导航:首页 > 使用方法 > 其他国家历史上的计数方法图片

其他国家历史上的计数方法图片

发布时间:2024-12-06 17:31:36

㈠ 求算术起源至今的发展史 先中国再外国 一一列举

我国数学在世界数学发展史上,有它卓越的贡献。早在远古时代,人们就用绳结表示事物的多少,在彩陶中绘有大量的直线、三角、圆、方、菱形、五边形、六边形等对称图案,在房屋遗址的基地上,亦发现几何图形,表明远古的人们在一定程度上已经具有数和形的概念。

在新石器时期的彩陶钵上,有多种刻画符号,其中丨、、、×、+等,很可能是我国最早的记数符号。产生文字之后,在殷商的甲骨文中出现了记数的专用文字和十进制记数法,并且运用规和矩作为简单的绘图和测量工具。《前汉书·律历志》记载了用竹棍表示数和计算的方法,称为算筹和筹算。在春秋早期乘法口诀被称为“九九”歌,已经成为很普通的知识。

春秋战国时期,学术繁荣,产生了相当精彩和可贵的数学思想;公元前6世纪,已经有了关于简单体积和比例分配问题的算法,在《考工记》中记载了分数和角度的资料;到秦始皇时,统一了度量衡,并且基本上采用了十进制的度量单位,在《墨经》中提出了几何名词的定义和几何命题等。《杜忠算术》和《许商算术》是最早的数学专着,但这两部书都失传了。至今仍保留的古代数学专着是《算数书》,全书共有60多个小标题、90多个题目,书中内容涉及了整数和分数的四则运算、比例问题、面积和体积问题等、并且含有“合分”、“少广”等数学思想。

大约公元前1世纪完成了《周髀算经》(书中大部分内容于公元前7到6世纪完成),书中记述了矩的用途、勾股定理及其在测量上的应用,相似直角三角形对应边成比例的定理、开平方问题、等差级数问题,应用古“四分历”计算相当复杂的分数运算等,此书为重要的宝贵文献。

古代数学的着名着作是《九章算术》,大约成书于公元1世纪东汉初年,全书列举了246个数学问题及解决问题的方法。共有九章:第一章“方田”介绍土地面积的计算、含有正方形、矩形、三角形、梯形、圆、环等面积公式,弓形面积和球形表面积的近似公式,还有分数四则运算法则、约分、通分、求最大公约数等方法;第二章“粟米”介绍了各种粮食折算的比例问题,及解比例的方法,称为“今有术”;第三章“衰(Cuǐ)分”介绍了按等级分配物资或按一定标准摊派税收的比例分配问题、等差数列和等比数列问题等;第四章“少广”介绍了已知正方形面积或正方体体积,求边长或棱长的开平方或开立方的方法,已知球的体积求直径的问题等;第五章“商功”介绍了立体体积计算,包括长方体、棱柱、棱锥、棱台、圆柱、圆锥、圆台、楔形体等体积的计算公式;第六章“均输”介绍了计算按人口多少、物价高低、路程远近等条件,合理摊派税收、民工的正比、反比、复比例、等差级数等问题;第七章“盈不足”介绍了盈亏类问题的算法;第八章“方程”介绍了一次联立方程问题,引入了负数的概念,及正负数的加减法则;第九章“勾股”介绍了勾股定理的应用和简单的测量问题,其后,历史上着名数学家刘徽、祖冲之、李淳风、贾宪等,都曾经深入研究和注释过《九章算术》并且提出许多新的概念和新的方法。在诸如勾股定理的证明、重差术、割圆术、圆周率近似值、球的体积公式、二次和三次方程的解法。同余式和不定方程的解法等方面做出了重要的新贡献。

