1. 简述遥感数字影像增强处理的目的,列举一种增强处理方法,说明其原理...
增强处理的目的就是加强图像的对比度,已取得更好的视觉效果(更容易辨别事物),最简单的数据拉伸处理,假设一个图像的亮度值都在0-10之间那么显示的时候会黑乎乎的一片什么也看不出来,我们把它拉伸到0-255即0对应着0 ,10 拉伸后对应着255 这样子它们的差距大了(对比度大了)我们在图像上就能看出一些边界轮廓等等,人眼更容易识别目标
2. 遥感影像的处理效果
通过对获取的研究区遥感图像进行几何精校正、遥感图像的降噪处理、遥感图像的增强处理、遥感图像的彩色合成、遥感图像的边缘增强等技术处理,获得以下应用效果。
(1)小波变换图像噪声处理结果
运用小波变换对遥感图像噪声处理,用以上算法对研究区遥感图像进行消噪处理。按文中方法处理效果如下图3-17所示:
图3-22 研究区遥感地质解译略图
Q—第四系;P—二叠系;C1b—下石炭统包古图组;C1t—下石炭统太勒古拉组;C1x—下石炭统希贝库拉斯组
基于Canny算法的边缘检测技术,通过在中亚包古图地区的试验可知,对经过针对性预处理后的遥感影像进行该方法的线形体信息提取是成功的(见图3-20b);通过对线形体的统计特征分析即线形体等密度分析,可以识别出研究区内的一级断裂-达拉布特大断裂的大体位置及走向;对线形体的等密度图分析可知研究区内发育有较多环形构造,岩株发育显着;得出研究区内主要地层边界位置。最后结合已知地质资料,采用遥感岩性识别技术得出研究区内的遥感地质解译图,加深了我们对研究区地质情况的进一步认识,为下一步地质工作奠定了基础。
但无论哪一种边缘检测算法在解决一定问题的同时都存在不同类型的缺陷。边缘检测作为视觉的初级阶段通常被认为是一个非良态问题,很难从根本上解决。因而,寻求算法简单、能较好解决边缘检测精度与抗噪性能协调问题的边缘检测算法成为首选。本文所提出的方法也仅仅是在该领域进行一点探索性研究,还有许多不足之处。比如伪地质边界的剔除处理,带有很大的主观臆断。这些都需要今后对其进行进一步的完善。
3. 遥感图像增强的方法,详述一种算法
在进行遥感图像的增强处理前,应先经行预处理:几何校正和辐射校正(当然,如果你拿到的图像已被预处理过了,就没有必要了)
遥感图像的增强处理方法有光学增强处理和数字图像增强处理(就是大部分要和电脑打交道的),现在由于电脑的普及,多是用电脑处理数字图像。
数字图像的处理方法有很多种,这要取决于你的目的。
数字图像增强和变换:对比度增强(在erdas等数字图像处理软件中很容易就能实现的);图像波段间的比值(包含各波段间的加减运算,可以消除地形和大气的部分影响)及各种指标提取(比如NDVI等用于植被的计算);主成分分析(在原图像的基础上通过坐标空间的变换,消除冗余信息);缨帽变换(多用于农业上);
数字图像分类:监督分类;非监督分类;
http://wenku..com/view/bc726a6f58fafab069dc0268.html
4. 简述遥感数字影像增强处理的目的,例举一种增强处理
目的:突出遥感图像中的某些信息,消弱或除去某些不需要的信息,使图像更易判读。原理: 以频率域增强为例说明: 基本原理:图像中的灰度跳跃变化区,对应着频率域中的高频成分,灰度变化缓慢的区域对应着频率域中的低频成分。通过频域滤波处理,可保留低频或高频成分,达到图像平滑或锐化的目的。 DFT 频域滤波 空域图像 频域图像 频域处理图像
5. 遥感图像的灰度增强
