导航:首页 > 使用方法 > 导数常用方法

导数常用方法

发布时间:2022-01-07 17:49:50

1. 导数的表示方法有哪些

如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

(1)导数常用方法扩展阅读:

导数为零的点不一定是极值点。当函数为常值函数,没有增减性,即没有极值点。但导数为零。(导数为零的点称之为驻点,如果驻点两侧的导数的符号相反,则该点为极值点,否则为一般的驻点。

可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。

2. 各种函数的导数怎么

利用导数可以解决某些不定式极限(就是指0/0、无穷大/无穷大等等类型的式子),这种方法叫作“洛比达法则”。

然后,我们可以利用导数,把一个函数近似的转化成另一个多项式函数,即把函数转化成a0+a1(x-a)+a2(x-a)^2+……+an(x-a)^n,这种多项式叫作“泰勒多项式”,可以用于近似计算、误差估计,也可以用于求函数的极限。

另外,利用函数的导数、二阶导数,可以求得函数的形态,例如函数的单调性、凸性、极值、拐点等。

(2)导数常用方法扩展阅读

常用导数公式:

1、y=c(c为常数) y'=0

2、y=x^n y'=nx^(n-1)

3、y=a^x y'=a^xlna,y=e^x y'=e^x

4、y=logax y'=logae/x,y=lnx y'=1/x

5、y=sinx y'=cosx

6、y=cosx y'=-sinx

7、y=tanx y'=1/cos^2x

8、y=cotx y'=-1/sin^2x

9、y=arcsinx y'=1/√1-x^2

10、y=arccosx y'=-1/√1-x^2

3. 导数的基本公式及学习方法

基本函数的导数:
所谓基本函数,也就是通常所说的初等函数,例如常数函数y=c,一次函数y=kx+b,二次函数y=ax^2+bx+c,幂函数y=x^a,指数函数y=a^x,对数函数y=loga x,自然对数函数y=lnx,三角函数,反三角函数等,这些函数的导数是需要记住的。具体公式如下:
2
y=c y'=0 y=x^n y'=nx^(n-1) y=a^x y'=a^xlna
y=e^x y'=e^x y=logax y'=logae/x y=lnx y'=1/x
y=sinx y'=cosx y=cosx y'=-sinx y=tanx y'=1/cos^2x
y=cotx y'=-1/sin^2x y=arcsinx y'=1/√1-x^2 y=arccosx y'=-1/√1-x^2
y=arctanx y'=1/1+x^2 y=arccotx y'=-1/1+x^2
END
方法/步骤2:导数的运算法则:
1
导数的运算法则,就是指导数的加、减、乘、除的四则运算法则,这也是需要掌握的重要内容,公式如下:
①(u±v)=u'v±vu' ②uv=u'v+uv' ③u/v=(u'v-uv')/v^2
这里边的u.v一般是代表的两个不同的函数,不会同时为常数。这三个运算法则中,特别要记住的是两个函数商的导数求法,分子中出现的是减号,这个地方容易出错。对于上面提到的二次函数,符合函数和差的运算法则,所以y'=(ax^2)'+(bx)'+c'=2ax+b+0=2ax+b.
END
方法/步骤3:初等函数四则运算的求导
1
初等函数的四则运算,就是上述提到基本函数,其求导,通常要用到上述求导的运算法则,它可以单独使用其中的一个运算法则,也可以是多个运算法则同时使用,下面举几个例子。
2
(1)y=sinx+5x-cosx,这个是函数的和差运算,求导法则仅使用①,所以:
