㈠ 高一必修一求函数解析式各种方法详细解答
一.换元法:已知f(g(x)),求f(x)的解析式,一般的可用换元法,具体为:令t=g(x),在求出f(t)可得f(x)的解析式。换元后要确定新元t的取值范围。
例题1.已知f(3x+1)=4x+3, 求f(x)的解析式.
练习1.若 ,求 .
二.配凑法:把形如f(g(x))内的g(x)当做整体,在解析式的右端整理成只含有g(x)的形式,再把g(x)用x代替。 一般的利用完全平方公式。
例题2.已知 , 求 的解析式.
练习2.若 ,求 .
三.待定系数法:已知函数模型(如:一次函数,二次函数,指数函数等)求解析式,首先设出函数解析式,根据已知条件代入求系数
例题3.设 是一元二次函数, ,且 ,
求 与 .
练习3.设二次函数 满足 ,且图象在y轴上截距为1,在x轴上截得的线段长为 ,求 的表达式.
四.解方程组法:求抽象函数的解析式,往往通过变换变量构造一个方程,组成方程组,利用消元法求f(x)的解析式
例题4.设函数 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式 ,求 的解析式.
练习4.若 ,求 .
五.利用给定的特性求解析式:一般为已知x>0时, f(x)的解析式,求x<0时,f(x)的解析式。首先求出f(-x)的解析式,根据f(x)=f(-x)或f(x)=-f(-x)求得f(x)
例题5设 是偶函数,当x>0时, ,求当x<0时, 的表达式.
练习6.对x∈R, 满足 ,且当x∈[-1,0]时, 求当x∈[9,10]时 的表达式.
六.归纳递推法:利用已知的递推公式,写出若干几项,利用数列的思想从中找出规律,得到f(x)的解析式。(通项公式)
例题6.设 是定义在 上的函数,且 , ,求 的解析式.
有时证明需要用数学归纳发去证明结论。
练习5.若 ,且 ,
求值 .
题7.设 ,记 ,求 .
七.相关点法:一般的,设出两个点,一点已知,一点未知,根据已知找到两点之间的联系,把已知点用未知点表示,最后代入已知点的解析式整理出即可。(轨迹法)
例题7:已知函数y=f(x)的图像与y=x2+x的图像关于点(-2,3)对称,求f(x)的解析式。
练习8.已知函数 ,当点P(x,y)在y= 的图象上运动时,点Q( )在y=g(x)的图象上,求函数g(x).
八.特殊值法:一般的,已知一个关于x,y的抽象函数,利用特殊值去掉一个未知数y,得出关于x的解析式。
㈡ 高一的函数解析式的五种方法的举例,急
字不好打。。。。
拼凑发:
已知f(√x+1)=x+2√x
求f(x)
解:x+2√x=x+2√x+1-1=(√x+1)^2-1
∴f(x)=x^2-1
换元法:
已知f(√x+1)=x+2√x
求f(x)。
解:令√x+1=t则x=(t-1)^2
f(t)=(t-1)^2+2(t+1)
=t^2-1
即f(x)=x^2-1
待定系数法:
f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2,求f(x)
解:设f(x)=ax^2+bx+c
将x=0带入得c=3
f(x+2)-f(x)=a(x+2)^2+b(x+2)+3-ax^2-bx-3=4x+2
则a=1,b=1
则f(x)=x^2+xx+3
赋值法:
该法针对抽象函数
㈢ 求函数解析式的几种方法
求函数的解析式的方法
求函数的解析式是函数的常见问题,也是高考的常规题型之一,方法众多, 求函数的解析式是函数的常见问题 , 也是高考的常规题型之一 , 方法众多 , 下面 对一些常用的方法一一辨析. 对一些常用的方法一一辨析. 换元法: g(x)) f(x)的解析式 一般的可用换元法,具体为: 的解析式, 一.换元法:已知 f(g(x)),求 f(x)的解析式,一般的可用换元法,具体为: t=g(x),在求出 f(t)可得 的解析式。 的取值范围。 令 t=g(x),在求出 f(t)可得 f(x)的解析式。换元后要确定新元 t 的取值范围。 例题 1.已知 f(3x 1)=4x 3, 求 f(x)的解析式.
x 1 练习 1.若 f ( ) = ,求 f (x) . x 1− x
2.已知 f ( x 1) = x 2 x ,求 f ( x 1)
f(g(x))内的 g(x)当做整体 当做整体, 二.配凑法:把形如 f(g(x))内的 g(x)当做整体,在解析式的右端整理成只含 配凑法: g(x)的形式 的形式, g(x)用 代替。 有 g(x)的形式,再把 g(x)用 x 代替。 一般的利用完全平方公式 1 1 例题 2.已知 f ( x − ) = x 2 2 , 求 f (x) 的解析式. x x
练习 3.若 f ( x 1) = x 2 x ,求 f (x) .