遥感图像灰度增强是一种点处理方法,主要为突出象元之间的反差(或称对比度),所以也称“反差增强”、“反差扩展”或“灰度拉伸”等。
目前几乎所有遥感图像都没有充分利用遥感器的全部敏感范围,各种地物目标影像的灰度值往往局限在一个比较狭小的灰度范围内,使得图像看起来不鲜明清晰,许多地物目标和细节彼此相互遮掩,难于辨认。通过灰度拉伸处理,扩大图像灰度值动态变化范围,可加大图像象元之间的灰度对比度,因此有助于提高图像的可解译性。灰度拉伸方法有线性拉伸、分段线性拉伸及非线性拉伸(又称特殊拉伸)等。
1.线性拉伸
线性拉伸是最简单的一种拉伸算法。假设原图像的灰度值动态范围为[a1,a2]待扩展的灰度值动态范围为[b,b2],必有:b2>a2;b1<b2(参见图5-11)。
中亚地区高光谱遥感地物蚀变信息识别与提取
上式表明,直方图调整的关键是要得到变换函数T(rA)或T-1(rB)。但建立这样的函数很不容易。在实践中,常常采用一种近似而又简便的方法,即以均衡化直方图作为原直方图和指定直方图的过渡形式来协调两者的关系。由于直方图均衡化是一种规格化的形式,因此变量的映射容易实现。最后可根据映射结果来调整原直方图PA(rA),从而得到指定的新直方图PB(rB)。
6. 图像增强处理
近年来,数字图像处理发展迅速,各种增强的方法层出不穷。以下仅介绍对地质应用较为有效的几种方法,其他方法可参考已出版的遥感数字图像处理的着作[3,4]。
(一)反差增强
数字图像,从理论上讲,亮度取值范围可从0-255,但实际图像由于成像系统的特性、成像时的光照条件、以及像幅范围内地物间辐射差异的大小等各种原因,常常使大部分像元的亮度集中在比较窄的动态区间,致使图像的反差较小、色调单一(过“黑”或过“白”),难以从中区分出更多的地物信息,于是,改善和提高图像的对比度——反差增强,便成了数字图像增强首先遇到的一个问题。
反差增强也称反差扩展,或拉伸增强,是一种通过拉伸或扩展图像的亮度数据分布,使之占满整个动态范围(0—255),以达到扩大地物间亮度差异,分辨出尽可能多的亮度等级的一种处理技术。数字图像的亮度分布,一般可用一幅图像中不同灰级(亮度)像元所占的比例——直方图来表示(图版25)。图4-15显示了一块占有8个灰级(0—7)的4×4小图像的直方图生成过程。可以看出它实际上是一种亮度分布函数(曲线)。反差扩展归根到底就是通过改变这种分布曲线来达到增强的目的。
在反差扩展中,输出的像元值y,是输入的像元值(原图像)x的函数:
遥感地质学
按照函数关系的不同可有不同类型的扩展(见图4-16)。在处理方法上可以分为两类,一类是使用函数变换对每个像元点进行变换处理,常用于有确定拉伸对象(地物目标)的情况下;另一类是改变像元间的亮度结构关系,即通过直方图调整改变图像的亮度结构。下面简单介绍实际操作中常用的几种方法。
图4-15 直方图制作示意图
图4-16 几种反差扩展
1.线性扩展
将原图像中像元的亮度按线性关系扩大,亮度扩展的范围可任意给定,具体应用时可选择图4-16A中各种不同的形式。一般来说,对整幅图像作全面而均匀的拉伸,可用简单线性扩展(图版27);当需要对某一灰度范围进行增强,可采用分段扩展。按给定的分段界限的不同,可扩展直方图中的任何一部分,但这种方法往往会造成分段点两侧亮度陡变,若分段点选择不当,还会歪曲地物的波谱特征,故在实际工作中应慎用。
2.非线性扩展
