导航:首页 > 使用方法 > 常用测井方法

常用测井方法

发布时间:2022-02-07 14:13:50

Ⅰ 电法测井

电法测井是指以研究岩石及其裂隙流体的导电性、电化学性质及介电性为基础的一类测井方法,包括以测量岩层电化学特性、导电特性和介电特性为基础的测井方法。常用的有自然电位测井、视电阻率测井、侧向测井、微电极系及激发极化测井。

7.3.1.1 自然电位测井

自然电位测井是以岩石的电化学活动性质为基础的测井方法。

(1)井中自然电场的产生

井中自然电场的产生主要取决于岩石的岩性、地下水与泥浆的矿化度和含盐成分。在测井中,钻井剖面以砂、泥岩为主,所观测到的自然电位主要是由扩散作用、扩散—吸附作用和过滤作用所产生的。

扩散电位:不同浓度的两种溶液之间可形成电位差,这一电位差所产生的电场反过来又会减慢原来运动较快的离子,而加速原来运动较慢的离子。当这一电位差达到某一数值而使正、负离子的实际迁移速度达到相同时,在两种溶液中的正、负离子就不再富集。这时扩散达到动态平衡状态,两种溶液之间便建立起一个稳定的电位差。这种由离子扩散作用所产生的电动势称为扩散电动势。

扩散—吸附电位:对于含泥质的岩层(如粘土、泥岩、亚砂土及亚粘土等),由于泥质颗粒具有选择性吸附负离子的特性,从而使迁移率较快的负离子(如Cl离子)的实际运动速度大大降低,而原来迁移较慢的正离子(如Na+离子)的实际运动速度相对加快,其结果使得在低浓度的溶液中富集了正离子,而在高浓度的溶液中则富集了负离子,从而产生了与纯扩散作用相反的电场。这种在离子扩散过程中又伴随着吸附现象而产生的电动势称为扩散—吸附电动势。

过滤电位:过滤电位是因地层水与泥浆柱之间存在着压力差而产生的。地下水溶液在压力差的作用下通过岩石孔隙时,因构成孔隙壁的岩石颗粒具有选择性吸附负离子的作用,故在孔隙壁形成固定的负离子层,而孔隙内溶液中相对过剩的正离子便同溶液一起向压力低的孔隙一端移动。这样就在孔隙两端富集了不同符号的离子,从而形成了电位差,称为过滤电动势。

实测得的自然电位是由扩散电动势、扩散—吸附电动势和过滤电动势所共同产生的电位差。一般情况下,考虑到泥浆柱与地层水之间的压力差比较小,而且在井壁上有泥饼的存在,过滤电位实际上很小,故其对实测自然电位的影响常忽略不计。

(2)自然电位测井的装置形式

自然电位测井的测量装置如图7.5所示,它只需—测量回路而不需供电装置,通常将测量电极置于井内作为移动电极,另一测量电极布置在地面上。自然电位测井是测量沿井轴移动的自然电位差,自然电位测井与地面自然电位法类似,它是通过测量钻井剖面的自然电场变化,来判断地下目标层的位置、特性以及解决其他相关的地质问题。

(3)自然电位测井曲线

在水文测井中,用自然电位测井曲线可以划分渗透性地层以及确定咸、淡水分界面等。图7.6为河北某地利用自然电位测井曲线确定咸、淡水分界面的实例。由于在62m以上的浅层砂层中的地层水矿化度高于泥浆的矿化度,故其自然电位测井曲线呈现负异常。在62m以下的深层砂层所含地层水的矿化度低于泥浆的矿化度,其自然电位测井曲线呈现正异常。一般确定咸、淡水分界面位置的方法是:若淡水层位于咸水层下部,则将咸、淡水层之间的隔水层底界面定为咸、淡水分界面;若淡水层位于咸水层上部,则将二者之间的隔水层顶界面定为咸、淡水分界面。

图7.5自然电位测井装置示意图

图7.6利用自然电位测井曲线划分咸、淡水分界面

7.3.1.2 视电阻率测井

(1)视电阻率测井的方法原理

视电阻率测井是以岩、矿石电阻率差异为物理依据,通过测量人工直流电场沿钻孔剖面的变化,来研究钻孔地质剖面的一种主要电测井方法。视电阻率测井原理如图7.7所示,其中供电电路由电源E、电流表mA、可变电阻R及供电电极A,B构成,测量电路由地面测量仪器G和测量电极M,N构成。

图7.7视电阻率测井原理示意图

供电电极A通过大地与供电电极B形成的稳定电流场,其电流线的分布受到供电测量电极周围岩石导电性差异的影响,而造成M与N之间的电位差ΔUMN的变化。通过地面测位差测量仪器观测的ΔUMN,便可以了解视电阻率随固定电极排列沿井筒移动的变化曲线。

(2)常规视电阻率测井电极系

在常规测井中,通常井内只有三个电极时构成三电位电极系。三电位电极系有梯度电极系和电位电极系。

根据成对电极的测量位置不同,将成对电极位于上部的称为顶部梯度电极系;将成对电极位于下部的称为底部梯度电极系。

电位电极系就是在三电极系中供电电极与测量电极之间的距离远小于测量电极的间距。

(3)理论视电阻率测井曲线

电位电极系视电阻率ρs测井曲线,如图7.8(a)所示,为高阻厚层(无钻孔影响,采用理想电位电极系AM)理论视电阻率测井曲线和实测视电阻率曲线。

图7.8(b)为高阻厚层上的实测ρs曲线,与理论曲线相比可以看出,二者的形状基本相似,只是实测曲线因受钻孔井径和泥浆等因素的影响,使ρs曲线的极大值变小,平直段消失,曲线变圆滑。这时高阻岩层分界面的位置可以用分离点a'b'来确定。

图7.8高阻厚层上的电位电极系视电阻率测井曲线

(4)视电阻率测井曲线的应用

图7.9为山西临汾YDWQ地热井的一段视电阻率实测曲线(细线为自然电位)。它是采用模拟组合测井仪的探管电极系和数字测井记录仪测量层位的。该段孔径为191mm,地层为奥陶系中统。从图可以看出,泥质灰岩的视电阻率值很低,有上、中、下三层;底部的纯石灰岩视电阻率很高,界面也很陡直;上部的石灰岩因岩溶裂隙发育,视电阻率值相对较低,变化较大,个别地方接近泥质灰岩。解释时结合自然γ与γ-γ曲线区别是因岩溶还是泥质引起的低视电阻率值异常。

图7.9视电阻率测井曲线实例

Ⅱ 主要测井方法

近几十年来,人们为了通过测井使裂缝更容易被探测与评价,已做出了很大努力。然而,人们也发现裂缝的定性和定量评价比原来预计的情况复杂得多。各种方法都基于这一事实,即在井眼尺寸不变的均质地层中,裂缝带将在探测的正常响应上产生异常。如果裂缝是张开的,则这种异常相当大;如果是闭合的,这种异常则微不足道。裂缝的分布极为复杂,裂缝性储集层产量变化大而递减快,高产井、低产井、干井交替出现,开发这类储层需付出很高的代价。随着测井技术的进步,对裂缝性储层的描述与开发已形成了一定的技术系列。以声波及放射性为主的裂缝测井系列与地震资料结合,进行横向预测,可以划分裂缝发育带及其分布,对裂缝发育带应用微电极扫描和井下声波电视测井,可以直观地把裂缝形态、宽度、长度、走向,以及它们的含油产状展示在人们面前。虽然有了这些技术上的进步,但由于地震资料受到地质因素的影响,在一个新区判断裂缝发育带仍然有很大的多解性。这些技术只能提高我们的成功率而不能在任何条件下得出单一而又肯定的解释。由于裂缝发育的随机性,以及层理、岩性等因素的影响,导致了测井响应的多解性,在一定程度上影响了用测井资料探测裂缝的成功率。探测裂缝及其分布规律的主要依据是裂缝与基质岩块具有不同的地质、地球物理特征,故在多数测井曲线上都有相应的显示。用测井来探测裂缝只能限于那些张开或部分充填的裂缝,很难把天然裂缝从人工诱导缝中区分开来。