待定系数法:已知函数模型( 一次函数,二次函数,指数函数等 数等) 三.待定系数法:已知函数模型(如:一次函数,二次函数,指数函数等)求 解析式,首先设出函数解析式, 解析式,首先设出函数解析式,根据已知条件代入求系数 例 3. (1)已知一次函数 f ( x ) 满足 f (0) = 5 ,图像过点 ( −2,1) ,求 f ( x ) ;
(2)已知二次函数 g ( x ) 满足 g (1) = 1 , g ( −1) = 5 ,图像过原点,求 g ( x ) ;
(3)已知二次函数 h( x) 与 x 轴的两交点为 ( −2, 0) , (3, 0) ,且 h(0) = −3 ,求 h( x) ;
(4)已知二次函数 F ( x ) ,其图像的顶点是 ( −1, 2) ,且经过原点,求 F ( x ) .
练习 4.设二次函数 f (x) 满足 f ( x − 2) = f (− x − 2) ,且图象在 y 轴上截距为 1,在 x 轴上截得的线段长为 2 2 ,求 f (x) 的表达式.
5. 设 f (x) 是一次函数,且 f [ f ( x)] = 4 x 3 ,求 f (x)
四.解方程组法:求抽象函数的解析式,往往通过变换变量构造一个方程,组成 解方程组法:求抽象函数的解析式,往往通过变换变量构造一个方程, 方程组, 方程组,利用消元法求 f(x)的解析式 例题 4.设函数 f (x) 是定义(-∞,0)∪(0, ∞)在上的函数,且满足关系式
1 3 f ( x) 2 f ( ) = 4 x ,求 f (x) 的解析式. x
练习 6.若 f ( x) f (
x −1 ) = 1 x ,求 f (x) . x
7.
设 f (x) 为偶函数, g (x) 为奇函数,又 f ( x) g ( x) =
1 , 试求 f ( x)和g ( x) 的 x −1
解析式
f(x)的解析式 的解析式, 五.利用给定的特性求解析式;一般为已知 x>0 时, f(x)的解析式,求 x<0 时, 利用给定的特性求解析式 一般为已知 f(x)的解析式 的解析式。 f(-x)的解析式 的解析式, =f(-x)或 f(x)=-f(f(x)的解析式。首先求出 f(-x)的解析式,根据 f(x)=f(-x)或 f(x)=-f(-x) 求得 f(x) 例题 5 设 f (x) 是偶函数,当 x>0 时, f ( x) = e ⋅ x 2 e x ,求当 x<0 时, f (x) 的表 达式.
练习 8. x∈R, f (x) 满足 f ( x) = − f ( x 1) ,且当 x∈[-1,0]时, f ( x) = x 2 2 x 对 求当 x∈[9,10]时 f (x) 的表达式.
9. x∈R, f (x) 满足 f ( x) = − f ( x 1) , . 对 且当 x∈[-1, 时, f ( x) = x 2 2 x , 0]时 的表达式. 求当 x∈[9,10]时 f (x) 的表达式 时
归纳递推法:利用已知的递推公式,写出若干几项, 六.归纳递推法:利用已知的递推公式,写出若干几项,利用数列的思想从中 找出规律, f(x)的解析式 (通项公式) 的解析式。 (通项公式 找出规律,得到 f(x)的解析式。 通项公式) x −1 例题 6.设 f ( x) = ,记 f n ( x) = f { f [L f ( x)]},求 f 2004 ( x) . x 1
练习 10.若 f ( x y ) = f ( x) ⋅ f ( y ) ,且 f (1) = 2 ,
f (2) f (3) f (4) f (2005) L . f (1) f (2) f (3) f (2004)
求值
七.相关点法;一般的,设出两个点,一点已知,一点未知,根据已知找到两点 相关点法;一般的,设出两个点,一点已知,一点未知, 之间的联系, 把已知点用未知点表示, 最后代入已知点的解析式整理出即可。 (轨 之间的联系, 把已知点用未知点表示, 最后代入已知点的解析式整理出即可。 轨 ( 迹法) 迹法) 例题 7:已知函数 y=f(x)的图像与 y=x2 x 的图像关于点(-2,3)对称,求 f(x) 的解析式。
练习 11.已知函数 f ( x) = 2 x 1 ,当点 P(x,y)在 y= f (x) 的图象上运动时,点 Q( −
y x , )在 y=g(x)的图象上,求函数 g(x). 2 3
的抽象函数, 八.特殊值法;一般的,已知一个关于 x,y 的抽象函数,利用特殊值去掉一个未 特殊值法;一般的, 的解析式。 知数 y,得出关于 x 的解析式。 例题 8:函数 f(x)对一切实数 x,y 均有 f(x y)-f(y)=(x 2y 1)x 成立,且 f(1)=0.求 f(x)的解析式。
九.图像法;观察图像的特点和特殊点,可用代入法,或根据函数图像的性质进 图像法;观察图像的特点和特殊点,可用代入法, 行解题。注意定义域的变化。 行解题。注意定义域的变化。 y 例题 9. 图中的图象所表示的函数的解析式为( B ) 3 3 A. y = x − 1 (0 ≤ x ≤ 2) 2 2 3 3 B. y = − x − 1 (0 ≤ x ≤ 2) 2 2 3 O x 1 2 C. y = − x − 1 (0 ≤ x ≤ 2) 2
D. y = 1 − x − 1
(0 ≤ x ≤ 2)
第 7 题图
总结:求函数的解析式的方法较多,应根椐题意灵活选择, 总结:求函数的解析式的方法较多,应根椐题意灵活选择,但不论是哪种方法 都应注意自变量的取值范围的变化,对于实际问题材,同样需注意这一点, 都应注意自变量的取值范围的变化,对于实际问题材,同样需注意这一点,应 保证各种有关量均有意义。求出函数的解析式最后要写上函数的定义域, 保证各种有关量均有意义。求出的函数的解析式最后要写上函数的定义域,这 是容易遗漏和疏忽的地方。 是容易遗漏和疏忽的地方。
