Ⅰ 总结求极限的方法
大学里用到的方法主要有:
1、四则运算法则(包括有理化、约分等简单运算);
2、两个重要极限(第二个重要极限是重点);
3、夹逼准则,单调有界准则;
4、等价无穷小代换(重点);
5、利用导数定义;
6、洛必达法则(重点);
7、泰勒公式(考研数学1需要,其它考试不需要这个方法);
8、定积分定义(考研);
9、利用收敛级数(考研)
每个方法中可能都会有相应的公式,全总结就太多了,你自己去看吧。
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
Ⅱ 求极限最常用的方法
极限最常用的方法:
1、夹逼定理
主要对付的是数列极限 !这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
2、等比等差数列公式应用
对付数列极限 (q 绝对值符号要小于1)
3、各项的拆分相加(对付数列极限 )
例如知道 Xn 与 Xn+1 的关系,已知 Xn 的极限存在的情况下,xn 的极限与 xn+1 的极限时一样的,因为极限去掉有限项目极限值不变化。
4、求左右极限的方式
(对付数列极限 )例如知道 Xn 与 Xn+1 的关系,已知 Xn 的极限存在的情况下,xn 的极限与 xn+1 的极限时一样的,因为极限去掉有限项目极限值不变化。
5、两个重要极限的应用
这两个很重要 !对第一个而言是 X 趋近 0 时候的 sinx 与 x 比值。第 2 个就如果 x 趋近无穷大,无穷小都有对有对应的形式 (第 2 个实际上是用于函数是 1 的无穷的形式 )(当底数是 1 的时候要特别注意可能是用地两个重要极限 )
6、趋近于无穷大
还有个方法,非常方便的方法 ,就是当趋近于无穷大时候 ,不同函数趋近于无穷的速度是不一样的 !x 的 x 次方快于 x!快于指数函数, 快于幂数函数, 快于对数函数(画图也能看出速率的快慢 )!!当 x 趋近无穷的时候,他们的比值的极限一眼就能看出来了。
Ⅲ 求极限的方法谁给我总结一下。
如图所示:
特别注意:
1、函数在一点有极限与这点是否有定义无关.但是函数在这点的邻域一定要有定义;
2、一般地,函数在一点有极限,是指函数在这点存在双侧极限,且相等,只有区间端点,是单侧极限。
对数法。此法适用于指数函数的极限形式,指数越是复杂的函数,越能体现对数法在求极限中的简便性,计算到最后要注意代回以e为底,不能功亏一篑。
定积分法。此法适用于待求极限的函数为或者可转化为无穷项的和与一个分数单位之积,且这无穷项为等差数列,公差即为那个分数单位。
(3)标题总结常用求极限的方法扩展阅读:
极限性质:
1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。
2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。
但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)n+1”
3、保号性:若 (或<0),则对任何 (a<0时则是 ),存在N>0,使n>N时有 (相应的xn<m)。
Ⅳ 总结求极限的方法,谢谢
如图所示:
利用极限四则运算法则求极限:
函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则
lim[f(x)±g(x)]=limf(x)±limg(x)=A±B
lim[f(x)・g(x)]=limf(x)・limg(x)=A・B
lim==(B≠0)。
(4)标题总结常用求极限的方法扩展阅读:
注意事项:
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;
2、无穷大根式减去无穷大根式时,分子有理化。
3、运用两个特别极限;
4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。它不是所向无敌,不可以代替其他所有方法,一楼言过其实。
5、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。
Ⅳ 总结一下求极限的方法
极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)
2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)
1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。 全部熟记
(x趋近无穷的时候还原成无穷小)
2落笔他 法则 (大题目有时候会有暗示 要你使用这个方法)
首先他的使用有严格的使用前提!!!!!!
必须是 X趋近 而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件
(还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)
必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死!!)
必须是 0比0 无穷大比无穷大!!!!!!!!!
当然还要注意分母不能为0
落笔他 法则分为3中情况
1 0比0 无穷比无穷 时候 直接用
2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了
3 0的0次方 1的无穷次方 无穷的0次方
对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)
3泰勒公式 (含有e的x次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注意 !!!!)