y'=(sinx)'+(5x)'-(cosx)'=cosx+5-(-sinx)=cosx+sinx+5.
3
(2)y=(5sinx)*(3cosx),这个是函数的乘积运算,求导法则仅使用②,所以:
y'=(5sinx)'(3cosx)+(5sinx)(3cosx)'
=(5cosx)(3cosx)+(5sinx)(-3sinx)
=15(cos^2x-sin^2x)
=15cos2x.
4
(3)y=sinx/cosx,这个是函数的商的运算,求导法则仅使用③,所以:
y'=[(sinx)'cosx-(sinx)(cosx)']/(cosx)^2
=[cosxcosx-(sinx)(-sinx)]/(cosx)^2
=1/(cosx)^2
=sec^2x,实际上y=sinx/cosx=tanx,其导数是通过这个法则求出来的。
5
(4)y=(sinx-5x+x^2cosx)/x,这个函数的求导,上述三个运算法则都要使用到,所以:
y'=[(sinx-5x+x^2cosx)'x-(sinx-5x+x^2cosx)x']/x^2
={[(sinx)'-(5x)'+(x^2cosx)']x-(sinx-5x+x^2cosx)}/x^2
={[cosx-5+(x^2)'cosx+(x^2)(cosx)']x-sinx+5x-x^2cosx}/x^2
={[cosx-5+2xcosx-x^2sinx]x-sinx+5x-x^2cosx}/x^2
=(xcosx-5x+2x^2cosx-x^3sinx-sinx+5x-x^2cosx)/x^2
=(xcosx+x^2cosx-x^3sinx-sinx)/x^2.
END
方法/步骤4:• 复合函数的求导法则
1
复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)即y=f(g(x))的导数间的关系为
y' =f'(g(x))*g'(x)即y对x的导数等于y对u的导数与u对x的导数的乘积.举例如下:
2
(1)y=(2x+1)^5,
y'=5(2x+1)^4*(2x+1)'=5(2x+1)^4*2=10(2x+1)^4.
3
(2) y=sin(x^2+2x).
y'=cos(x^2+2x)*(x^2+2x)'=cos(x^2+2x)*(2x+2)=2(x+1)cos(x^2+2x).
4
(3)y=(3x)^x,因为它既不是指数函数,也不是幂函数,所以求导之前要变型,得到:
lny=xln3x,两边求导得到:
y'/y=ln3x+x(ln3x)'
y'/y=ln3x+x*3/3x=ln3x+1
所以y'=(3x)^x(1+ln3x).
END
方法/步骤5:积分函数的求导
对有积分上下限函数的求导有以下公式:
[∫(a,c)f(x)dx]'=0,a,c为常数。解释:对于积分上下限为常数的积分函数,其导数=0.
[∫(g(x),c)f(x)dx]'=f(g(x))*g'(x),a为常数,g(x)为积分上限函数,解释:积分上限为函数的求导公式=被积函数以积分上限为自变量的函数值乘以积分上限的导数。
[∫(g(x),p(x))f(x)dx]'=f(g(x))*g'(x)-f(p(x))*p'(x),a为常数,g(x)为积分上限函数,p(x)为积分下限函数。解释:积分上下限为函数的求导公式=被积函数以积分上限为自变量的函数值乘以积分上限的导数-被积函数以积分下限为自变量的函数值乘以积分下限的导数。
(1)[∫(x^2,1)(2x+5)dx]'
=(2x^2+5)*(x^2)'
=(2x^2+5)*2x
=4x^3+10x
(2)[∫(2x^2-1.x)sinxdx]'
=sin(2x^2-1)*(2x^2-1)'-sinx*(x)'
=4xsin(2x^2-1)-sinx.

4. 导数常见的运用请举例!