1.电测井方法

①双侧向测井。这种仪器强烈地受到裂缝的影响,因为裂缝网络构成低电阻率通道,这种通道具有分流电流的作用。在与钻井轴成亚平行的裂缝情况中,如果钻井液比存在于裂缝中的导电流体导电性更强,则浅侧向电阻率RLLS比深侧向电阻率RLLD低,曲线呈现双轨;而在致密带内,孔隙少,无裂缝,RLLS与RLLD读出的电阻率值相近,两条曲线基本重合。②微侧向测井。与双侧向相同,应用电阻率的异常来确定裂缝带,微侧向测井受垂向电阻率变化的影响,由于它们具有极板,因此面向极板的裂缝才能观测到。但是,一般说来,由于钻孔在裂缝附近易破碎,井眼成椭圆形,而极板有沿着长轴定向的趋势。微侧向测井仪器探测的深度很浅,裂缝系统的存在将大大影响这些仪器的响应。③感应测井。在假设裂缝产生电阻率异常的前提下,感应测井可用于确定裂缝的存在,由于其感应电流的分布是呈环状的,所以感应测井受水平电阻率变化的影响,微侧向测井与感应测井之间的振幅差异可用于显示垂直与水平裂缝的存在。④电磁波传播测井。千兆级高频电磁波探测很浅的地层,具特高垂向分辨率,使传播时间和衰减曲线反映很薄的岩性变化。对水平和低角度裂缝有不同的反映特征,水平缝以两条曲线的尖锐高尖出现,泥页岩的衰减更剧烈。如果极板遇上高角度缝,则出现较长井段的相应异常。

2.核测井方法

①补偿密度测井。当井身结构较好时,补偿密度曲线能较好地反映地层岩性和进行裂缝识别。②岩性密度测井。当采用重晶石钻井液钻井时,由于重晶石的光电吸收截面指数Pe值很大,Pe曲线在裂缝段将急剧增高。如果裂缝段井壁上形成重晶石泥饼,则裂缝段不仅有高的Pe值,而且还会有负的补偿密度曲线值。③自然伽马能谱测井。由于裂缝是流体循环的好场所,所以在漫长的地质年代里,如果有铀或其他放射性元素存在,NGS就能探测到裂缝。

3.声波测井方法

①声幅测井。这种方法可能比其他方法更多地用于探测裂缝。据Marris(1964)和其他学者的研究,纵波遇到垂直或高角度裂缝时减弱,而横波遇到水平或低角度裂缝时更敏感。当纵波遇到充满流体的裂缝时,由于接触面上的反射,它的振幅降低。当横波遇到充满流体的裂缝时,它的振幅基本消失(Aquilera&Vanpoollen,1977)。另外,Welex把相长和相消干涉描述为平行井身但并不横切井身的裂缝标志。然而,经验表明,由于岩性变化及仪器居中状况会使幅度产生像裂缝引起那样大的变化。实际上,由于裂缝中固体颗粒的连接会使声特性的不连续消失。因此,很难普遍使用这种方法。②变密度测井。变密度测井记录的是在一个声波传送脉冲后,深度和振幅与时间的变化关系,大部分声波波列被记录下来并以近似地震道的形式显示在测井记录上。测井记录上的阴影变化表明了振幅变化。暗色阴影表明最大的正振幅,淡色阴影表明最大的负振幅。根据Aguilera和Vanpoollen(1977)的工作,这种方法就是通过在测井记录上寻找两个独特平行波组之间的跳跃或杂乱带来表现裂缝。一些学者不是依靠跳跃带而是寻找特殊的W形图案来发现裂缝。然而,无论哪种情况,如果分析者未能很好地了解地层剖面,那么,可能把岩性变化误认为裂缝带。由于岩性与孔隙度的变化在图上可能产生类似于裂缝产生的突变,因此,解释这种测井图必须特别小心。③环形声波测井。记录沿井壁呈水平环形传播的声波,以声波幅度的衰减来探测垂直高角度裂缝。实践表明,这种方法是一种很有潜力的高倾角裂缝探测系统。④阵列声波测井。通过时间窗口控制,可获得纵波、横波、斯通利波的能量曲线。利用斯通利波的衰减来探测裂缝,是一种探测裂缝的新途径。斯通利波是一种频率为2~5Hz的波,它对裂缝有很强的响应。斯通利波在裂缝面产生的机理是由于入射波在裂缝面的压缩作用产生的流体脉冲进入井筒,使井壁产生压缩及膨胀。因为流体由裂缝压入井眼和流体进入裂缝,使转换的斯通利能量消耗,因此能量衰减与裂缝发育有密切的关系。

4.成像测井方法

利用电流束和声波波束对井轴进行扫描,从而得到有关井壁的“图像”的一类测井方法。它是近20年发展起来的,并在继续发展和完善中。通过成像测井可得到有关地层产状、溶孔、溶洞等其他测井方法无法获得的重要信息。这对地层、构造、岩性和裂缝性储层的研究等方面意义都很大。包括:①井下电视。显示井眼表面声波响应的连续图像。这种仪器能给出一张井壁声波影像。它是通过记录一部分声波能量获得的,由声源发出并由井壁折回,反射到本身发射极,因此它起着接收器的作用。当岩石致密而光滑时地层的反射能量更高。如果岩石表面粗糙,有裂缝或者孔洞,那就会存在能量失散,而这些不规则出现在胶片上更阴暗。这种仪器不仅能够探测裂缝而且能够确定裂缝的产状,能很好地显示岩石表面的形状。它只能发现宽的、开启的破裂面。当时间和振幅测井双重显示时,可发现充填物与基质具有声波差异的裂缝。由于这是一种新的定向方法,因而也能确定裂缝的方向(Wily,1980;Aillet,1981)。这种方法在裂缝定量方面具有较好的应用前景。但是为了避免能量失散和有花斑的图像的出现,不仅要求在钻井液中没有呈现悬浮状态的组分,而且没有厚的泥饼,还要求井眼不是椭圆形井眼,钻井液中不含天然气。②微电阻率扫描测井(FMS)。井壁附近的电阻率是重要的岩石物理性质之一,可用来描述地层的细微结构。微电阻率测井沿井壁测量,探测浅而垂向分辨率高,因而对井壁地层的电性不均匀极为敏感。微电阻率测井无法确定裂缝的产状,无法区分裂缝、小溶洞、溶孔,这些问题可以通过微电阻率扫描来解决。当致密层中存在裂缝时,钻开后高电导率的钻井液或滤液就回流或渗入地层中。FMS仪器扫描到此处时,就记录下裂缝的高电导信息。在相应的FMS图像上显示为深灰或黑色,而没有裂缝的地方,岩石为高电阻率,对应的FMS图像上为浅灰或白色。FMS记录的信息的清晰程度取决于以下几个因素:ⓐ裂缝的张开度,如果裂缝的张开度大,钻井液进入得就多而深,裂缝处的FMS图像颜色就深,否则就浅;如果裂缝是闭合的,FMS就扫描不出来。ⓑ钻井液性质,钻井液电导率越大,对应裂缝处的FMS图像就越暗。ⓒ钻井液侵入程度,钻井液取代地层中的烃越多,对应的FMS图像就越暗。利用FMS图像研究裂缝是一种新的测井手段,它能给出其他识别裂缝的测井方法不能给出的裂缝视产状,能把裂缝和溶孔两种不同的储集层区分开,能估计裂缝视宽度而不受其他参数控制。这种方法是测井识别裂缝的补充和发展,它以直观、简单两大特点使解释人员易懂易用。③全井眼地层微扫描测井(FMI):20世纪80年代中期,斯伦贝谢公司推出了第一支电法成像仪———地层扫描仪。这种仪器与倾角仪相似,但较之倾角仪,它安装了大量的附加电极“电扣”去采样电流,获得的数据经处理后产生一幅对应于井壁的高清晰度图像。1991年推出的FMI具有更大的井眼覆盖率和更高的分辨率。FMI极板安装在8in井眼中应有80%的覆盖率、0.2in的垂向分辨率。FMI极板有192个电扣,能测定92条微电阻率曲线,能对井内每一条微电阻率曲线精确定位。现在已能用诸如FRACVIEW程序来分析井眼图像电导率所反映的裂缝密度、张开度和孔隙度。张开度是根据裂缝加在电图像背景上的电导率计算的;计算裂缝密度时计入井眼偏移并作为“校正密度”供井间对比使用;孔隙度用每一条裂缝的平均开度计算。

