导航:首页 > 使用方法 > 应用题解题常用方法

应用题解题常用方法

发布时间:2022-02-07 21:35:14

‘壹’ 应用题的解答方法

问题呢?

‘贰’ 小学一年级应用题解答方法和讲解方法

一、多看即多观察。
“解答应用题有助于学生理解四则运算的意义和应用”,“还可以发展学生的思维,培养学生分析问题和解决问题的能力。并使学生受到思想品德教育。”但教材在编排应用题时不急于求成,而是由易到难,循序渐进。最开始出现的是用图画表示的应用题。这时候,教师要引导学生仔细观察应用题(图画),运用数数等已有知识直接获取一些表层信息。如教学时,可向学生提问:图上画了什么?苹果分为几堆?左边和右边各有几个?此外图上还画了什么?数错,不看问题是一年级学生解应用题中常犯的毛病。如果重视学生的观察训练,效果会好得多。这样可让学生初步感知应用题由三个部分组成,为后面的学习打下伏笔。
二、多读
多读即反复读题,审题前必先通读题中文字,理解在图画应用题中主要是通过观察获得表层信息,而对于图文表格应用题及文字应用题则看不出所以然,特别是一年级学生识字不多,即使都认识,一年级孩子自制能力较差,注意力极容易无意识地分散,让学生看获取信息效果远不如读(文字)。对于理解这两类应用题,多读既可集中学生注意力,又可加深学生对结构的印象和题意的理解。
三、多说
教师应设计一些学生感兴趣的问题激活学生的思维,并且要鼓励学生多说,即使错了也不要批评学生。其实,数学就是找规律、找关系、形成表达式,这整个过程充满着探索与创造,我们应让学生大胆地去说,去猜测,去尝试。我们要想方设法让学生从不同的角度,用不同的语言去表达、理解同一道题的意思,不要担心什么无意识的思维浪费时间,往往这种思维能产生“全新”的思想。再教学应用题时,主要是让学生多说条件和问题,多让学生创造性的“重复”某一题意,如仅“去掉”的意思,学生可以有“送去”、“拿掉”、“奖给”
、“吃掉”
、“藏起来”
、“遮住”
、“坏了”、“削好”等二十余个表达词语。此时,你一定会感觉到你的思维太呆板,太受拘束,太不具创造性。“三个臭皮匠”能“抵”几个“诸葛亮”呀!自己“创造”出来的东西是印象最深刻的,用学生自己的思维去理解题意定会事半功倍。

‘叁’ 数学的应用题有几种方法

分析法:分析法是从题中所求问题出发,逐步找出要解决的问题所必须的已知条件的思考方法。

02、 综合法:综合法就是从题目中已知条件出发,逐步推算出要解决的问题的思考方法。

03、 分析、综合法:一方面要认真考虑已知条件,另一方面还要注意题目中要解决的问题是什么,这样思维才有明确的方向性和目的性。

04、 分解法:把一道复杂的应用题拆成几道基本的应用题,从中找到解题的线索。

05、 图解法:图解法是用画图或线段把题目听条件和问题明确地表示出来,然后“按图索骥”寻找解答应用题的方法。

06、 假设法:假设法就是解题时,对题目中的某些现象或关系做出适当的假设,然后,用事实与假设之间的矛盾中找到正确的解题方法。

例:冰箱厂生产一批冰箱,原计划每天生产800台,而实际每天比计划多生产了120台,结果比原计划提前3天完成了任务。实际用了多少天?解法一:(800+120)×3÷120—3=20(天)(这是一种常规的解法);解法二:假设原计划少生产3天,则共少生产了800×3=2400台冰箱。这时计划生产的天数就等于实际生产的天数,造成少生产2400台的原因是每天计划比实际少生产120台,所以实际生产天数为:2400÷120=20(天)即列式为:800×3÷120=20(天)。