对原图像亮度区间的各个部分按非线性关系作不均等扩展。通常是对亮区和暗区分别给以不同的扩展比例。例如,采用对数变换可使图像的暗区(如大片阴影、大面积植被覆盖)得到扩展,而亮区受到压抑;相反,若扩展亮区,则要采用指数变换。在干旱区,平原、盆地的亮度值普遍偏高,影像单调,经指数扩展,常可从中分出一些层次。此外,还可作正弦、正切等扩展(图4-16B)。
3.直方图调整
通过改善图像的总体亮度结构(直方图形态)来达到图像增强的目的。其原理是,以一变换函数S=T(r),作用在原图像的直方图Pr(r)上,使之变成具有某种特定亮度分布形态的直方图Ps(s)(图4-17),并根据Ps(s)变更原图像各像元的亮度值。一般来说,这种方法着重于扩展高频数亮度值之间的间隔,使直方图中部所包含的地物反差显着增强,而有利于地质体的区分。常用的直方图调整方法有直方图均衡化和直方图正态化等。图版28即为直方图均衡处理的结果。
反差扩展是针对单波段的一种图像增强处理,使用得当,可明显改善像质,提高图像的对比度(参见图版26和27、28)。在作彩色合成等多波段的增强处理时,一般都要先对各个波段的数据作适当的拉伸,以获得理想的彩色增强效果。因此,它也是其它增强处理的基础和先导。从这个意义上说,它还具有预处理的作用。
(二)彩色增强
数字图像的彩色增强处理也可以有单波段图像的伪彩色处理和多波段图像的彩色合成两个不同的途径:
1.单波段图像的伪彩色增强
对于单波段图像生成伪彩色最简单的方法是彩色密度分割,其原理与光学密度分割一致,但比光学密度分割灵活、方便,可分割的等级也更细,并且光谱意义也更明确。一个数字图像系统可以说是性能更优越的彩色等密度分割仪。与光学分割一样,它对于有着递变规律的地表景物的显示十分有效,有时也能显示出一些细节变化。但在数字数字图像处理中,它主要是用于检测单波段图像的亮度值变化趋势信息,为后续处理提供参考。
另一种单波段伪彩色处理方法是伪彩色合成。它是对单波段的CCT数据通过加色比例变换函数把黑白灰级变换为红、绿、蓝彩色级,然后再加色合成(图4-18),生成伪彩色图像。由于这种图像能把单波段上不易区分的细微灰度变化映射成不同的色彩,因此比彩色密度分割有更好的快速检测单波段图像灰度变化信息的效果。
图4-17 直方图调整图
图4-18 伪彩色合成示意图
2.多波段图像的彩色合成
与光学图像处理相仿,数字图像的单波段彩色增强照例不足以揭示多波段遥感中地物在不同波段上丰富的波谱特征信息。为了发掘多波段数字图像的信息优势,提高图像的解译判读效果,同样可采用彩色合成。其基本的方法原理与单波段伪彩色合成关同,只是红、绿、蓝变换不是对同一波段,而是分别对三个(或二个)波段实施,即由三个(或二个)波段的CCT数值根据设定的波段灰度与彩色之间的变换关系表,直接控制图像处理系统中彩色显示装置的红、绿、蓝三色枪的光强输出,加色合成显示在彩色屏幕上,形成彩色图像(图4-19);或者以三色依次扫描到彩色胶片上,再印放成彩色像片。目前这类处理不仅可在专用图像处理机上实现,而且已可在微机上借助图像处理板实现,甚至在TVGA图形卡的支持下通过彩色模拟程序在微机上完成。后者受TVGA卡只能显示256色的限制,色彩尚不尽丰富,但一般的合成显示是能胜任的。
与光学处理相比,数字图像的彩色合成不仅省却了制作单波段黑白胶片影像的过程,也避免了胶片拷制过程中的信息丢失,而且由于CCT的量化等级高达256级,远远高于黑白影像可分辨的灰度变化,因此其色彩层次往往比光学合成要丰富得多;同时,在计算机图像处理系统中,各个波段的数据可以十分方便地作各种拉伸变换(反差扩展),显示器上的跟踪球还可任意调节色彩变化,从而能快速获得不同增强效果的彩色图像,比起黑白胶片需要通过影像拷贝来改变影像密度要方便、灵活得多,显示出更大的优越性。