5.地层倾角测井方法

①双井径曲线。在很好地掌握了地层剖面后,井径测井是发现井中裂缝带的有效方法。简言之,若井眼钻遇高密度裂缝带,则井径扩大。特别是钻遇高角度裂缝时,往往在与形成区域性裂缝的最小应力方向相平行的方向上产生井眼定向扩径。②电导率异常检测。该方法是排除地层层理引起的电导率异常,突出与裂缝有关的电导率异常。求出各极板与相邻两个极板的电导率读数之间的最小电导率正差异,把这个最小正差异叠加在该极板的方位曲线上,作为识别裂缝的标志。③地层倾角矢量图。在地层倾角测井矢量图中,裂缝或者表现为层段之间无法进行对比,或者表现为倾角看起来很杂乱。也可根据孤立的高倾角显示识别裂缝的存在。

6.其他测井方法

①温度测井。钻井液中的温度梯度受开启裂缝带存在的影响,由于裂缝网隅被钻井液侵入,使地层变冷,从而使温度降低。②磁粉测井。可探测流体能与井眼流体交换的任何裂缝以及它们的方位和范围。③重复式地层测试器(RFT)。系统测取地层压力和钻井液柱压力,能分析压力系统、寻找新裂缝系统。能直观地认识地层渗透性,计算渗透率,评价生产能力。从仪器推靠和封闭成败及预测压力恢复情况,分析地层是干层、较小裂缝或孔隙、纵向连通很好的大裂缝,还是分散孤立的高角度裂缝,这也有助于研究高角度裂缝。

从以上的分析可以看出,在过去40年中,裂缝的探测与分析对电缆服务来说一直是个持续的挑战。井下声波电视测井(Taylor,1983)是一种成功的方法,然而却难以区分开启与闭合裂缝;环形声波测井(Guy,1987)可用于探测垂直的或近于垂直的裂缝。斯通利波的能量衰减能显示开启裂缝的特征(Brie,1988),尤其是用阵列声波仪器规一化的差值能量。然而垂向平均间隔仍很大。除声波方法外,在水基钻井液中应用微电场获得了成功。很久以来在裂缝性储集层中一直使用倾角测井和SHDT(Lehne,1988),但仍然存在井眼粗糙度的影响问题。已经证明地层微扫描仪(Ekstrom等,1986)是富有成效的,但受粗糙度的影响,并且有时开启与闭合裂缝的存在而使问题更加繁琐。因此,对测井来说可靠的裂缝分析方法仍然是一种挑战。

Ⅲ 测井技术

(1)泥页岩气储层的常规测井曲线响应

由于页岩气与常规气一样,是不导电介质,具有密度小、含氢指数低、传播速度慢等物理特性。因此,含气页岩的测井响应应该不同于非含气页岩,利用页岩气储层在常规测井曲线上的响应特征,通过测井解释资料,不仅可以识别储层,还能够进行地层评价。识别页岩气储层所需要的常规测井方法主要有:自然伽马、井径、中子、密度、声波时差和电阻率测井。以下依次对页岩气储层在常规测井曲线上的响应特征进行分析:

① 自然伽马测井:泥页岩气储层的自然伽马值显示高值,这是由于:①泥页岩中泥质含量较高,泥质含量越高放射性就越强;②含气页岩中有机质含量丰富,通常情况下干酪根形成于一个使铀沉淀的还原环境,从而具有较强的放射性,导致自然伽马值升高。

② 井径测井:页岩一般表现为扩径,而且有机质含量越高,扩径越明显。

③ 声波时差测井:页岩气储层的声波时差值显示为高值,并伴有周波跳跃现象,这是由于:A页岩气的存在使得声波速度降低,声波时差增大;B.声波在有机质中传播的速度较低,含气页岩中含有大量有机质,导致声波时差增大。如果声波时差值偏小,则说明页岩地层中有机质丰度低,经济开采价值不大;C.含气页岩内部发育裂缝,遇到裂缝气层会发生周波跳跃现象,或者曲线突然拔高。

④ 中子测井:页岩气储层中子测井显示为高值。中子测井反映的是地层中的含氢量也就是地层孔隙度。中子测井值升高的原因为:①在页岩气储层中,含气会导致中子密度值减小,但是束缚水会使中子密度值增大,由于页岩中束缚水饱和度要大于含气饱和度,因此,两者综合的效果还是会使页岩气的中子密度值升高;②页岩气储层中有机质的氢含量使得中子密度值升高。

⑤ 地层密度测井:地层密度显示为低值。地层密度值实际上测量的是地层的电子密度,而电子密度相当于地层体积密度。页岩密度为低值,比砂岩和碳酸盐岩的地层密度值低,但是比煤层和硬石膏的地层密度值高出很多。对于含气页岩储层来讲,随着有机质和烃类气体含量增加,将会使地层密度值变得更低,如果页岩气储层中发育裂缝,也会使地层密度测井值降低。

⑥ 岩性密度测井:岩性密度表现为低值。岩性密度测井的Pe值可以用来指示岩性,用于识别页岩中的黏土矿物类型。页岩矿物组分的变化,将导致单位体积页岩岩性密度测井值发生变化。

⑦ 电阻率测井:泥页岩的深浅电阻率总体低值,局部负值。泥页岩气的电阻率受到很多因素的影响,主要有:①页岩泥质含量高,束缚水饱和度高,而这两者的电阻率都很低;②页岩气储层低孔低渗,使得泥浆滤液侵入范围很小,侵入带影响很小,深浅曲线值非常相近,这反映了页岩气储集层的渗透率值低;③有机质电阻率高,干酪根的电阻率为无限大,含气页岩中有机质丰度高,会进一步导致电阻率测井值升高。

在表10.1中对泥页岩气储层的常规测井响应特征进行了总结,图10.1展示了实际测量的页岩气储层的常规测井曲线,与普通页岩相比,含气页岩具有自然伽马强度高、电阻率大、地层密度低和光电效应低的典型特征。

表10.4 利用测井曲线计算TOC的方法

(修改于Sondergeld等,2010)

Ⅳ 自然电位测井

自然电位测井是沿井身测量岩层或矿体在天然条件下产生的电场电位变化的一种测井方法。自然电位测井诞生于1931年,是世界上最早使用的测井方法之一,测量简便且实用意义很大,所以至今依然广泛应用。

在生产实践中人们发现,将一个测量电极放入裸眼井中并在井内移动,在没有人工供电的情况下,仍能测量到电场电位变化。这个电位是自然产生的,所以称为自然电位。

1.1.1 井中自然电位的产生

研究表明,井中自然电位包括扩散电位、扩散吸附电位、过滤电位和氧化还原电位等几种。钻井泥浆滤液和地层水的矿化度(或浓度)一般是不相同的,两种不同矿化度的溶液在井壁附近接触产生电化学过程,结果产生扩散电位和扩散吸附电位;当泥浆柱与地层之间存在压力差时,地层孔隙中产生过滤作用,从而产生过滤电位;金属矿含量高的地层具有氧化还原电位。

在石油井中,自然电位主要由扩散电位和扩散吸附电位组成。

1.1.1.1 扩散电位

首先做一个电化学实验,实验装置如图1.1.1所示。用一个渗透性隔膜将一个玻璃缸分隔成左右两部分,分别往玻璃缸两边注入浓度不同的NaCl溶液(浓度分别为Cw和Cm,且Cw>Cm),然后在两种溶液中各插入一个电极,用导线将这两个电极和一个电压表串联起来,我们可以观察到电压表指针发生偏转。

玻璃缸左右两边溶液的浓度不同,那么高浓度溶液中的离子受渗透压的作用要穿过渗透性隔膜迁移到低浓度溶液中去,这种现象称为扩散现象。对于NaCl溶液来说,由于Cl的迁移率大于Na+的迁移率,因此低浓度溶液中的Cl相对增多,形成负电荷的富集,高浓度溶液中的Na+相对增多,形成正电荷的富集。于是,在两种不同浓度的溶液间能够测量到电位差。虽然离子继续扩散,但是Cl受到高浓度溶液中的正电荷吸引和低浓度溶液中的负电荷排斥作用,其迁移率减慢;Na+则迁移率加快,因而使两侧的电荷富集速度减慢。当正、负离子的迁移率相同时,电动势不再增加,但离子的扩散作用还在进行,这种状态称为动态平衡。此时接触面处的电动势称为扩散电动势或扩散电位。