07、 转化法:转化方法就是把某一个数学问题,通过数学变换,转化成另一个数学问题来处理,然后把它解答出来的方法。

例:一辆货车从甲城开往乙城需10小时,一辆客车从乙城开往甲城需6小时,两车同时出发,相向而行,已知甲、乙两城相距600千米,几小时后两车相遇?解法一:600÷(600÷10+600÷6)解法二:把两地路程看作单位“1”,货车的时速是1/10,客车的时速是1/6,依然是用路程除以速度和,得到相遇时间:1÷(1/10+1/6)

08、 倒推法(还原法):从条件的终结状态出发,运用加与减、乘与除之间的互逆关系,从后向前一步一步地推算,从而解决问题的方法,称为倒推法或还原法。

例:某仓库货物若干袋,第一次运出了1/3少4袋,第二次运出余下的一半少2袋,库中还剩106袋,仓库原有货物多少袋?【(106—2)×2—4】÷(1—1/3)=306(袋)

09、 找对应关系的方法:在某些数学题中,存在着一些相关的对应量,通过分析条件之间的某些数量的对应关系,实现未知向已知的转化,这种思考方法,可称为“对应法”。

例:一本书,第一天读了32页,第二天读了40页,剩下的页数占全书页数的1/4。这本书还剩下多少页没有读?(找出各相关对应量)

10、 替换法:“替换”就是等量代换。用一种量(或一种量的一部分)来代替和它相等的另一种量(或另一种量的一部分),从而减少问题中的数量个数,降低解题的难度,然后设法将这个被代换的量求出。

例:食堂三天用完一桶油,第一天用了6千克,第二天用了余下的3/7,第三天用的恰好是这桶油的一半。第二天和第三天共用油多少千克?(分析:6千克对应余下1/7即1-3/7-3/7,找到这个对应关系,余下的量正好是题目所求的第二天和第三天共用的油量:6÷(1—3/7-3/7)=42(千克)

11、 从变量中找不变量的解题方法:

(1) 变中有不变——和不变:例:甲、乙两个施工队共180人,从甲队抽出自己人数的2/11调到乙队后,两队人数则相等,求两队原来各有多少人?甲队:180÷2÷(1—2/11)=110(人)

(2) 变中有不变——差不变:例:甲储蓄2000元,乙储蓄400元。如果从现在开始,每人每月各存200元,几个月后甲储蓄的钱数是乙储蓄的钱数的3倍?(分析:甲比乙多储蓄1600元,而这1600则刚好是乙几个月后钱数的2倍,则列式为:【(2000—400)÷(3—1)—400】÷200=2(个))

(3) 变中有不变——某一部分量不变:例:要从含盐16%的盐水25千克中蒸发去一部分水,得到含盐40%的盐水,应当蒸发去多少千克水?(析:这道题的总量是盐水的重量,它是由盐和水两个部分量组成。盐水蒸发后,水的重量减少了,盐水的总重量也随它减少,浓度也随着发生了变化。但要看到变中有不变,盐的重量始终没变,抓住盐这个不变量入手分析,便可得出答案:25—25×16%÷40%=15(千克))

(4) 变中有不变——形变体不变:例:把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长5厘米的正方体铁块,熔铸成一个圆柱体,这个圆柱体底面直径为20厘米,高是多少厘米?(分析:形态虽然发生了变化,但是总体积却没有变化:(9×7×3+5×5×5)÷【3.14×(10×10)】=1厘米)五年级上册的组合图形也可以用这种方法来分析。

12、 构造法:在计算某些图形题时,把原来不易处理的,不规则的图形,通过平移、旋转、翻折后,重新构造成一个新的更便天处理的图形为解决问题,这个思考方法,称为构造法。

13、 列举法:数量关系比较复杂,很难列出算式或方程求解。我们就要根据题目的要求,把可能的答案一一列举出来,再进一步根据题目中的条件逐步排除非解或缩小范围,进行筛选出题目的答案。

例:有一个伍分币,4个个贰分币,8个壹分币,要拿8分钱,有几种拿法?