我国古代数学专着有《勾股圆方图注》、《九章算术注》、《孙子算经》、《五经算术》、《缀术》等。特别应该指出的是,刘徽在《九章算术注》中对《九章算术》的大部分数学方法作了严密的论证,对于一些数学概念提出了明确的解释,为中国数学发展奠定了坚实的理论基础。祖冲之在《缀术》中得出了比刘徽所提出的值更精密的圆周率,成为举世公认的重大成就。贾宪在《黄帝九章算法细草》中提出的“开方作法本源”图和增乘开方法,以及《孙子算经》中的“孙子问题”,《张邱建算经》中的“百鸡问题”、珠算盘和珠算术等等,均在世界数学发展史上有深远影响。 大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。”
和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。
现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。
古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。
小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。
宋朝杨辉所着的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。
(二)属于代数方面的材料
从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。
“九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。
我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他着作内的一个字可酬以千金。
十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。
在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。
级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的着作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。
历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。
内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。
十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。
就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名着。
(三)属于几何方面的材料
自明朝后期(十六世纪)欧几里得“几何原本”中文译本一部分出版之前,中国的几何早已在独立发展着。应该重视古代的许多工艺品以及建筑工程、水利工程上的成就,其中蕴藏了丰富的几何知识。
中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,甲骨文内己有规和矩二个字,规是用来画圆的,矩是用来画方的。
汉代石刻中矩的形状类似现在的直角三角形,大约在公元前二世纪左右,中国已记载了有名的勾股定理(勾股二个字的起源比较迟)。
圆和方的研究在古代中国几何发展中占了重要位置。墨子对圆的定义是:“圆,一中同长也。”—个中心到圆周相等的叫圆,这解释要比欧几里得还早一百多年。
在圆周率的计算上有刘歆(?一23)、张衡(78—139)、刘徽(263)、王蕃(219—257)、祖冲之(429—500)、赵友钦(公元十三世纪)等人,其中刘徽、祖冲之、赵友钦的方法和所得的结果举世闻名。
祖冲之所得的结果π=355/133要比欧洲早一千多年。
在刘徽的“九章算术”注中曾多次显露出他对极限概念的天才。 在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点。
中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果.
正好说明十八、九世纪中国数学家对割圆连比例的研究和项名达(1789—1850)用割圆连比例求出椭圆周长。这都是继承古代方法加以发挥而得到的(当然吸收外来数学的精华也是必要的)。

(四)属于三角方面的材料
三角学的发生由于测量,首先是天文学的发展而产生了球面三角,中国古代天文学很发达,因为要决定恒星的位置很早就有了球面测量的知识;平面测量术在“周牌算经”内已记载若用矩来测量高深远近。

刘徽的割圆术以半径为单位长求圆内正六边形,十二二边形等的每一边长,这答数是和2sinA的值相符(A是圆心角的一半),以后公元十二世纪赵友钦用圆内正四边形起算也同此理,我们可以从刘徽、赵友钦的计算中得出7.5o、15o、22.5o、30o、45o等的正弦函数值。

在古代历法中有计算二十四个节气的日晷影长,地面上直立一个八尺长的“表”,太阳光对这“表”在地面上的射影由于地球公转而每一个节气的影长都不同,这些影长和“八尺之表”的比,构成一个余切函数表(不过当时还没有这个名称)。

十三世纪的中国天文学家郭守敬(1231—1316)曾发现了球面三角上的三个公式。 现在我们所用三角函数名词:正弦,余弦,正切,余切,正割,余割,这都是我国十六世纪已有的名称,那时再加正矢和余矢二个函数叫做八线。

在十七世纪后期中国数学家梅文鼎(1633—1721)已编了一本平面三角和一本球面三角的书,平面三角的书名叫“平三角举要”,包含下列内容:(1)三角函数的定义;(2)解直角三角形和斜三角形;(3)三角形求积,三角形内容圆和容方;(4)测量。这已经和现代平面三角的内容相差不远,梅文鼎还着书讲到三角上有名的积化和差公式。十八世纪以后,中国还出版了不少三角学方面的书籍。

㈡ 每个国家古代的计数方法

古时候人们计数的方法各国都不一样。列举以下几个:

1、中国古代的计数系统

中国在三千多年前的商代,已经建立起了完整的十进制系统,自从发明了算筹这种计算工具以后,中国人的计数系统有了很大的进步。在两千多年前的春秋战国时期,算筹在中国人手里已经使用得非常普遍了。算筹就是一种细竹棍,它表示数字1——9有两种方式:

纵式、横式。

表示多位数字的方法是纵横相间,这就避免了符号不独立可能引起的混乱,例如22837的表示法是。由此可知,中国古代的计数系统是典型的十进位值制。

算”的原意就指的是算筹,中间的“目”表示桌上摆放若干根算筹,下面“艹”是支架,上面“&<1950;”表示它的质料。与算、筹同义的字还有“策”,古书称“木细枝为策”,因此运筹、运算、计策、计算等在古代是近义词。

《史记·张良》中有“运筹策帷幄之中,决胜于千里之外”的说法,说明当时军事家在指挥一场战役之前,在帐中也要用算筹作为工具进行计算和谋划。

事实上,采用几作进位制是不重要的,重要的是要有位值制概念。巴比伦人和玛雅人有位值制概念,却都不是十进制;古埃及和古希腊是十进制,却都没有位值制,只有中国是最早采用十进位值制的国家。

英国着名科学史家李约瑟曾说:“如果没有这种十进位值制,就几乎不可能出现我们现在这个统一化的世界了。”因此,首创十进位值制,是中国古代人民对世界做出的一项不可磨灭的贡献。

2、古埃及在三千多年前的计数法如下

例如258写作。这种计数法是十进制的,但没有位值制;就以上符号而言,最大只能表示99999,而且写起来非常麻烦,我们现在只用5个符号就能表示的数字99999,他们却要用45个符号。