图1.1.1 扩散电位产生示意图

在砂泥岩剖面井中,纯砂岩井段泥浆滤液和地层水在井壁附近相接触,如果二者的浓度不同,就会产生离子扩散作用。假设泥浆滤液和地层水只含NaCl,应用电化学知识,可由Nernst方程求出井壁上产生的扩散电位:

地球物理测井教程

式中:Ed为扩散电位,mV;l+、l分别为正、负离子迁移率,S/(m·N);R为摩尔气体常数,等于8.313J/(mol·K);T为热力学温度,K;F为法拉第常数,等于96500C/mol;Cw、Cmf分别为地层水和泥浆滤液的NaCl质量浓度,g/L。

在溶液浓度比较低的情况下,溶液的电阻率与其浓度成反比,因此,式(1.1.1)可改写为:

地球物理测井教程

式中:Rw、Rmf分别为地层水和泥浆滤液的电阻率,Ω·m。令:

地球物理测井教程

称Kd为扩散电位系数,mV。则式(1.1.2)可简写为:

地球物理测井教程

利用式(1.1.3)可以计算溶液的Kd值。当温度为18℃时,NaCl溶液的Kd值为-11.6mV。

通常情况下,地层水的含盐浓度大于泥浆滤液的含盐浓度,即Cw>Cmf,因此扩散结果是地层水中富集正电荷,泥浆中富集负电荷。

1.1.1.2 扩散吸附电位

如果用泥岩隔膜替换上述实验中的渗透性隔膜,而不改变其他条件,重新进行实验,会出现什么现象呢?通过观察,发现电压表指针朝相反方向偏转,表明浓度大的一侧富集了负电荷,而浓度小的一侧富集了正电荷(图1.1.2)。

图1.1.2 扩散吸附电位产生示意图

用泥岩隔膜将两种不同浓度的NaCl溶液分开,两种溶液在此接触面处产生离子扩散,扩散总是从浓度大的一方向浓度小的一方进行。由于黏土矿物表面具有选择吸附负离子的能力,因此当浓度不同的NaCl溶液扩散时,黏土矿物颗粒表面吸附Cl,使其扩散受到牵制,只有Na+可以在地层水中自由移动,从而导致电位差的产生。这样就在泥岩隔膜处形成了扩散吸附电位。

在砂泥岩剖面井中,泥岩井段泥浆滤液和地层水在井壁附近相接触,产生的扩散吸附电位可以表示为:

地球物理测井教程

式中:称Kda为扩散吸附电位系数,它与岩层的泥质阳离子交换能力Qv有关。在Qv接近极限值的情况下,岩石孔隙中只有正离子参加扩散,可看作Cl的迁移率为零,因此由式(1.1.3)得到Kda:

地球物理测井教程

在溶液浓度比较低的情况下,式(1.1.5)可改写为:

地球物理测井教程

1.1.1.3 过滤电位

溶液通过毛细管时,毛细管壁吸附负离子,使溶液中正离子相对增多。正离子在压力差的作用下,随同溶液向压力低的一端移动,因此在毛细管两端富集不同符号的离子,压力低的一方带正电、压力高的一方带负电,于是产生电位差,如图1.1.3所示。

图1.1.3 过滤电位形成示意图

岩石颗粒与颗粒之间有很多孔隙,它们彼此连通,形成很细的孔道,相当于上述的毛细管。在钻井过程中,为了防止井喷,通常使泥浆柱压力略大于地层压力。在压力差的作用下,泥浆滤液向地层中渗入。由于岩石颗粒的选择吸附性,孔道壁上吸附泥浆滤液中的负离子,仅正离子随着泥浆滤液向地层中移动,这样在井壁附近聚集大量负离子,在地层内部富集大量正离子,从而产生电位差,这就是过滤电位。根据Helmholz理论,可以得出估算过滤电位的表达式:

地球物理测井教程

式中:Rmf为泥浆滤液电阻率,Ω·m;μ为泥浆滤液的黏度,10-3Pa·s;Δp为泥浆柱与地层之间的压力差,101325Pa;Aφ为过滤电位系数,mV。Aφ与溶液的成分、浓度有关。

一般认为,在泥饼形成之前,当泥浆柱与地层之间压力差很大时,才能产生较大的过滤电位。由于油井泥浆柱与地层之间压力差不是很大,而且在测井时已形成泥饼,泥饼几乎是不渗透的,上述压力差降落在泥饼上,因此Eφ常忽略不计。

1.1.1.4 氧化还原电位

由于岩体的不均匀性,当它与泥浆接触而发生化学反应时,某一部分会因失去电子而呈正极性,另一部分则会因得到电子而显负极性,因此,二者之间便产生电位差,称为氧化还原电位。氧化还原电位仅产生于电子导电的固相矿体中,例如煤层和金属矿。沉积岩中基本没有氧化还原电位。

1.1.2 自然电位测井原理与曲线特征

1.1.2.1 自然电位测井原理

自然电位测井使用一对测量电极,用M、N表示,见图1.1.4。测井时,将测量电极N放在地面,电极M用电缆送至井下,沿井轴提升电极M测量自然电位随井深的变化,所记录的自然电位随井深的变化曲线叫自然电位测井曲线,通常用SP表示。

自然电位测井极少单独进行,而是与其他测井方法同时测量。例如,自然电位测井可以和电阻率测井同时测量。

1.1.2.2 井中自然电场分布与自然电位幅度的计算

以砂泥岩剖面井为例来说明井中自然电场分布特征。通常情况下,钻井过程中采用淡水泥浆钻进,泥浆滤液的浓度往往低于地层水的浓度。此时,在砂岩层段井内富集有负电荷,而在泥岩层段井内富集正电荷。由扩散电位和扩散吸附电位形成的自然电场分布如图1.1.5所示。

图1.1.4 自然电位测井原理图

图1.1.5 井中自然电场分布示意图

在砂岩和泥岩接触面附近,自然电位与Ed和Eda都有关系,其幅度可由图1.1.6(a)所示的等效电路求得。在此等效电路中,Ed和Eda是相互叠加的,这就是在相当厚的砂岩和泥岩接触面处的自然电位幅度基本上是产生自然电场的总电位E的原因,其值为:

地球物理测井教程

式中:K为自然电位系数,mV。通常把E称为静自然电位(SSP),运算时写为USSP。此时Ed的幅度称为砂岩线,Eda的幅度称为泥岩线。

为了使用方便,实际自然电位测井曲线不设绝对零线,而是以大段泥岩对应的自然电位曲线作为其相对基线(即零线)。这样,巨厚的纯砂岩部分的自然电位幅度就是静自然电位值USSP。而实际上,在井中所寻找的砂岩储集层大部分是夹在泥岩层中的有限厚的砂岩,如图1.1.6(b)所示。此时,砂岩层处的自然电位异常幅度不等于SSP,用ΔUSP表示。假设自然电流I所流经的泥浆、砂岩、泥岩各段等效电阻分别是rm、rsd、rsh,由Kirchhoff定律得:

地球物理测井教程

所以,自然电流为:

地球物理测井教程

对于厚度有限的砂岩井段,其自然电位幅度ΔUSP定义为自然电流I在流经泥浆等效

图1.1.6 计算USSP、ΔUSP值的等效电路图

电阻rm上的电位降,即ΔUSP=Irm,从而得到:

地球物理测井教程

整理得:

地球物理测井教程

对于巨厚层,砂岩和泥岩层的截面积比井的截面积大得多,所以rmrsd,rmrsh,因此ΔUSP≈USSP。而对于一般有限厚地层则ΔUSP<USSP

1.1.2.3 自然电位测井曲线特征

针对目的层为纯砂岩、上下围岩为泥岩的地层模型,计算得到一组自然电位理论曲线,如图1.1.7所示,它是一组曲线号码为 (地层厚度/井径)的ΔUSP/USSP随深度变化的关系曲线。