14、 消去法:在一道数学题中,含有两个未知数,在解题时,通过简单的运算,先消去一个未知数,再求另一个未知数。这种解题的思考方法称为消去法。

例:百货商店里,2支圆珠笔和3支钢笔共值6元6角,3支圆珠笔和3支钢笔共值7元2角。一支圆珠笔多少钱?

15、 设数法:有的题目含有某个不定的量,按照一般的解题思路,不易找出解题方法,如果我们把题目中某个不定量设定为具体的数,就可以使原题化抽象为具体,使难题变容易,这种解题的思考方法称为设数法。

例:小华参加爬山活动,从山脚爬到山顶后,按原路下山,上山时每分钟走20米,下山时每分钟走30米,求小华上、下山的平均速度。(分析:根据“总路程÷时间=平均速度”题中没有给出路程,可以设为600米。则列式为:600×2÷(600÷20+600÷30)=24(米/分)

‘肆’ 如何提高小学应用题解题方法与技巧

(1)学会认真阅读应用题,理解题意,分清条件和问题;(2)学会运用动作、图解、画图等方法表示应用题的条件和问题;(3)学会运用综合法或分析法分析应用题。通过解析的实践找出题中的数量关系,从而进行判断、推理、选择算法。 学生不能正确地理解题意,不会逻辑地进行分析、推理,从而判断运算法则,在列式计算时就会发生种种错误。即使凭着个别词句的暗示碰对了,也是偶然的。因此学生会正确地分析应用题,能开列条件和问题,找出表明数量关系的词语,并由此而进行判断推理是列式计算的基础。分析应用题不仅有助于列式计算的理解,而且能够发展学生的逻辑思维,培养学生的唯物辩证观点。应用题来自实际生活,在数学实践中虽然仅仅是从数量关系方面来培养,实际上是在培养学生分析实际生活问题的能力。按辩证法即:具体地分析问题,具体地解决问题。教师培养学生学会分析,实际是培养学生分析问题产生的条件与解决问题的条件,学生越是善于具体地分析问题和解决问题,就越能增长辩证思维的能力。我们知道,任何一问题产生的条件与解决问题的条件都可有多有少,实际上就在分析一系列的矛盾。

‘伍’ 小学应用题解题方法

步行速度只有骑车速度的1/3,则步行所用时间是骑车所用时间的3倍,也就是说步行所用时间比骑车所用时间多2倍。现知道步行用时为(36-20)=16分钟,则骑车所用时间为16/2=8分钟,设骑车速度为 V m/分钟,则8* V =2000
V=250 m/分钟。从张阿姨家到学校有250*20=5000m。

‘陆’ 数学用三种方法解答应用题

法一:
5+3=8
运来大米:96*5/8=60
运来面粉:96*3/8=36
法二:
设大米有X袋,那么面粉就有(96-X)袋
X:(96-X)=5:3
X=60
面粉:96-60=36
法三:
96/(5+3)=12
大米:12*5=60
面粉:12*3=36

阅读全文

与应用题解题常用方法相关的资料

热点内容
田地的种植方法视频 浏览:863
酒的计算方法 浏览:34
不粘锅使用方法 浏览:61
快速绑鸡蛋板方法 浏览:586
手机套什么方法清洗 浏览:899
与相生关系有关的治疗方法 浏览:358
保护手机壳方法 浏览:302
科鲁兹车开门异响解决方法 浏览:821
如何把建模方法融入教学 浏览:530
纸尿片什么方法好用 浏览:155
常用的阻抗训练的方法 浏览:101
酸醋洗衣服的方法如何 浏览:152
增强肺气嗓子快速通气的方法 浏览:894
丁香茶好坏的鉴别方法 浏览:600
中介卖房的技巧和方法毗邻 浏览:859
断开连接制作方法 浏览:867
生理期红枣食用方法 浏览:667
快速治疗失眠的好方法 浏览:245
闭谷正确方法 浏览:590
篮球比赛研究方法 浏览:444