在数字图像处理中,彩色合成通常是最常用、最基本,往往也是最便捷有效的增强处理方法。其影像增强的效果与光学合成处理相类似,照例可分为真彩色、似(模拟)真彩色、假彩色等不同的种类;不同的波段一色通道(相当于滤光片)组合方案具不同的色彩及地物增强效果;充分利用地物波谱特征(曲线),选择合成方案同样是取得理想增强效果的关键。由于这些内容在光学彩色合成中已有较详论述,这里不再重复。
尚需指出的是,数字图像的彩色合成目前已不仅仅针对不同波段进行,而且还可以用不同的数字处理结果(如比值、KL变换的不同分量等)作输入图像,获得全新含义的合成图像(如比值合成图像);更进一步,已可以将非遥感的地质信息(如物、化探数据)通过彩色坐标变换(IHS变换)转换成R、G、B分量,作为输入图像,制成多元信息复合的彩色合成图像。因此如何选择波段或分量进行彩色合成是一个重要问题。目前常用OIF值作为衡量合成方案优劣的因子,它的基本原理是根据图像的统计特征来选定,就理论而言,OIF值越大,则合成方案越佳。
OIF可用下式计算:
图4-19 数字图像彩色合成示意图
遥感地质学
其中Ss为第i波段的亮度标准差,标准差越大,表明该图像包含信息量越大,rs为合成分量间的相关系数,相关系数越小,表明图像间的冗余度越小。
现以某地一个实例说明,先计算TM各波段(TM6波段除外)的标准差,分别为:17.02,10.29,14.04,15.95,31.38,19.36。6个波段间的相关系数如表4-2。
表4-2 TM图像各波段相关系数表
这样可以计算出不同合成方案的OIF值:
TM145:32.22;TM345:29.08;
TM457:28.96;TM147:26.97;
Tm245:26.78;TM157:25.42
在实际应用中,直接使用OIF因子,效果不一定理想,还应从应用目的出发,进行波段的选择。
(三)比值增强
比值增强是最为常用的一种运算增强方法。它是通过不同波段的同名像元亮度值之间的除法运算,生成新的比值图像来实现的。对于多波段数字图像,可以有多种不同的比值:
1.基本比值
纯以两个波段的数值相比,故也称简单比值。用gk(k=1,2,……N)代表一个多波段图像(N为波段数),任一比值图像可表示为:
遥感地质学
其中,a和b是调节参数。由N个波段可得出的比值数目为P=N(N-1),如TM图像,除TM6(热红外)之外,共可组成30种比值;
2.和差组合比值
由两个波段的和与差构成的比值,如:
遥感地质学
3.交叉组合比值
由3个或更多的波段构成的比值。其中分子和分母所包含的波段是不同的,如:
遥感地质学
4.标准化比值
由单个波段与所有波段之和构成的比值,即
遥感地质学
其中,i=1,2……N。如MSS图像,常使用4、5、7三个波段,则可构成:
遥感地质学
上述四种比值以基本比值和标准化比值更为常用。
比值处理简便易行,而且对地质信息尤为敏感,因而现今基本上已成为遥感地质研究中广为应用的例行处理方法之一。其基本功用在于:
(1)能扩大不同地物之间的微小亮度差异,有利于岩石、土壤等波谱差异不太明显的地物的区分,也可用于植被类型和分布的研究。例如,铁帽与植被在单波段上不易区分,而通过MSS5/4和MSS7/5二维比值分析,明显区分了出来(图4-20)。
