㈠ 三相降压启动有多少种方法
常用的降压起动方法有以下几种:
(1)星 三角降压起动:起动时将定子三相绕组作星形连接,以限制起动电流,待转速接近额定转速时再换接成三角形,使电动机全压运行。采用这种起动方法,起动电流较小,起动转矩也较小,所以一般适用于正常运行为三角形接法的、容量较小的电动机作空载或轻载起动。也可频繁起动。启动电流为角接时的三分之一。
(2)自耦变压器降压起动:将自耦变压器高压侧接电网,低压侧接电动机。起动时,利用自耦变压器分接头来降低电动机的电压,待转速升到一定值时,自耦变压器自动切除,电动机与电源相接,在全压下正常运行。这种起动方法,可选择自耦变压器的分接头位置来调节电动机的端电压,而起动转矩比星 三角降压起动大。但自耦变压器投资大,且不允许频繁起动。它仅适用于星形或三角形连接的、容量较大的电动机。
(3)延边三角形降压起动:起动时,定子绕组接成延边三角形,以减小起动电流,待电动机起动后,再换接成三角形,使电动机在全压下运行。这种起动方法,可通过调节定子绕组的抽头比,来取得不同数值的起动转矩,从而克服了星 三角降压起动电压偏低、起动转矩较小的缺点。它适用于定子绕组有中间抽头的电动机,也可作频繁起动。转子回路串入电阻起动 起动时,在转子回路中串入电阻作星形连接,以减小起动电流、增大起动转矩,使电动机获得较好的起动性能。这种起动方法,只适用于线绕式异步电动机。
㈡ 电动机降压启动的方法有哪些及各降压的原理
降压启动的方法有:
1。电阻降压或电抗降压启动。在定子电路串接电阻或电抗,起动电流在电阻或电抗上将产生压降,降低了电动机的定子绕组上的电压,起动电流也从而得到减小。
2。自耦补偿起动。利用自耦变压器降低加到电动机定子绕组的电压,以减小起动电流。
3。星--三角起动。起动时用星形连接,这样,起动时接成星形的定子绕组电压和电流都只有三角形连接的1/1.732,而线路电流只有接成三角形直接起动时线路电流的1/3。
4。延边三角形起动。这时定子绕组的相电压有所降低,起动电流也随之下降。
㈢ 三相异步电动机降压启动的方法有哪四种
三相异步电动机常用的降压起动方法有:定子串电阻(或电抗器)降压起动、星-三角(Y一△)降压起动、自耦变压器降压起动及延边三角形降压起动。
三相异步电动机定子绕阻串接起动电阻时,由于起动电阻的分压,使定子绕组起动电压降低,起动结束后再将电阻短接,使电动机在额定电压下正常运行,可以减小起动电流。
这种起动方式不受电动机接线形式的限制,设备简单、经济,在中小型生产机械中应用较广。
正常运行时定子绕组接成三角形运转的三相异步电动机,可采用星三角降压起动方式。起动时,每相绕组的电压下降到正常工作电压,起动电流下降,电动机起动旋转,当转速接近额定转速时,将电动机定子绕组改接成三角形,电动机进入正常运行状态。
(3)电动机降压启动常用的几种方法扩展阅读
当向三相定子绕组中通入对称的三相交流电时,就产生了一个以同步转速n1沿定子和转子内圆空间作顺时针方向旋转的旋转磁场。
由于旋转磁场以n1转速旋转,转子导体开始时是静止的,故转子导体将切割定子旋转磁场而产生感应电动势(感应电动势的方向用右手定则判定)。
由于转子导体两端被短路环短接,在感应电动势的作用下,转子导体中将产生与感应电动势方向基本一致的感生电流。
转子的载流导体在定子磁场中受到电磁力的作用(力的方向用左手定则判定)。电磁力对转子轴产生电磁转矩,驱动转子沿着旋转磁场方向旋转。
通过上述分析可以总结出电动机工作原理为:当电动机的三相定子绕组(各相差120度电角度),通入三相对称交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组。
从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。
㈣ 三相交流异步电动机常用的降压启动方法有哪些
三相交流异步电动机常用的降压启动方法有:Y-Δ降压起动;自耦变压器降压启动;三相电阻降压启动;软启动器降压启动。
Y-Δ降压起动,适用与定子绕组为△连接的电动机,采用这种方式启动时,可使每相定子绕组降低到电源电压的58%,启动电流为直接启动时的33%,启动转矩为直接启动时的33%。启动电流小,启动转矩小。
自耦变压器降压启动,通常用于要求启动转矩较大而启动电流较小的场合,采用自耦变压器降压启动,电动机的启动电流及启动转矩与其端电压的平方成比例降低,相同的启动电流的情况下能获得较大的启动转矩。如启动电压降至额定电压的65%,其启动电流为全压启动电流的42%,而启动转矩仅为全压启动转矩的42%。
三相电阻降压启动,一般用于轻载启动的笼型电动机,且由于其缺点明显而很少采用。定子回路接入对称电阻,这种启动方式的启动电流较大而启动转矩较小。如启动电压降至额定电压的65%,其启动电流为全压启动电流的65%,而启动转矩仅为全压启动转矩的42%,且启动过程中消耗的电能较大。
软启动器降压启动,启动平稳,对电网冲击少;不必考虑对被启动电动机的加强设计;启动装置功率适度,一般只为被启动电动机功率的5~25%;允许启动的次数较高;但目前设备造价昂贵;主要用于大型机组及重要场所。