㈣ 高中函数的求法那四个方法都适用于哪些类型的题目啊
不只这四种,有很多方法,要灵活变通,多做题找感觉。这几种都可以用来求函数解析式,类似f(x)+f(-x),f(x)+f(1/x)之类的式子用方程组法联立消去f(-x),f(1/x).待定系数一般用于一二次函数。换元法用于有根号等繁琐的式子。其实函数最重要的方法是分离参量法。
㈤ 求函数解析式的方法有哪些
1、待定系数法,(已知函数 类型如:一次、二次函数、反比例函数等):若已知福(行)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得法(行)的表达式,待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式
2、换元法(注意新元的取值范围)已知法(g(x))的表达式,欲求粉(x),我们常设t=g(x),从而求得
然后代入法(g(x))的表达式,从而得到法(t)的表达式,即为法(x)的表达式
3、配凑法(整体代换法)若已知法(g(x))的表达式,欲求粉(x)的表达式,用换元法有困难时(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f(x)的式子
4、消元法(如自变量互为倒数、已知f(x)为奇函数 且g(x)为偶函数等:若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法
5、赋值法(特殊值代入法)在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。
函数的定义域、值域
㈥ 高一数学求解析式的方法
高一数学求解析式的方法:
1.换元法
已知复合函数f [g(x)]的解析式,求原函数f(x)的解析式,把g(x)看成一个整体t,进行换元,从而求出f(x)的方法
以上就是高一数学求解析式的常用方法,具体情况要根据题目给出的条件来选择适用作答的技巧方法
㈦ 求函数解析式的四种方法。。详细点的。。
㈧ 求解函数解析式的几种方法及例题
重难点归纳
求解函数解析式的几种常用方法主要有
1待定系数法,如果已知函数解析式的构造时,用待定系数法;
2换元法或配凑法,已知复合函数f[g(x)]的表达式可用换元法,当表达式较简单时也可用配凑法;
3消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f(x);
另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法
典型题例示范讲解
例1(1)已知函数f(x)满足f(logax)=(其中a0,a≠1,x0),求f(x)的表达式
(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求�f(x)�的表达式
命题意图本题主要考查函数概念中的三要素定义域、值域和对应法则,以及计算能力和综合运用知识的能力
知识依托利用函数基础知识,特别是对“f”的理解,用好等价转化,注意定义域
错解分析本题对思维能力要求较高,对定义域的考查、等价转化易出错
技巧与方法(1)用换元法;(2)用待定系数法
解(1)令t=logax(a1,t0;0<a<1,t<0),则x=at
因此f(t)=(at-a-t)
∴f(x)=(ax-a-x)(a1,x0;0<a<1,x<0)
(2)由f(1)=a+b+c,f(-1)=a-b+c,f(0)=c得并且f(1)、f(-1)、f(0)不能同时等于1或-1,
所以所求函数为
f(x)=2x2-1或f(x)=-2x2+1或f(x)=-x2-x+1
或f(x)=x2-x-1或f(x)=-x2+x+1或f(x)=x2+x-1
例2设f(x)为定义在R上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0),斜率为1的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f(x)的表达式,并在图中作出其图象
命题意图本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力因此,分段函数是今后高考的热点题型
知识依托函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线
错解分析本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱技巧与方法合理进行分类,并运用待定系数法求函数表达式解(1)
满意请采纳。
㈨ 高一求函数解析式什么时候用什么方法
有
用特殊值发求函数解析式一般是用于求抽象函数的,这个要视具体的题目而定,但是也有一般的取法如下几点知道就可以:
(1)特值一般取0,1,-1,的一些数,一般取0附近的,因为较容易算,而且和题目所求相差不远.
(2)若题目告诉你一个函数f(x)是奇函数,且其定义域包含原点,则有f(0)=0.
(3)求抽象函数解析式还有一种方法就是方程组法:
例题:已知f(x)满足f(x)+2f(1/x)=2x+1,求f(x)的解析式
解:由于原来函数定义域为x不等于0,把原来方程中的x全部换成1/x,可以得到
f(1/x)+2f(x)=2*1/x+1
然后联立两个方程就可以解出f(x)