(2)消除或减弱地形等环境因素的影响。例如,某地砂岩在阳坡和阴坡有不同的亮度,但在MSS4/5上,比值却非常接近(表4-3),因此消除了地形的影响(参见黑白图版29)。
(3)提取与找矿有关的专题信息。例如含羟基的粘土矿物在2.2μm附近存在有强吸收,故在TM7上为低亮度,而在TM5上它仍为高亮度,因此TM5/7常被用来提取与粘土化有关的矿化蚀变信息;再加0.48μm是铁离子电荷转移强烈吸收的位置,故用TM5/1利于提取与铁矿物有关的信息。
(4)比值合成增强岩性及蚀变岩信息。以若干个比值图像作为输入图像,进行假彩色合成,在输出的彩色合成图像上常能有效地增强岩石的波谱信息差异。例如,在我国铜陵地区采用TM4(R)、5/4(G)、5/2(B),4(R)、5/2(G)、4/3(B)等方案制作的比值合成图,有效地圈定出了志留系地层、岩体、大理岩化等岩性信息。在河北迁安地区利用MSS的标准化比值制作的合成图像上区分磁铁矿石及围岩也取得好效果。
比值增强生成比值图像后,原来的独立波谱意义就不存在了。由此也给它带来一个很大的缺陷,就是丢失了地物总的反射强度(反射率)信息。例如,暗色的岩石和浅色的岩石之明显差异也被损失;由于压抑了地形信息,其作为地质解译的一个重要标志也被损失。为了弥补此不足,通常采用一个波段的原图像与(两个)比值图像作彩色合成的办法;此外,比值有可能增加噪声,而大气散射也会给比值结果带来干扰,因此,处理前更要注意做消条带和大气校正。
表4-3 不同光照条件下砂岩反射比
(据F.F.Sabins,1977)
图4-20 比值分布示意图
(四)卷积增强
地物的边界及各种线性形迹,通常都表现有一定的空间分布频率,因此,可以通过空间域或频率域的滤波对它们进行增强。其中,卷积处理就是比较简便有效而最常使用的空间滤波方法之一。
与前述几种增强不同,卷积增强是一种邻域处理技术。它是通过一定尺寸的模板(矩阵)对原图像进行卷积运算来实现的。以3×3(像元)的模板为例,其处理过程如图4-21,
即相当于把模板逐次放在每一个像元上,计算模板元素和对应像元亮度值的乘积和,用数学式可表示为:
遥感地质学
图4-21 空间卷积
式中,m1为模板元素值,gs为相应图像中各像元的亮度值。f为卷积值,亦就是滤波后(模板)中心像元的输出值。
增强不同方向的边界(或线性体),则是按一定的排列方向来分配模板中各元素的权系数。例如图4-22(a)、(b)、(c)、(d)便是分别对水平(相当于遥感图像的扫描线方向)、45°、垂直、135°四个方向进行增强的一组3×3模板。改变模板尺寸(5×5、7×7……等等)和板内元的差值可产生不同的效果。一般,模板越大、差值越大,对低频的粗大构造形迹的增强越明显,而高频信息(小断层、节理裂隙等)增强的幅度越小。模板可设计成不同的增强方向,但模板元素的数目均应为奇数;一般最大为15×15,模板尺寸太大,则其计算量也大,而卷积效果也不一定好。
图4-22 方向模扳
卷积增强对于突出某一方向的地质体边界和线性断裂构造或形迹常具明显的效果(图版30),对一些环形构造或线迹也会起到增强的作用,因此在遥感地质研究中被广泛使用。
(五)K-L变换
K-L变换是多波段遥感图像变换增强的常用方法之一,通常也称主组分分析或主成分分析。在数学含义上,它是一种基于图像统计特征的多维正交线性变换。经这种变换后生成一组新的组分图像(数目等于或小于原波段数)是输入的若干原图像的线性组合即
遥感地质学