理论曲线具有以下特点:曲线相对于地层中点对称;厚地层(h>4d,d为井径)的自然电位曲线幅度值近似等于静自然电位,且曲线的半幅点深度正对着地层界面深度,参见曲线号码 的曲线,与横坐标ΔUSP/|USSP|=0.5的直线相交的两点(即半幅点)正好和对应地层的界面深度一致;随着地层厚度的变薄,对应界面的自然电位幅度值离开半幅点向曲线的峰值移动;地层中点取得曲线幅度的最大值,随着地层变薄极大值随之减小(ΔUSP/|USSP|值接近零),且曲线变得平缓。

实测曲线与理论曲线的特点基本相同,但由于测井时受井内环境及多方面因素的影响,实测曲线不如理论曲线规则。在早期的测井曲线图上,自然电位测井曲线没有绝对零点,而是以大段泥岩处的自然电位测井曲线作基线;曲线上方标有带极性符号(+,-)的横向比例尺,它与曲线的相对位置不影响自然电位幅度ΔUSP的读数。自然电位幅度ΔUSP的读数是基线到曲线异常极大值之间的宽度用横向比例尺换算出的毫伏数。现在采用计算机绘制测井曲线图,与其他常规测井曲线一样,自然电位测井曲线也具有左右刻度值,见图1.1.8。

图1.1.7 自然电位测井理论曲线

图1.1.8 自然电位测井曲线实例

在砂泥岩剖面井中,钻井一般用淡水泥浆(Cw>Cmf),在砂岩渗透层井段自然电位测井曲线出现明显的负异常;在盐水泥浆井中(Cw<Cmf),渗透层井段则会出现正异常。因此,自然电位测井曲线是识别渗透层的重要测井资料之一。

1.1.3 影响自然电位的因素

在砂泥岩剖面井中,自然电位曲线的幅度及特点主要决定于造成自然电场的总自然电位和自然电流的分布。总自然电位的大小取决于岩性、地层温度、地层水和泥浆中所含离子成分和泥浆滤液电阻率与地层水电阻率之比。自然电流的分布则决定于流经路径中介质的电阻率及地层的厚度和井径的大小。这些因素对自然电位幅度及曲线形状均有影响。

1.1.3.1地层水和泥浆滤液中含盐浓度比值的影响

地层水和泥浆滤液中含盐量的差异是造成自然电场中扩散电位Ed和扩散吸附电位Eda的基本原因。Ed和Eda的大小决定于地层水和泥浆滤液中含盐浓度比值 。以泥岩作基线,当Cw>Cmf时,砂岩层段则出现自然电位负异常;当Cw<Cmf时,则砂岩层段出现自然电位的正异常;当Cw=Cmf时,没有自然电位异常出现。Cw与Cmf的差别愈大,曲线异常愈大。

1.1.3.2岩性的影响

在砂泥岩剖面井中,以大段泥岩处的自然电位测井曲线作基线,在自然电位曲线上出现异常变化的多为砂质岩层。当目的层为较厚的纯砂岩时,它与围岩之间的总自然电位达到最大值,即静自然电位,此时在自然电位曲线上出现最大的负异常幅度。当目的层含有泥质(其他条件不变)时,总自然电位降低,因而曲线异常的幅度也随之减小。此外,部分泥岩的阳离子交换能力减弱时,会产生基线偏移,渗透层的自然电位异常幅度也会相对降低。

1.1.3.3温度的影响

同样岩性的岩层,由于埋藏深度不同,其温度是不同的,而Kd、Kda都与热力学温度成正比例,这就导致埋藏深度不同的同样岩性岩层的自然电位测井曲线上异常幅度有差异。为了研究温度对自然电位的影响程度,需计算出地层温度为t(℃)时的Kd或Kda值。为计算方便,先计算出18℃时的Kda值,然后用下式可计算出任何地层温度t(℃)时的Kda值:

地球物理测井教程

式中:Kda|t=18为18℃时的扩散吸附电动势系数,mV;t为地层温度,℃。Kd的温度换算公式与Kda的形式完全相同。

1.1.3.4 地层水和泥浆滤液中所含盐的性质的影响

泥浆滤液和地层水中所含盐类不同,则溶液中所含离子不同,不同离子的离子价和迁移率均有差异,直接影响Kd或Kda值。

在纯砂岩井段中,地层水中所含盐类改变时,Kd也随之改变,见表1.1.1。因此,不同溶质的溶液,即使在其他条件都相同的情况下,所产生的Ed值也有差异。

表1.1.1 18℃时几种盐溶液的Kd

1.1.3.5 地层电阻率的影响

当地层较厚并且各部分介质的电阻率相差不大时,式(1.1.12)中的rsd、rsh与rm相比小得多,此时对于纯砂岩来说ΔUSP≈USSP。当地层电阻率增高时,rsd、rsh与rm比较,则不能忽略,因此ΔUSP<USSP。地层电阻率越高,ΔUSP越低。根据这个特点可以定性分辨油、水层。

1.1.3.6 地层厚度的影响

从图1.1.7所示的自然电位理论曲线上可以看出,自然电位幅度ΔUSP随地层厚度的变薄而降低,而且曲线变得平缓。由于地层厚度变薄后,自然电流经过地层的截面变小,式(1.1.12)中的rsd增加,使得ΔUSP与SSP差别加大。

1.1.3.7井径扩大和泥浆侵入的影响

井径扩大使井的截面加大,式(1.1.12)中rm相应减小,因此ΔUSP降低。

在有泥浆侵入的渗透层井段所测的自然电位幅度ΔUSP比同样的渗透层没有泥浆侵入时所测得的ΔUSP要低。这是由于泥浆侵入使地层水和泥浆滤液的接触面向地层内部推移的缘故,相当于产生自然电场的场源与测量电极M之间的距离加大,而测量的自然电位下降。侵入越深,测得的ΔUSP越低。

1.1.4 自然电位测井的应用

自然电位测井是一种最常用的测井方法,有着广泛的用途。

1.1.4.1 划分渗透性岩层

一般将大段泥岩层的自然电位测井曲线作为泥岩基线,偏离泥岩基线的井段都可以认为是渗透性岩层。渗透性很差的地层,常称为致密层,其自然电位测井曲线接近泥岩基线或者曲线的幅度异常很小。

识别出渗透层后,可用自然电位测井曲线的半幅点来确定渗透层界面,进而计算出渗透层厚度。半幅点是指泥岩基线算起1/2幅度所在位置。对于岩性均匀、界面清楚、厚度满足 的渗透层,利用半幅点划分岩层界面是可信的。如果储集层厚度较小,自然电位测井曲线异常较小,利用半幅点求出的厚度将大于实际厚度,一般要与其他纵向分辨率较高的测井曲线一起来划分地层。

1.1.4.2 地层对比和研究沉积相

自然电位测井曲线常常作为单层划相、井间对比、绘制沉积体等值图的手段之一,这是因为它具有以下特点,见图1.1.9。

1)单层曲线形态能反映粒度分布和沉积能量变化的速率。如柱形表示粒度稳定,砂岩与泥岩突变接触;钟形表示粒度由粗到细,是水进的结果,顶部渐变接触,底部突变接触,漏斗形表示粒度由细到粗,是水退的结果,底部渐变接触,顶部突变接触;曲线光滑或齿化程度是沉积能量稳定或变化频繁程度的表示。这些都同一定沉积环境形成的沉积物相联系,可作为单层划相的标志之一。

2)多层曲线形态反映一个沉积单位的纵向沉积序列,可作为划分沉积亚相的标志之一。

3)自然电位测井曲线形态较简单,又很有地质特征,因而便于井间对比,研究砂体空间形态,后者是研究沉积相的重要依据之一。

4)自然电位测井曲线分层简单,便于计算砂泥岩厚度、一个沉积体的总厚度、沉积体内砂岩总厚度、沉积体的砂泥比等参数,按一个沉积体绘出等值图,也是研究沉积环境和沉积相的重要资料。如沉积体最厚的地方指出盆地中心,泥岩最厚的地方指出沉积中心,砂岩最厚和砂泥比最高的地方指出物源方向,沉积体的平面分布则指出沉积环境。