应用
1.函数的单调性
(1)利用导数的符号判断函数的增减性 利用导数的符号判断函数的增减性,这是导数几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合的思想. 一般地,在某个区间(a,b)内,如果f'(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f'(x)0是f(x)在此区间上为增函数的充分条件,而不是必要条件,如f(x)=x3在R内是增函数,但x=0时f'(x)=0.也就是说,如果已知f(x)为增函数,解题时就必须写f'(x)≥0. (2)求函数单调区间的步骤(1.定义最基础求法2.复合函数单调性) ①确定f(x)的定义域 ②求导数 ③由(或)解出相应的x的范围.当f'(x)>0时,f(x)在相应区间上是增函数;当f'(x)0且a不等于1,x>0) ;熟记y=lnx,y'=1/x 5.正弦函数y=(sinx )y'=cosx 6.余弦函数y=(cosx) y'=-sinx 7.正切函数y=(tanx) y'=1/(cosx)^2 8.余切函数y=(cotx) y'=-1/(sinx)^2 9.反正弦函数y=(arcsinx) y'=1/√1-x^2 10.反余弦函数y=(arccosx) y'=-1/√1-x^2 11.反正切函数y=(arctanx) y'=1/(1+x^2) 12.反余切函数y=(arccotx) y'=-1/(1+x^2) 为了便于记忆,有人整理出了以下口诀: 常为零,幂降次,对倒数(e为底时直接倒数,a为底时乘以lna),指不变(特别的,自然对数的指数函数完全不变,一般的指数函数须乘以lna);正变余,余变正,切割方(切函数是相应割函数(切函数的倒数)的平方),割乘切,反分式 在推导的过程中有这几个常见的公式需要用到: 1.y=f[g(x)],y'=f'[g(x)]·g'(x)‘f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量’ 2.y=u/v,y'=(u'v-uv')/v^2 3. 原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y'=1/x' 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0.用导数的定义做也是一样的:y=c,Δy=c-c=0,limΔx→0Δy/Δx=0. 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况,只能证其为整数Q.主要应用导数定义与N次方差公式.在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明. 3.y=a^x, Δy=a^(x+Δx)-a^x=a^x(a^Δx-1) Δy/Δx=a^x(a^Δx-1)/Δx 如果直接令Δx→0,是不能导出导函数的,必须设一个辅助的函数β=a^Δx-1通过换元进行计算.由设的辅助函数可以知道:Δx=loga(1+β). 所以(a^Δx-1)/Δx=β/loga(1+β)=1/loga(1+β)^1/β 显然,当Δx→0时,β也是趋向于0的.而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna. 把这个结果代入limΔx→0Δy/Δx=limΔx→0a^x(a^Δx-1)/Δx后得到limΔx→0Δy/Δx=a^xlna. 可以知道,当a=e时有y=e^x y'=e^x. 4.y=logax Δy=loga(x+Δx)-logax=loga(x+Δx)/x=loga[(1+Δx/x)^x]/x Δy/Δx=loga[(1+Δx/x)^(x/Δx)]/x 因为当Δx→0时,Δx/x趋向于0而x/Δx趋向于∞,所以limΔx→0loga(1+Δx/x)^(x/Δx)=logae,所以有 limΔx→0Δy/Δx=logae/x. 也可以进一步用换底公式 limΔx→0Δy/Δx=logae/x=lne/(x*lna)=1/(x*lna)=(x*lna)^(-1) 可以知道,当a=e时有y=lnx y'=1/x. 这时可以进行y=x^n y'=nx^(n-1)的推导了.因为y=x^n,所以y=e^ln(x^n)=e^nlnx, 所以y'=e^nlnx·(nlnx)'=x^n·n/x=nx^(n-1). 5.y=sinx Δy=sin(x+Δx)-sinx=2cos(x+Δx/2)sin(Δx/2) Δy/Δx=2cos(x+Δx/2)sin(Δx/2)/Δx=cos(x+Δx/2)sin(Δx/2)/(Δx/2) 所以limΔx→0Δy/Δx=limΔx→0cos(x+Δx/2)·limΔx→0sin(Δx/2)/(Δx/2)=cosx 6.类似地,可以导出y=cosx y'=-sinx. 7.y=tanx=sinx/cosx y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x 8.y=cotx=cosx/sinx y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x 9.y=arcsinx x=siny x'=cosy y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2 10.y=arccosx x=cosy x'=-siny y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2 11.y=arctanx x=tany x'=1/cos^2y y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2 12.y=arccotx x=coty x'=-1/sin^2y y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2 另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与 4.y=u土v,y'=u'土v' 5.y=uv,y=u'v+uv' 均能较快捷地求得结果. 对于y=x^n y'=nx^(n-1) ,y=a^x y'=a^xlna 有更直接的求导方法. y=x^n 由指数函数定义可知,y>0 等式两边取自然对数 ln y=n*ln x 等式两边对x求导,注意y是y对x的复合函数 y' * (1/y)=n*(1/x) y'=n*y/x=n* x^n / x=n * x ^ (n-1) 幂函数同理可证 导数说白了它其实就是曲线一点斜率,函数值的变化率 上面说的分母趋于零,这是当然的了,但不要忘了分子也是可能趋于零的,所以两者的比就有可能是某一个数,如果分子趋于某一个数,而不是零的话,那么比值会很大,可以认为是无穷大,也就是我们所说的导数不存在. x/x,若这里让X趋于零的话,分母是趋于零了,但它们的比值是1,所以极限为1. 建议先去搞懂什么是极限.极限是一个可望不可及的概念,可以很接近它,但永远到不了那个岸. 并且要认识到导数是一个比值.