其中,X是原多波段图像的数据矩阵,矩阵元素为p个波段的像元值向量;Y是输出的主组分矩阵,即q个组分的像元值向量,一般q≤p;T为变换核矩,通常为由变换波段之间的协方差矩阵所产生的特征向量矩阵。在p=3,q=4的情况下
遥感地质学
y1、y2、ys按协方差矩阵的特征值大小依次排序。
从几何意义上讲,K-L变换相当于空间坐标的旋转。图4-23表示了一个二维空间坐标变换。图中X1、X2表示两个波段的像元值,黑点为相应的数据域。K-L变换相当于坐标轴旋转一个θ角,把数据域变换到Y1、Y2的新坐标系统上,即:
遥感地质学
图4-23表明,K-L变换后,第一主组分(Y1)取得最大的信息量(可达90%左右),其余依饮减小。一般情况下,一、二、三主组分基本上已集中了绝大部分的信息,后面组分包含的信息量往往已非常小。因此,K-L变换一个最基本的功能就是,可以在信息损失最小的前提下,减少变量数目、降低数据维数,起到数据压缩的作用。这对多波段遥感特别有意义,因为它们通常为多变量,数据量也很大(一个TM波段达42兆),随着波段数越来越多和地面分辨力越来越高,还将更大(所谓“海量数据”)。
一般认为,K-L第一主组分基本上反映了地物总的辐射差异,其它组分则能够揭示地物的某些波谱特征。由上图可以看出,各组分之间互相“垂直”,即不相关。这就使K-L变换还具有分离信息、减少相关、突出不同地物目标的作用。因而,在用K-L不同组分作假彩色合成时,往往可显着提高彩色增强效果,会有助于岩类的区分。但要注意的是,各组分的地质应用价值不能依它们的排序(即方差的大小)来确定。例如,MSS的K-L变换中,有时第四主组分反而比第三主组分区分岩性的作用更大。
在实际应用中,也常用比值或差值图像,以及与原图像合在一起作K-L变换。这对于提取某些专题信息会特别有用的。一个典型的例子是,TM5/7可提取与粘土化有关的矿化蚀变信息,但植被的TM5/7比值常常也很高,以致前者的信息往往被淹没在后者的“汪洋大海”之中,我国南方地区尤甚。然而,TM4/3恰主要只反映植被信息,因此,当用TM4/3、TM5/7作K-L变换,其第一主组分便集中了两个比值的基值——植被信息,而蚀变信息被分配到第二主组分中,这就把二者分离了开来,进一步在第二主组分中提取蚀变信息(图42-4),效果便显着提高。此法已在南方某银铅锌矿区取得了很好的效果。
图4-23 两个波段(或其他变量)情况下的主组分变换
图4-24 我国南方某地蚀变带信息提取的程序框图
与KL-变换相类似的另一种线性变换方法是近年来发展起来的K-T变换。缘于在MSS和TM数据空间中植被光谱随时间变化的轨迹构成一个“缨帽”的图形,故亦称“缨帽变换”。该变换有助于分离(提取)植被(绿度)和土壤(湿度)等信息,已引起人们的兴趣。有关这一变换的论述可参见文献[3]。
(六)IHS变换
在色度学中,存在有两种彩色坐标系统:一是由红(R)、绿(G)、蓝(B)三原色构成的彩色(RGB)空间;另一是由亮度(I)(或称明度、强度)、色调(H)、饱和度(S)构成的色度(IHS)空间(亦称孟塞尔坐标)。这两个系统的关系可用图4-25表示,此时,IHS的范围呈现为一圆锥体;在垂直于IHS圆锥轴的切面上,二者则呈现为图4-26所示的关系。该图中,I轴垂直于纸面(过S=0,白光点),沿I轴只有亮度明暗(白一黑)差异;圆周代表H的变化,并设定红色为H=0;半径方向代表饱和度,圆心处S=0,为白色(消色),圆周处S=1,彩色最纯。
很明显,这两个坐标系之间可以互相转换,这种转换即称为IHS变换,或彩色坐标变换(也称孟塞尔变换)。通常把RGB空间变换到IHS空间称之为正变换,反过来,由IHS变换到RGB称反变换。
