定机组负荷,若处于较高的负荷情况下,将卡涩的调速汽门退出负荷调节序列,切换至维修模式,确保并根据实际开度修正指令开度,防止调门突然变化产生负荷波动,对系统造成冲击。
3、利用正常调节汽门降低机组负荷,如卡涩调节汽门大于1个,至少降低负荷至50%,同时联系检修对卡涩原因进行检查,根据卡涩原因确定能否在线处理,制定处理方案,根据方案进行处理。
4、若负荷控制方式处于顺序阀控制,则考虑切换为单阀控制,以提高负荷控制的稳定性,同时根据机组情况确定使用功率控制或者阀位控制模式。
‘陆’ 气缸的常见故障及排除方法
1.产生内部漏气和串气,通常情况下是气缸内部前腔和后腔之间产生漏泄,出现漏气原因有活塞密封圈损坏、缸筒头损坏、轴心密封圈有问题等。
2.外部泄漏,工作时候气缸内部想外部泄漏气体,出现原因有防尘圈密封圈有损坏、轴心表面有杂质、缸筒变形等故障问题。
3.运行不良,不流畅,出现原因有轴心和负载链接有问题、配件之间的不相匹配、缸筒变形等等故障。
4.缓冲不良,出现原因缓冲表面、密封圈、螺丝锥面等有损伤不光滑和变形。
5.活塞杆弯曲和断裂,出现原因缓冲密封圈、螺丝锥面、孔锥面变形或者受损不光滑等。
6.气缸不同步,故障原因有输出管路不一样长,气缸摩擦系数不同,在安装的时候没有安装调速节流阀等,
7.输出力不足,出演故障原因供气压力不足、负载力大于气缸的作用、气缸漏气等。
‘柒’ 系统失压引发汽轮机发电机拉瓦的原因和处理方法
咨询记录 · 回答于2021-08-05
‘捌’ 机械设备故障的诊断
机械故障诊断 需要进一步确定故障的性质,程度,类别,部位,原因,发展趋势等,为预报,控制,调整,维护提供依据。主要包括信号检测,特征提取,状态识别,诊断决策。 诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点。从诊断技术的各分支技术来看,美国占有领先地位。美国的一些公司,如Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平,不仅具有完善的监测功能,而且具有较强的诊断功能,在宇宙、军事、化工等方面具有广泛的应用。美国西屋公司的三套人工智能诊断软件(汽轮机TurbinAID,发电机GenAID,水化学ChemAID)对其所产机组的安全运行发挥了巨大的作用。还有美国通用电器公司研究的用于内燃电力机车故障排除的专家系统DELTA;美国NASA研制的用于动力系统诊断的专家系统;Delio Procts公司研制的用于汽车发动机冷却系统噪声原因诊断的专家系统ENGING COOLING ADCISOR等。近年来,由于微机特别是便携机的迅速发展,基于便携机的在线、离线监测与诊断系统日益普及,如美国生产的M6000系列产品,得到了广泛的应用。 英国于70年代初成立了机器保健与状态监测协会,到了80年代初在发展和推广设备诊断技术方面作了大量的工作,起到了积极的促进作用。英国曼彻斯特大学创立的沃森工业维修公司和斯旺西大学的摩擦磨损研究中心在诊断技术研究方面都有很高的声誉。英国原子能研究机构在核发电方面,利用噪声分析对炉体进行监测,以及对锅炉、压力容器、管道得无损检测等,起到了英国故障数据中心的作用。目前英国在摩擦磨损、汽车、飞机发动机监测和诊断方面仍具有领先的地位。 欧洲一些国家的诊断技术发展各具特色。如瑞典SPM公司的轴承监测技术,AGEMA公司的红外热像技术;挪威的船舶诊断技术;丹麦的BK公司的振动、噪声监测技术等都是各有千秋。日本在钢铁、化工等民用工业中诊断技术占有优势。东京大学、东京工业大学、京都大学、早稻田大学等高等学校着重基础性理论研究;而机械技术研究所、船舶技术研究所等国立研究机构重点研究机械基础件的诊断研究;三菱重工等民办企业在旋转机械故障诊断方面开展了系统的工作,所研制的“机械保健系统”在汽轮发电机组故障监测和诊断方面已经起到了有效的作用。 我国诊断技术的发展始于70年代末,而真正的起步应该从1983年南京首届设备诊断技术专题座谈会开始。虽起步较晚,但经过近几年的努力,加上政府有关部门多次组织外国诊断技术专家来华讲学,已基本跟上了国外在此方面的步伐,在某些理论研究方面已和国外不相上下。目前我国在一些特定设备的诊断研究方面很有特色,形成了一批自己的监测诊断产品。