5. 导数的四种表示方法

主要有以下几种方式:
1.y'=f'(x)
2.dy=f'(x)dx
3.dy+f'(x)dx=0,
4定义法

6. 导数的学习方法

http://..com/question/88132161.html 这是ppt)导数知识的整体把握和高考要求 中学数学引入导数的内容使教学内 容增添了更多的变量数学,拓展了学习和研究的领域。增加这部分内容,可以加强对考生的辩证思维的教育,使考生能以导数为工具研究函数的变化率,为解决函数 极值问题提供更有效的途径、更简便的手段,加强对函数及其性质的深刻理解和直观认识;同时,使学生掌握一种科学的语言和工具,学习一种理性的思维模式。有关导数的内容在2000年开始的新课程试卷命题时,其考试要求都是很基本的,以后逐渐加深。 考查的基本原则是重点考查导数的概念和计算,在导数的考查过程中力求结合应用问题的考查,不过多地涉及理论探讨和严格的逻辑证明。文科试卷中题目涉及的知 识比较基本,多项式函数的导数,题目的总体难度也不大。这部分的要求一般有三个层次,第一层次是主要考查导数的概念、求导的公式和求导的法则;第二层次是 导数的简单应用,包括求函数的极值,求函数的单调区间,证明函数的增减性等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式和 函数的单调性等有机地结合在一起,设计综合试题。通过将新课程内容和传统内容相结合,可以加强能力考查的力度,加强试题的综合性,同时可以使试题具有比较 广泛的实际意义。它体现了导数作为工具分析和解决一些函数性质问题的方法,这类问题用传统教材的方法是无法解决的。同时,新课程增加的新内容的考查形式和 要求已经发生变化,导数已经由前两年只是在解决问题中的辅助地位上升为分析和解决问题时的必不可少的工具。这种试题编排的调整和试题创新设计不仅优化试卷 结构,同时体现了新课程试卷的要求和特点。 积分:中学数学引入积分的内容,拓展了学习和研究的领域。增加这部分内容,可以加强对考生的辩证思维的教育(求导和积分的互逆性),使考生能以积分为工具研究、解决变力做功和复杂图形的面积求解等问题。对于积分知识,要求较低,一是公式运算,再就是转化:利用数形结合的思想转化为面积求解。通过以 上内容可以看出,导数和积分是高考必考内容,而用导数研究函数的单调性和求极值、最值,是重点考察内容。可以说利用函数的导数来研究函数的性质是新教材注 入中学数学的一个亮点。文、理科数学试卷中分别有一个解答题,考查导数的概念和计算及应用导数研究函数单调性、极值的基本方法,考查考生综合运用数学知识 解决问题的能力。 (2)对本部分知识学习的几点看法:一、本章重点培养如下思想和能力:(一)变换与转化思想:在研究和解决一些数学问题时常采用某种手段进行命题变换,以达解决问题的目的。常见有以下三个方面 ①把复杂问题通过变换转化为较简单的问题。②把较难问题通过变换转化为较易的问题。③把没解决问题通过变换转化为已解决的问题。(二)数形结合思想:数形结合思想是应用客观事物中数与形的对应关系,把抽象的数学语言与直观的图形结合起来:①寻求解题的切入点 ②简化解题过程 ③ 转换命题 ④验证结论的正确与完整。数形结合的思想就是利用图形进行思维简缩,对选择、填空题的求解住住能大大简化思维过程,争取解题时间。(三)解决实际问题的能力解决实际问题的能力是人们认识世界,改造世界的能力。较之前三种能力,它是更高层次和内涵更为宽泛的能力。 二、注重良好习惯的培养。 (1)速度。考试的时间紧,是争分夺秒,复习一定要有速度意识,加强速度训练,用时多即使对了也是“潜在丢分”,要避免“小题大做”。 (2)计算。数学高考历来重视运算能力,虽近年试题计算量略有降低,但并未削弱对计算能力的要求。运算要熟练、准确,运算要简捷、迅速,运算要与推理相结合,要合理。三、坚持“面向中等生,重视中低档题”的基本方针。 重视基础,立足双基,着眼于能力的提高。随着高校招生并轨政策的实施,分数线下降,“踩线生”的界定也随之变化,在一般学校中,中等程度的学生都应该划归此列,中等生的提高意味着上线率的提高,对此应引起充分注意。同 时要注意突出学生的整体优势,对总分高、而数学较差的学生应采取相应措施。