图1.1.9 自然电位测井曲线形态特征

1.1.4.3 确定地层水电阻率

在评价油气储集层时,需要用到地层电阻率资料。利用自然电位测井曲线确定地层水电阻率是常用的方法之一。

选择厚度较大的饱含水的纯砂岩层,读出自然电位幅度ΔUSP,校正成静自然电位USSP,并根据泥浆资料确定泥浆滤液电阻率Rmf。对于低浓度的地层水和泥浆滤液来说,利用式(1.1.8)可以求出地层水电阻率Rw。在浓度较高的情况下,溶液的浓度与电阻率不是简单的线性反比例关系,此时可以引入“等效电阻率”的概念,即不论溶液浓度如何变化,溶液的等效电阻率与浓度之间保持线性反比例关系。式(1.1.8)可以改写为:

地球物理测井教程

式中:Rmfe为泥浆滤液等效电阻率,Ω·m;Rwe为地层水等效电阻率,Ω·m。

利用上式可以求出地层水等效电阻率,再根据溶液电阻率与等效电阻率的关系图版可以求出地层水电阻率。

1.1.4.4 估算泥质含量

自然电位测井曲线常被用来估算砂泥岩地层中的泥质含量,估算方法有以下几种。

方法一。利用经验公式估算,当砂泥岩地层中所含泥质呈层状分布形成砂泥质交互层,且泥质层与砂质层的电阻率相等或差别不大时,地层的泥质含量可用下式求得:

地球物理测井教程

式中:UPSP为含泥质砂岩的自然电位测井曲线幅度,mV。

方法二。利用岩心分析资料和数理统计方法,找出自然电位与泥质含量之间的关系,建立泥质含量计算模型,然后利用这种模型来求取泥质含量。该方法适合于具有较多岩心分析资料的地区。

1.1.4.5 判断水淹层

在油田开发过程中,常采用注水的方法来提高油气采收率。如果一口井的某个油层见到了注入水,则该层就叫水淹层。油层水淹后,自然电位测井曲线往往发生基线偏移,出现台阶,见图1.1.10。因此,常常根据基线偏移来判断水淹层,并根据偏移量的大小来估算水淹程度。

图1.1.10 水淹层自然电位测井曲线示意图

Ⅳ 电测井常用方法

(一)视电阻率测井

视电阻率测井是基于不同岩层间的电阻率差异,测量被钻井穿过的岩层的电阻率,并根据视电阻率沿井轴的变化规律来划分钻井地质剖面、确定含水层位置、厚度的一种电测井方法。在实际工作中,电极系有梯度电极系和电位电极系。由梯度电极系测得的曲线叫梯度曲线,由电位电极系测得的曲线叫电位曲线。

通常情况下,含淡水的砂层相对于邻近的黏土层或泥岩层为高电阻率地质体,ρS曲线呈高阻反映,见图5-5-1。

图5-5-1 河南睢县某钻孔视电阻率测井曲线

反之,砂岩中若含咸水,则ρS曲线呈低阻反映。对含水的灰岩裂隙或溶洞,ρS曲线也呈低阻反映。通过确定高阻层和低阻层的顶底界面位置,则可划分含水层。

图5-5-1是河南睢县某钻孔的一段视电阻率测井曲线,地下水的总溶解性固体为1.28g/L。由图可看出,梯度曲线对于含水层的反映比电位曲线明显的多,在265m处,梯度曲线上有明显的极大值,从而确定了含水层的下界面。若将梯度电极倒置,即电极系为N0.5-M2.0-A时,则在251m处,梯度曲线上同样有一明显的极大值来确定含水层的上界面。

(二)自然电位测井

自然电位曲线具有形态简单,与岩性关系密切以及观测方法简便等特点。在测井中它是用来划分含水层的重要手段。

图5-5-2 第四系含水层上的自然电位曲线

通常,第四系孔隙含水层、基岩裂隙(孔隙、溶隙)含水层中的水与钻井的井液之间存在着明显的矿化程度差异,在含水层上会产生电动势,出现正或负的自然电位异常。利用含水层上出现的正或负的自然电位异常,并结合视电阻率测井结果,则可较好地判别和划分含水层。

图5-5-2是在第四系砂卵石和黏土层上测量的结果。由图可知,黏土层呈现低阻特征,其上部没有自然电位异常反映,含淡水的砂卵石层上,ρS曲线呈高阻异常特征,自然电位异常达-60mV;含淡水的泥质砂层上,ρS曲线呈中阻异常特征,自然电位异常值较低,仅-20mV。根据负自然电位异常和高、中阻ρS异常可判别含水层所含的水为淡水;利用自然电位异常半幅值点可划分含水层的上、下界面。

三、电测井应用实例

以绥中沿海地带施工的X6号孔电测井曲线、井旁测深资料及钻孔地质资料对比为例叙述电测井应用实例。

图5-5-3为地质柱状图、测井、测深综合成果图,电测井曲线整理划分出7小层。根据地层和曲线特征又将其综合成三大层。即1~4小层为第一大层,ρm为150Ω·m,反映为含淡水的砂砾卵石层,矿化度0.92g/L,层低埋深36.5m;第5~6小层综合为第二大层,ρm为25Ω·m,反映为含咸水的砂砾石层和混合花岗岩风化层,矿化度3.39g/L,层低埋深50m;第7小层为第三大层,ρm为800Ω·m,反映为不含水的坚硬混合花岗岩。

孔旁测深曲线为KQH型,第一、二电性层(曲线首支和K点)电阻率2900Ω·m,反映为透水不含水的干砾卵石层,因电测井未能测到该层,故不做电性上的对比分析。在测井曲线相应深度上,电测深曲线的第三电性层Q点相当于电测井曲线的第一大层的淡水层。第四电性H点相当于测井曲线的第二大层咸水层;第五电性层曲线尾支上升段,反映为不含水的混合花岗岩。该孔地层电阻率与矿化度关系见表5-5-1。

图5-5-3 地质柱状图、测井、测深综合成果图

表5-5-1 X6号孔地层电阻率与矿化度关系表

由其应用实例可知电测井不但能确定含水层的位置及厚度、划分咸淡水分界面,而且能为电测深推断解释提供物性依据资料。

Ⅵ 地球物理测井包括哪些方法

油气田的地球物理法包括地球物理勘探和地球物理测井。地球物理勘探已在前一节中做了介绍,本节将介绍地球物理测井方法,简称测井。

地球物理测井已广泛应用于石油地质勘探和油气田开发过程中。应用测井方法可以划分井筒地层剖面、确定岩层厚度和埋藏深度、进行区域地层对比,还可以探测和研究地层的主要矿物成分、裂缝、孔隙度、渗透率、油气饱和度、倾向、倾角、断层、构造特征、沉积环境与砂岩体的分布等参数,对于评价地层的储集能力、检测油气藏的开采情况、精细分析和研究油气层等具有重要的意义。

目前,常用的测井方法主要有电法测井、声波测井和放射性测井等。

一、电法测井不同岩石的导电性不同,岩石孔隙中所含各种流体的导电性也不同。利用该特点认识岩石性质的测井方法称为电法测井。电法测井包括自然电位测井、电阻率测井和感应测井等。

1.自然电位测井1)基本原理自然电位测井是根据油井中存在着扩散吸附电位进行的。在打井钻穿岩层时,地层岩石孔隙中含有地层水。地层水中所含的一定浓度的盐类要向井筒内含盐量很低的钻井液中扩散。地层水所含的盐分以氯化钠为主,钠离子带正电,氯离子带负电。由于氯离子移动得快,大量进入井筒内钻井液中。致使井内正对着渗透层的那段钻井液带负电位,形成扩散电位。而这种电位差的大小与岩层的渗透性密切相关。地层渗透性好,进入钻井液里的氯离子就多,形成的负电位就高;地层渗透性差,氯离子进入钻井液里就少,形成的负电位就低。因此,含油渗透层在自然电位曲线上表现为负值,而不渗透的泥岩层等则显正值(图3-2)。

图3-8判断油气水层的测井资料综合解释

另一方面要对测井以外的资料(如该井的钻井、地质和工程资料等)进行综合分析和解释,搞清楚油层、气层和水层的岩性、储油物性(孔隙度和渗透率)、含油性(含油饱和度、含气饱和度或含水饱和度)等。

思考题

1. 什么叫油气田?什么叫含油气盆地?

2. 区域勘探和工业勘探分别可划分为哪两个阶段?

3. 地球物理勘探法主要包括哪些方法?简述各种方法的基本原理。

4. 地球化学勘探法的主要原理是什么?具体包括哪些方法?