3、古希腊人的计数系统

古希腊人的计数系统是十进制,但没有位值制概念。他们用27个古希腊字母α、β、γ等在其上画一横杠来表示数字,前9个字母分别表示1——9,中间9个字母表示10——90,后9个字母表示100——900,按这种方式最大只能表示999。

为了表示更大的数目,他们又引进新的计数符号。这种计数系统十分复杂,但由于没有引进位值制,所以它无法保证任意大的数目都有相应的符号。

(2)其他国家历史上的计数方法图片扩展阅读

阿拉伯数字的起源:

公元500年前后,随着经济、种姓制度的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。天文学家阿叶彼海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。

这样,不仅是数字符号本身,而且是它们所在的位置次序也同样拥有了重要意义。以后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是阿拉伯数字的老祖先了。

阿拉伯数字使用注意事项:

阿拉伯数字容易通过改变小数点位置而产生变化。所以在特殊场合(如银行)不能完全替代大写的汉字。

阿拉伯数字使用规则:

在科技书刊中,阿拉伯数字因其“笔画简单、结构科学、形象清晰、组数简短”等特点,有着很高的使用频率,其用法是否正确及规范,直接关系到科技期刊的质量。

印度数字:

公元3世纪,古印度的一位科学家巴格达发明了阿拉伯数字。最古的计数目大概至多到3,为了要设想“4”这个数字,就必须把2和2加起来,5是2加2加1,3这个数字是2加1得来的,大概较晚才出现了用手写的五指表示5这个数字和用双手的十指表示10这个数字。

这个原则实际也是数学计算的基础。罗马的计数只有到Ⅴ(即5)的数字,Ⅹ(即10)以内的数字则由Ⅴ(5)和其它数字组合起来。Ⅹ是两个Ⅴ的组合,同一数字符号根据它与其他数字符号位置关系而具有不同的量。

这样就开始有了数字位置的概念,在数学上这个重要的贡献应归于两河流域的古代居民,后来古鳊人在这个基础上加以改进,并发明了表达数字的1,2,3,4,5,6,7,8,9,0十个符号,这就成为记数的基础。八世纪印度出现了有零的符号的最老的刻版记录。当时称零为首那。

两百年后,团结在伊斯兰教下的阿拉伯人征服了周围的民族,建立了东起印度,西从非洲到西班牙的阿拉伯帝国。后来,这个伊斯兰大帝国分裂成东、西两个国家。

由于这两个国家的各代君王都奖励文化和艺术,所以两国的首都都非常繁荣,而其中特别繁华的是东都——巴格达,西来的希腊文化,东来的印度文化都汇集到这里来了。阿拉伯人将两种文化理解消化,从而创造了独特的阿拉伯文化。

大约700年前后,阿拉伯人征服了旁遮普地区,他们吃惊地发现:被征服地区的数学比他们先进。于是设法吸收这些数字。

771年,印度北部的数学家被抓到了阿拉伯的巴格达,被迫给当地人传授新的数学符号和体系,以及印度式的计算方法(用的计算法)。由于印度数字和印度计数法既简单又方便,其优点远远超过了其他的计算法,阿拉伯的学者们很愿意学习这些先进知识,商人们也乐于采用这种方法去做生意。

后来,阿拉伯人把这种数字传入西班牙。公元10世纪,又由教皇热尔贝·奥里亚克传到欧洲其他国家。公元1200年左右,欧洲的学者正式采用了这些符号和体系。

至13世纪,在意大利比萨的数学家费婆拿契的倡导下,普通欧洲人也开始采用阿拉伯数字,15世纪时这种现象已相当普遍。那时的阿拉伯数字的形状与现代的阿拉伯数字尚不完全相同,只是比较接近而已,为使它们变成1、2、3、4、5、6、7、8、9、0的书写方式,又有许多数学家花费了不少心血。

阅读全文

与其他国家历史上的计数方法图片相关的资料

热点内容
如何提炼自己的教学特色及方法 浏览:3
饲料中硝态氮检测方法 浏览:168
日产天籁行车电脑使用方法 浏览:664
站桩的背后训练方法视频 浏览:227
窗户防盗栏安装方法 浏览:937
真假墨玉手串鉴别方法 浏览:784
电脑杀毒前获得权限的方法 浏览:556
简单的漫画制作方法 浏览:69
未焊透裂纹的检测方法 浏览:434
橡胶品尺寸测量方法 浏览:558
市政井开挖土方量计算方法 浏览:821
如何改变坐姿呼吸方法 浏览:94
如何获得战令方法 浏览:341
丰胸霜的使用方法 浏览:694
疝气中医治疗方法 浏览:161
实际进度前锋线的方法有哪些 浏览:104
时间复杂度计算方法 浏览:185
痔疮食物治疗方法 浏览:925
正确的丰胸方法太方便 浏览:814
单跳腿锻炼方法 浏览:397