7. 求导数的方法

1、公式法 例如∫x^ndx=x^(n+1)/(n+1)+C ∫dx/x=lnx+C ∫cosxdx=sinx 等不定积分公式都应牢记,对于基本函数可直接求出原函数。 2、换元法 对于∫f[g(x)]dx可令t=g(x),得到x=w(t),计算∫f[g(x)]dx等价于计算∫f(t)w'(t)dt。 例如计算∫e^(-2x)dx时令t=-2x,则x=-1/2t,dx=-1/2dt,代入后得:-1/2∫e^tdt=-1/2e^t=-1/2e^(-2x)。对其求导验算一下可知是正确的。 3、分步法 对于∫u'(x)v(x)dx的计算有公式: ∫u'vdx=uv-∫uv'dx(u,v为u(x),v(x)的简写) 例如计算∫xlnxdx,易知x=(x^2/2)'则: ∫xlnxdx=x^2lnx/2-1/2∫xdx =x^2lnx/2-x^2/4=1/4(2x^2lnx-x^2) 通过对1/4(2x^2lnx-x^2)求导即可得到xlnx。 4、综合法 综合法要求对换元与分步灵活运用,如计算∫e^(-x)xdx,这个就留着自己作为练习吧。 关于对基本函数求原函数可通过导数表直接得出,可以参考我的词条。参考资料: http://ke..com/view/643648.htm

8. 求导数的原函数是有几种常见方法

1、公式法

例如∫x^ndx=x^(n+1)/(n+1)+C ∫dx/x=lnx+C ∫cosxdx=sinx 等不定积分公式都应牢记,对于基本函数可直接求出原函数。

2、换元法

对于∫f[g(x)]dx可令t=g(x),得到x=w(t),计算∫f[g(x)]dx等价于计算∫f(t)w'(t)dt。 例如计算∫e^(-2x)dx时令t=-2x,则x=-1/2t,dx=-1/2dt,代入后得:-1/2∫e^tdt=-1/2e^t=-1/2e^(-2x)。

3、分步法

对于∫u'(x)v(x)dx的计算有公式: ∫u'vdx=uv-∫uv'dx(u,v为u(x),v(x)的简写) 例如计算∫xlnxdx,易知x=(x^2/2)'则: ∫xlnxdx=x^2lnx/2-1/2∫xdx =x^2lnx/2-x^2/4=1/4(2x^2lnx-x^2) 通过对1/4(2x^2lnx-x^2)求导即可得到xlnx。

4、综合法

综合法要求对换元与分步灵活运用,如计算∫e^(-x)xdx。

(8)导数常用方法扩展阅读:

原函数存在定理

若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。

函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。

例如:x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。

9. 导数题常用方法

一般求导不是很难,用法则,并清楚复合函数的求导,一般就可以了!当然必须记住常用函数的求导公式的.

10. 求导的方法有哪些

求导的方法有
1、定义法
⽤导数的定义来求导数。
2、复合函数法
利⽤复合函数来求导。
3、隐函数法
利⽤隐函数来求导。
4、对数法
对数法适⽤于幂指函数和所给函数可看做是幂的连乘积求导数,可简化运算。

阅读全文

与导数常用方法相关的资料

热点内容
褥疮贴使用方法 浏览:510
袖子夹毛有什么好方法 浏览:643
无痕祛斑的最佳方法 浏览:189
安装天然气表的正确方法 浏览:304
图层蒙版使用方法 浏览:178
冬虫夏草的使用方法 浏览:750
鱼秋串食用方法 浏览:198
如何用多种说明方法描写雪 浏览:232
99乘以16用简便方法 浏览:604
山楂研究方法 浏览:362
万用表的原理和使用方法 浏览:746
桂花栽培种植方法 浏览:279
多变量分析方法与应用 浏览:652
电脑电源噪声测量方法 浏览:630
汽车座椅清洗方法有哪些 浏览:779
如何用线圈缠绕方法确定电流 浏览:421
电脑笔记本恶搞方法 浏览:654
如何长高方法12岁 浏览:400
真皮皮带质量好不好的鉴别方法 浏览:916
脊柱炎物理治疗方法 浏览:573