5. 地质录井包括哪些方法?

6. 地球物理测井主要包括哪些方法?分别主要有哪些用途?

7. 简述声波测井的基本原理。

Ⅶ 测井解释基本理论和方法

8. 1. 1 测井解释的基本理论

测井资料处理解释就是根据所要解决的问题应用适当的数学物理方法,建立相应的测井解释模型,推导出测井响应值与地质参数之间的数学关系; 然后对测井资料加工处理和分析解释,把测井信息转变为尽可能反映地质原貌特征的地质信息,供地质勘探开发使用。

目前,在测井数据处理中采用的解释模型有许多种,可按不同角度对它们大致分类。按岩性分类有: 纯岩石和含泥质岩石模型; 单矿物、双矿物和多矿物模型; 砂泥岩、碳酸盐岩、火成岩、变质岩模型。按储集空间特征分类有: 孔隙型、双重孔隙型、裂缝型和孔隙 - 裂缝型模型。按孔隙流体性质与特征分类有: 含水岩石、含油气岩石模型以及阳离子交换模型 ( 瓦克斯曼—史密茨模型和双水模型) 。按建模方法分类有: 岩石体积模型,最优化模型和概率统计模型。此外,还可以从其他角度来对解释模型分类。

下面介绍测井资料解释中最基本的模型和公式,即岩石体积模型和阿尔奇公式。

8. 1. 1. 1 岩石体积物理模型

由测井方法原理可知,许多测井方法的测量结果,实际上都可看成是仪器探测范围内岩石物质的某种物理量的平均值。如岩石体积密度 ρb,可以看成是密度测井仪器探测范围内物质 ( 骨架和孔隙流体) 密度的平均值,即单位体积岩石的质量 ( g/cm3) 。岩石中子测井值 φN可以看成中子测井探测范围内岩石物质含氢指数的平均值,即单位体积岩石的含氢指数。自然伽马、声波时差等测井值也可作同样解释。总之,上述测井方法有两个共同特点: 它们测量的物理参数可以看成是单位体积岩石中各部分的相应物理量的平均值; 在岩性均匀的情况下,无论任何大小的岩石体积,它们对测量结果的贡献,按单位体积来说,都是一样的。根据这些特点,我们在研究测井参数与地质参数的关系时,就可以避开对每种测井方法微观物理过程的研究,着重从宏观上研究岩石各部分 ( 孔隙流体、泥质、矿物骨架) 对测量结果的贡献,从而发展了所谓岩石体积物理模型 ( 简称体积模型) 的研究方法。用这种方法导出的测井响应方程与相应测井理论方法和实验方法的结果基本一致,是一种很好的近似方法。此法的特点是推理简单,不用复杂的数学物理知识,除电阻率测井外,对其他具有前述 “平均”概念的测井方法,均可导出具有线性形式的测井响应方程,既便于人们记忆使用,又便于计算机计算处理。

所谓岩石体积模型,就是根据测井方法的探测特性和岩石中各种物质在物理性质上的差异按体积把实际岩石简化为性质均匀的几个部分,研究每一部分对岩石宏观物理量的贡献,并把岩石的宏观物理量看成是各部分贡献之和,即:

1) 按物质平衡原理,岩石体积 V 等于各部分体积 Vi之和,即 ; 如用相对体积 Vi表示,则

2) 岩石宏观物理量 M 等于各部分宏观物理量 Mi之和,即 。当用单位体积物理量 ( 一般就是测井参数) 表示时,则岩石单位体积物理量 m 就等于各部分相对体积 Vi与其单位体积物理量 mi乘积之总和,即

石油测井中遇到的地层虽然很复杂,岩性类型很多,但是油气储集层主要是砂泥岩和碳酸盐岩两大类。从测井解释来看,由于泥质成分与岩石骨架成分在物理性质上有显着的区别,故可把岩石划分为含泥质岩石和纯岩石 ( 不含泥质或含泥质甚少) 两类。从数学物理观点看,不管岩石骨架成分如何,均可把储集层简化为两种简单的岩石体积模型: 纯岩石模型,由岩石骨架及其孔隙流体组成; 含泥质岩石体积模型,由泥质、岩石骨架及其孔隙流体组成。当地层岩性复杂、骨架矿物的物理性质明显不同时,还可以把骨架矿物分为两种或多种,从而建立双矿物岩石体积模型和多矿物岩石体积模型。最基本的是纯岩石和泥质岩石两种体积模型,由这两种模型可以很容易导出双矿物和多矿物体积模型。

8. 1. 1. 2 阿尔奇公式

20 世纪 40 年代初,阿尔奇 ( Archie) 通过岩心实验,得出的上述含水纯岩石和含油气纯岩石的电阻率测井解释的关系式,即 Archie 公式,其一般形式归结如下:

地球物理测井教程

式中: Ro为 100%饱和地层水的岩石电阻率,Ω·m; Rw为地层水电阻率,Ω·m; φ 为岩石有效孔隙度,小数; a 是与岩性有关的岩性系数,一般为 0. 6 ~1. 5; m 为胶结指数,是与岩石胶结情况和孔隙结构有关的指数,一般为 1. 5 ~3,常取 2 左右; F 为地层因素,它是 100%饱和地层水的岩石电阻率 R0与所含地层水电阻率 Rw的比值,其大小主要取决于地层孔隙度 φ 且与岩石性质、胶结情况和孔隙结构等有关,但与地层水电阻率 Rw无关; Rt为岩石真电阻率,Ω·m; b 是与岩性有关的系数,一般接近于 1,常取 b = l; n 为饱和度指数,与油、气、水在孔隙中的分布状况有关,其值在 1. 0 ~4. 3 之间,以 1. 5 ~2. 2 者居多,常取 n = 2; Sw为岩石含水饱和度,小数; I 为电阻增大系数,它是含油气岩石真电阻率 Rt与该岩石 100%饱含地层水时的电阻率 Ro的比值,其大小基本决定于 Sw,但与地层的孔隙度 φ 和地层水电阻率 Rw无关。

Archie 公式本来是对具有粒间孔隙的纯地层得出的,但实际上,它们可用于绝大多数常见储集层。在目前常用的测井解释关系式中,只有 Archie 公式最具有综合性质,它是连接孔隙度测井和电阻率测井两大类测井方法的桥梁,因而成为测井资料综合定量解释的最基本解释关系式。实际应用时,一般先用孔隙度测井资料计算地层孔隙度φ,用Archie公式计算地层因素F,再根据地层真电阻率Rt和地层水电阻率Rw,由Archie公式计算地层含水饱和度Sw或含油饱和度So

8.1.2 测井解释方法

利用解释模型和有关的解释方程把测井信息加工成地质信息的方法称为测井解释方法或测井数据处理技术。这些解释方法,按照解释的精度和程度可分为定性解释、半定量解释和定量解释;按操作的方法可分为人工解释和数据处理;按解释的地点和采用解释方法的难易程度,可分为井场解释、测井站解释和计算中心解释,或者仅按难易程度分为快速直观解释和定量解释;按解释精度与评价范围,可分为单井初步解释与油气分析、单井储集层的精细描述与油气评价、多井评价与油藏描述等三个层次。重要的在于理解和掌握每个具体解释方法的原理,计算机处理和显示技术、应用的条件和作地质解释的方法。

8.1.2.1 快速直观技术

在测井解释中,由于数字处理技术的应用,发展了一些快速直观评价储集层的岩性、孔隙度、含油性以及可动油气的解释和显示方法,称为快速直观技术,它属于半定量解释范畴。测井资料解释的快速直观技术,最初是为在井场进行快速直观评价储集层而发展起来的,以便及时地为地质学家提供完井依据或为计算机解释提供参考。现在,该技术不仅在井场解释中广泛使用,而且已成为数字处理中选择解释模型和解释参数、显示和评价解释结果的一种基本方法,大致分为交会图技术和曲线重叠法两大类。

(1)交会图技术

交会图是用于表示地层测井参数或其他参数之间关系的图形。在测井解释与数据处理中,常用的交会图有交会图版、频率交会图与Z值图、直方图等。测井分析者常用它们来检查测井曲线质量、进行曲线校正、鉴别地层矿物成分、确定地层岩性组合、分析孔隙流体性质、选择解释模型和解释参数、计算地层的地质参数、检验解释成果及评价地层等,用途十分广泛,成为测井解释与数据处理强有力的工具。