E的x展开 sina 展开 cos 展开 ln1+x展开
对题目简化有很好帮助
4面对无穷大比上无穷大形式的解决办法
取大头原则 最大项除分子分母!!!!!!!!!!!
看上去复杂处理很简单 !!!!!!!!!!
5无穷小于有界函数的处理办法
面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!!
6夹逼定理(主要对付的是数列极限!)
这个主要是看见极限中的函数是方程相除的形式 ,放缩和扩大。
7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)
8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)
可以使用待定系数法来拆分化简函数
9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化
10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式
(地2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用地2 个重要极限)
11 还有个方法 ,非常方便的方法
就是当趋近于无穷大时候
不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!
x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速率的快慢) !!!!!!
当x趋近无穷的时候 他们的比值的极限一眼就能看出来了
12 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中
13假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的
14还有对付数列极限的一种方法,
就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。
15单调有界的性质
对付递推数列时候使用 证明单调性!!!!!!
16直接使用求导数的定义来求极限 ,
(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式, 看见了有特别注意)
(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!!!),咱英语不好,lim为极限号,下面看清趋向于0还是无穷,根据以上方法即可。嘻嘻,努力哦,加油文秘杂烩网 http://www.rrrwm.com
Ⅵ 求极限的所有方法,要求详细点
基本方法有:
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;
2、无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法;
3、运用两个特别极限;
4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。它不是所向无敌,不可以代替其他所有方法,一楼言过其实。
5、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。
6、等阶无穷小代换,这种方法在国内甚嚣尘上,国外比较冷静。因为一要死背,不是值得推广的教学法;二是经常会出错,要特别小心。
7、夹挤法。这不是普遍方法,因为不可能放大、缩小后的结果都一样。
8、特殊情况下,化为积分计算。
9、其他极为特殊而不能普遍使用的方法。
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想象,因此可以忽略不计。
Ⅶ 高数总结求极限方法
1. 代入法, 分母极限不为零时使用。先考察分母的极限,分母极限是不为零的常数时即用此法。
【例1】lim[x-->√3](x^2-3)/(x^4+x^2+1)
解:lim[x-->√3](x^2-3)/(x^4+x^2+1)
=(3-3)/(9+3+1)=0
【例2】lim[x-->0](lg(1+x)+e^x)/arccosx
解:lim[x-->0](lg(1+x)+e^x)/arccosx
=(lg1+e^0)/arccos0
=(0+1)/1
=1
2. 倒数法,分母极限为零,分子极限为不等于零的常数时使用。
【例3】 lim[x-->1]x/(1-x)
解:∵lim[x-->1] (1-x)/x=0 ∴lim[x-->1] x/(1-x)= ∞
以后凡遇分母极限为零,分子极限为不等于零的常数时,可直接将其极限写作∞。
3. 消去零因子(分解因式)法,分母极限为零,分子极限也为零,且可分解因式时使用。
【例4】 lim[x-->1](x^2-2x+1)/(x^3-x)
解:lim[x-->1](x^2-2x+1)/(x^3-x)
=lim[x-->1](x-1)^2/[x(x^2-1)
=lim[x-->1](x-1)/x
=0
【例5】lim[x-->-2](x^3+3x^2+2x)/(x^2-x-6)
解:lim[x-->-2] (x^3+3x^2+2x)/(x^2-x-6)