全国各行业都很重视在关键设备上装备故障诊断系统,特别是智能化的故障诊断专家系统,在电力系统、石化系统、冶金系统、以及高科技产业中的核动力电站、航空部门和载人航天工程等。工作比较集中的是大型旋转机械故障诊断系统,已经开发了20种以上的机组故障诊断系统和十余种可用来做现场故障诊断的便携式现场数据采集器。透平发电机、压缩机的诊断技术已列入国家重点攻关项目并受到高度重视;而西安交通大学的“大型选转机械计算机状态监测与故障诊断系统”,哈尔滨工业大学的“机组振动微机监测和故障诊断系统”。东北大学设备诊断工程中心经过多年研究,研制成功了“轧钢机状态监测诊断系统”,“风机工作状态监测诊断系统”,均取得了可喜的成果。 可用于机械状态监测与故障诊断的信号有振动诊断、油样分析、温度监测和无损检测探伤为主,其他技术或方法为辅的局面。这其中又以振动诊断涉及的领域最广、理论基础最为雄厚、研究得最为充分。目前,在振动信号的分析处理方面,除了经典的统计分析、时频域分析、时序模型分析、参数辨识外,近来又发展了频率细化技术、倒频谱分析、共振解调分析、三维全息谱分析、轴心轨迹分析以及基于非平稳信号假设的短时傅里叶变换、Winger分布和小波变换等。而当代人工智能的研究成果为机械故障诊断注入了新的活力,故障诊断的专家系统不仅在理论上得到了相当的发展,且己有成功的应用实例,作为人工智能的一个重要分支,人工神经网络的研究己成为机械故障诊断领域的一个最新研究热点。 随着计算机技术、嵌入式技术以及新兴的虚拟仪器技术的发展,故障诊断装置和仪器己经由最初的模拟式监测仪表发展到现在的基于计算机的实时在线监测一与故障诊断系统和基于微机的便携式监测分析系统。这类系统一般具有强大的信号分析与数据管理功能,能全面记录反映机器运行状态变化的各种信息,实现故障的精确诊断。随着网络技术的发展,远程分布式监测诊断系统成为目前的一个研究开发热点。
‘玖’ 汽轮机发生水冲击的现象原因及怎么处理
首先是关于汽轮机发生水冲击的现象有:
(1) 主再热气温10分钟内下降50度或50度以上。
(2) 主汽门法兰处汽缸结合面,调节汽门门杆,轴封处冒白汽或溅出水珠。
(3) 蒸汽管道有水击声和强烈振动 3l`yy])t
(4) 负荷下降,汽轮机声音变沉,机组振动增大
(5) 轴向位移增大,推力瓦温度升高,差胀减小或出现负差胀。
汽轮机发生水冲击的原因有以下几种:
(1) 锅炉满水或负荷突增,产生蒸汽带水。
(2) 锅炉燃烧不稳定或调整不当。
(3) 加热器满水,抽汽逆止门不严。
(4) 轴封进水。
(5) 旁路减温水误动作。
(6) 主蒸汽,再热蒸汽过热度低时,调节汽门大幅度来回晃动。
汽轮机发生水冲击应做如下处理:
(1) 启动润滑油泵,打闸停机。
(2) 停射水泵,破坏真空,给水走液动旁路,稍开主汽管向大气排汽门。除通知锅炉以外疏水门外,全开所有疏水门。
(3) 倾听机内声音,测量振动,记录惰走时间,盘车后测量转子弯曲数值,盘车电动机电流应在正常数值且稳定。
(4) 惰走时间明显缩短或机内有异常声音,推力瓦温度升高,轴向位移,差胀超限时,不经检查不允许机组重新启动。
为防止发生水冲击,在运行维护方面着重采取如下措施;
(1) 当主蒸汽温度和压力不稳定时,要特别注意监视,一旦汽温急剧下降到规定值,通常为直线下降50度时,应按紧急停机处理。
(2) 注意监视汽缸的金属温度变化和加热器,凝汽器水位,即使停机后也不能忽视。如果发觉有进水危险时,要立即查明原因,迅速切断可能进水的水源。
(3) 热态启动前,主蒸汽和再热蒸汽管要充分暖管,保证疏水畅通。
(4) 当高加保护装置发生故障时,加热器不能投入运行。运行中定期检查加热器水位调节装置及高水位报警,应保证经常处于良好状态。加热器管束破裂时,应迅速关闭汽轮机抽汽管上的相应汽门及逆止门,停止发生故障的加热器。
(5) 在锅炉熄火后蒸汽参数得不到可靠保证的情况下,不应向汽轮机供汽。如因特殊需要(如快速冷却汽缸)应事先制定可靠的技术措施。
(6) 对除氧器水位加强监视,杜绝满水事故发生。
(7) 滑参数停机时,汽温,汽压按照规定的变化率逐渐降低,保持必要的过热度。
(8) 定期检查再热蒸汽和1,2级旁路的减温水门的严密性,如发现泄漏应及时检修处理。
(9) 只要汽轮机在运转状态,各种保护就必须投入,不得退出。
(10) 运行人员应该明确,在汽轮机低转速下进水,对设备的威胁更大,此时尤其要监督汽轮机进水的可能性。