当不直接采用三原色成分(R、G、B)的数量表示颜色,而是用三原色各自在R、G、B总量中的相对比例r、g、b来表示,即:
图4-25 强度、色频(彩)与饱和度(IHS)和红、绿、蓝(RGB)空间关系示意图
图4-26 通过垂直IHS圆锥切面表示IHS与RGB的关系
遥感地质学
此时如为红色白色则为 。两个坐标系之间的转换关系,可简化为:
遥感地质学
把R、G、B和I、H(0-3)、S(0-1)值扩展到0-255数据域,设计相应的程序,在数字图像系统上便能自如地实现相互间的转换和显示。
目前在遥感数字图像处理中,IHS变换多用于以下研究。
1.彩色合成图像的饱和度增强
当用以合成的三个原始图像相关性较大时,常规处理往往合成图像的饱和度会不足,色彩不鲜(纯),像质偏灰,且较模糊、细节难辨(彩版3-4)。通过IHS变换,在IHS空间中增强(拉伸)饱和度S,用反变换求R、G、B进行彩色显示(图4-27),则可显着改善图像的颜色质量和分辨能力(图版5,6)。
2.不同分辨率遥感图像的复合显示
直接把不同分辨率图像输入R、G、B通道作彩色合成复合显示,即使几何配精度很高,也难以获得清晰的图像(低分辨图像使像质模糊)。采取将最高分辨率图像置作“I”、次高置作“H”、低分辨者置作“S”,然后反变换,求出R、G、B作复合彩色显示,则基本可使合成图像保持有高分辨图像的清晰度。对TM(常取其中两个波段)和SPOT(常取全色波段)图像作此种复合,既可获得SPOT的高分辨率,又可充分利用TM丰富的波谱信息。
3.多源数据综合显示
采用常规方法对遥感图像与物化探等地学数据作综合处理,不但极不方便,充其量也只能把等值线叠合到遥感图像上。将物探(航磁、重力等)或化探(元素异常)信息数字化,分别置作“H”或“S”,以遥感图像(取一个波段)为“I”,作IHS的正反变换(图42-8)便可获得色彩分明的遥感与物化探信息复合的彩色图像。这类图像通常既具遥感图像清晰的地貌、地质背景,又能将物化探信息准确地反映在这一背景上,十分有利于它们相互关系的综合分析和解译(图版20)。
图4-27 饱和度增强处理流程图
图4-28 多源数据综合显示框图
7. 遥感图像的彩色增强
地面站经系统处理得出的原始图像产品都是反映灰度差异的黑白图像。众所周知,人眼识别和区分灰度差异的能力是很有限的,一般只能区分二三十级,而识别和区分色彩的能力却大得多,可达数百种甚至上千种,两者相差甚远。显然,如把黑白图像的灰度差异转变为色彩差异,就可大大提高遥感图像的目视分析解译性能,所以彩色增强成为遥感图像应用处理的又一关键技术,应用十分广泛。
1.密度分割和彩色编码
实施遥感图像彩色增强的途径不少,其中最简单的就是假彩色密度分层,或称假彩色密度分割、彩色编码。此法原理与技术都很简单,就是将一幅灰度范围为0到L的黑白图像f(x,y)的灰度按等间隔或不等间隔分割成是层(参见图5-18),得到k-1个密度分割层面,其密度值为L;<i=1,2,3,…,k),用Ci(i=1,2,3,…,k)表示赋予每一层的颜色,则
图5-24 色度坐标系IHS变换示意图
表5-1 IHS变换公式
在RGB空间中,I,H和S三个参数的定义不同,可以获得不同的IHS变换模型。较简单常用的变换模型是色度坐标系模型(参见图5-24)。根据这个模型可以推导出在不同条件下IHS正反变换的计算公式。表5-1列出了这些公式,供读者查阅。