= lim[x-->-2]x(x+1)(x+2)/[(x+2)(x-3)]
= lim[x-->-2]x(x+1) / (x-3)
=-2/5
【例6】lim[x-->1](x^2-6x+8)/(x^2-5x+4)
解:lim[x-->1](x^2-6x+8)/(x^2-5x+4)
= lim[x-->1](x-2)(x-4)/[(x-1)(x-4)]
= lim[x-->1](x-2) /[(x-1)
=∞
【例7】lim[h-->0][(x+k)^3-x^3]/h
解:lim[h-->0][(x+h)^3-x^3]/h
= lim[h-->0][(x+h) –x][(x+h)^2+x(x+h)+h^2]/h
= lim[h-->0] [(x+h)^2+x(x+h)+h^2]
=2x^2
这实际上是为将来的求导数做准备。
4. 消去零因子(有理化)法,分母极限为零,分子极限也为零,不可分解,但可有理化时使用。可利用平方差、立方差、立方和进行有理化。
【例8】lim[x-->0][√1+x^2]-1]/x
解:lim[x-->0][√1+x^2]-1]/x
= lim[x-->0][√1+x^2]-1] [√1+x^2]+1]/{x[√1+x^2]+1]}
= lim[x-->0][ 1+x^2-1] /{x[√1+x^2]+1]}
= lim[x-->0] x / [√1+x^2]+1]
=0
【例9】lim[x-->-8][√(1-x)-3]/(2+x^(1/3))
解:lim[x-->-8][√(1-x)-3]/(2+x^(1/3))
=lim[x-->-8][√(1-x)-3] [√(1-x)+3] [4-2x^(1/3)+x^(2/3)]
÷{(2+x^(1/3))[4-2x^(1/3)+x^(2/3)] [√(1-x)+3]}
=lim[x-->-8](-x-8) [4-2x^(1/3)+x^(2/3)]/{(x+8)[√(1-x)+3]}
=lim[x-->-8] [4-2x^(1/3)+x^(2/3)]/[√(1-x)+3]
=-2
5. 零因子替换法。利用第一个重要极限:lim[x-->0]sinx/x=1,分母极限为零,分子极限也为零,不可分解,不可有理化,但出现或可化为sinx/x时使用。常配合利用三角函数公式。
【例10】lim[x-->0]sinax/sinbx
解:lim[x-->0]sinax/sinbx
= lim[x-->0]sinax/(ax)*lim[x-->0]bx/sinbx*lim[x-->0]ax/(bx)
=1*1*a/b=a/b
【例11】lim[x-->0]sinax/tanbx
解:lim[x-->0]sinax/tanbx
= lim[x-->0]sinax/ sinbx*lim[x-->0]cosbx
=a/b
6. 无穷转换法,分母、分子出现无穷大时使用,常常借用无穷大和无穷小的性质。
【例12】lim[x-->∞]sinx/x
解:∵x-->∞ ∴1/x是无穷小量
∵|sinx|<=1, 是有界量 ∴sinx/x=sinx* 1/x是无穷小量
从而:lim[x-->∞]sinx/x=0
【例13】lim[x-->∞](x^2-1)/(2x^2-x-1)
解:lim[x-->∞](x^2-1)/(2x^2-x-1)
= lim[x-->∞](1 -1/x^2)/(2-1/x-1/ x^2)
=1/2
【例14】lim[n-->∞](1+2+……+n)/(2n^2-n-1)
解:lim[n-->∞](1+2+……+n)/(2n^2-n-1)
=lim[n-->∞][n( n+1)/2]/(2n^2-n-1)
=lim[n-->∞][ (1+1/n)/2]/(2-1/n-1/n^2)
=1/4
【例15】lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50
解:lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50
= lim[x-->∞][(2x-3)/ (5x+1)]^20[(3x+2)/ (5x+1)]^30
= lim[x-->∞][(2-3/x)/ (5+1/ x)]^20[(3+2/ x)/ (5+1/ x)]^30
=(2/5)^20(3/5)^30=2^20*3^30/5^50
Ⅷ 求极限的21个方法总结
重要极限千篇一律取对数类似题库集锦大全。对不起打扰了。整体法等价无穷小逆向思维双向思维。,对数是logarithm的log或者LNX,Lg绝非ig,并非inx,不是logic缩写,更不会是ins,反民科吧。对不起打扰了唉。abs绝对值,sqrt开根号。平方差公式。分子分母有理化。泰勒公式乘法天下第一先写别问唉。可以用省略号代替佩亚诺余项。受教于数字帝国。洛必达法则。不定积分结果不唯一求导验证应该能够提高凑微分的计算能力。
Ⅸ 求极限的几种常用方法
可以有直接代入
使用sinx/x和(1+1/x)^x重要极限
以及更加常用的
洛必达法则(即分子分母同时求导)
或者将函数级数展开等等几种方法
观察题目选择最合适的
Ⅹ 求极限的所有方法总结
如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以