交会图版是用来表示给定岩性的两种测井参数关系的解释图版。它们都是根据纯岩石的测井响应关系建立的理论图版,是测井解释与数据处理的依据。主要有岩性-孔隙度测井交会图版、用于识别地层岩性的M-N和MID等交会图版、用于鉴别地层中黏土矿物及其他矿物的交会图版等。

频率交会图就是在x-y平面坐标(可分为100×50或100×100个单位网格)上,统计绘图井段上各个采样点的数值,落在每个单位网格中的采样点数目(即频率数)的一种直观的数字图形,简称为频率图。Z值图是在频率交会图基础上引入第三条曲线Z(称Z曲线)作成的数据图形。Z值图的数字表示同一井段的频率图上,每个单位网格中相应采样点的第三条线Z的平均级别。

直方图是表示绘图井段某测井值或地层参数的频数或频率分布的图形。直方图的绘制方法是用横坐标轴代表测井值或地层参数,并将它分为若干个等间距的区间,统计给定井段内落入各个区间的采样点个数(称为频数)。以频数为纵轴显示出来,便得到频数分布直方图。有时,也可以计算各区间采样点的相对频率(等于该区间的采样点数与总采样点数之比)。相对频率用纵轴显示出来,便得到频率分布直方图。

(2)曲线重叠法

曲线重叠法,一般采用统一量纲(如孔隙度、电阻率等)、统一纵横向比例和统一基线,绘制出测井曲线或参数曲线的重叠图,按曲线的幅度差直观地评价地层的岩性、孔隙性、含油性或可动油气等。

8.1.2.2 定量解释

测井资料定量解释是依靠计算机完成的。在计算机上运行测井资料处理程序,可以对测井资料进行编辑和预处理;可以通过逐点处理计算所要求取的储集层参数和其他数据,主要是有关岩性和评价物性、含油性的参数;还可以将成果用数据表和图形直观地显示出来。

Ⅷ 常用井下物理测井方法介绍

1.视电阻率测井

(1)视电阻率测井原理

在实际测井中,岩层电阻率受围岩电阻率、钻井液电阻率、钻井液冲洗带电阻率的影响,井下物探测得的电阻率不是岩层的真电阻率,这种电阻率称为视电阻率。视电阻率测井主要包括三部分:供电线路、测量线路和井下电极系,如图4-6所示。

图4-6 视电阻率测井原理图

在井下将供电电极(A,B)和测量电极(M,N)组成的电极系A,M,N或 M,A,B放入井内,而把另一个电极(B或N)放在地面泥浆池中。当电极系由井底向井口移动时,由供电电极A,B供给电流,在地层中造成人工电场。由测量电极M ,N测得电位差ΔUMN。M ,N两点的电位差直接由它所在位置的岩层电阻率所决定,岩层电阻率越高,测得的电位差就越大;岩层电阻率越低,测得的电位差就越小。电位差的变化,反映了不同地层电阻率的变化。视电阻率测井实际上就是对电位差的连续测量,经过计算就可求得视电阻率。

(2)视电阻率曲线形态

视电阻率曲线形态与电极系的分类有关。当井下测量电极系为A,M,N时,称为梯度电极系;当井下测量电极系为M,A,B时,称为电位电极系。由供电电极到电极系记录点的距离称为电极距,常用的有2.5m梯度电极系和0.5m电位电极系。梯度电极系根据成对电极系(AB或 MN)与不成对电极系(AM或MA)的位置又分为顶部梯度电极系和底部梯度电极系。

实际测井中,底部梯度电极系曲线形态如图4-7所示。顶部梯度电极系曲线形态正好相反。

电位电极系曲线形态如图4-8所示,曲线沿高阻层中心对称,A表示异常幅度,A/2称为半幅点,岩层上下界面与半幅点位置对应。

图4-7 底部梯度电极系视电阻率曲线形状

图4-8 电位电极系视电阻率测井曲线形状

(3)视电阻率测井的应用

1)确定岩性。一般纯泥岩电阻率低,砂岩稍高,碳酸盐岩相当高,岩浆岩最高。根据视电阻率曲线幅度的高低,可以判断地下岩层的岩性。但当岩层中含高矿化度的地下水时,其对应的视电阻率相应降低。由于影响视电阻率的因素很多,曲线具有多解性,要结合岩屑、岩心等其他录井资料综合判断。

2)划分地层。实际应用中,以底部梯度电极系曲线的极大值划分高阻层的底界面,以极小值划分高阻层的顶界面,单纯用视电阻率曲线划分顶界面往往有一定误差,应结合其他曲线进行划分。视电阻率曲线确定高电阻岩层的界面比较准确,而对电阻率较低的地层则准确度较差。

2.自然电位测井

(1)自然电位测井原理

地层中有3种自然电位,即扩散吸附电位、过滤电位和氧化还原电位。扩散吸附电位主要发生在地热、油气井中,是我们主要测量的对象;过滤电位很小,常忽略不计;氧化还原电位主要产生在金属矿井中,这里不做研究。

在砂岩储层地热井中,一般都含有高矿化度的地热流体。地热流体和钻井液中都含有氯化钠(NaCl)。当地热流体和钻井液两种浓度不同的溶液直接接触时,由于砂岩地层水中的正离子(Na+)和负离子(Cl-)向井液中扩散,Cl-的迁移速度(18℃时为65×105cm/s)比Na+的迁移速度(18℃时为43 ×105cm/s)大,所以随着扩散的进行,井壁的井液一侧将出现较多的Cl-而带负电,井壁的砂岩一侧则出现较多的Na+而带正电。这样,在砂岩段井壁两侧聚集的异性电荷(砂岩带正电荷,钻井液带负电荷)就形成了电位差。

与砂岩相邻的泥岩中所含的地层水的成分和浓度一般与砂岩地层水相同,泥岩中高浓度的地层水也向井内钻井液中扩散。但由于泥质颗粒对负离子有选择性的吸附作用,一部分氯离子被泥岩表面吸附在井壁侧带负电,井壁的井液一侧将出现较多的Na+而带正电。这样,在泥岩段井壁两侧聚集的异性电荷(泥岩带负电荷,钻井液带正电荷)就形成了电位差。

由于正负电荷相互吸引,这种带电离子的聚集发生因地层岩性不同,在两种不同浓度溶液的接触(井壁)附近,形成自然电位差(图4-9)。用一套仪器测量出不同段的自然电位差,就可以研究出地下岩层的性质。

(2)自然电位曲线形态

在渗透性砂岩地层中,若岩性均匀,自然电位曲线的形态与地层中点是对称的。异常幅度大小等于自然电流在井内的电位降。一般用异常幅度的半幅点确定地层顶底界面,如图4-9所示。

图4-9 井内自然电位分布与自然电位曲线形状

(3)自然电位测井的应用

A.划分渗透层

自然电位曲线异常是渗透性岩层的显着特征。当地层水矿化度大于钻井液矿化度时(地热水多为此例),渗透层自然电位曲线呈负异常,泥岩层自然电位曲线呈正异常。当地层水矿化度小于钻井液矿化度时则相反。

划分渗透层一般以泥岩自然电位为基线,砂岩中泥质含量越少,自然电位幅度值愈大,渗透性愈好;砂岩中泥质含量越多,自然电位幅度值就愈小,渗透性就变差。

划分地层界面一般用半幅点确定。但当地层厚度h小于自然电位曲线幅度Am时,自1/3幅点算起;地层厚度h≥自然电位曲线幅度5Am时,自上、下拐点算起。

B.划分地层岩性

岩石的吸附扩散作用与岩石的成分、结构、胶结物成分、含量等有密切关系,故可根据自然电位曲线的变化划分出地层岩性。如砂岩岩性颗粒变细,泥质含量越多,自然电位幅度值就降低,据此可划分出泥岩、砂岩、泥质砂岩等。

3.感应测井

(1)感应测井原理

感应测井是研究地层电导率的测井方法。井下部分主要测井仪器有:发射线圈、接收线圈和电子线路,如图4-10所示。在下井仪器中,当振荡器向发射线圈输出固定高频电流(I)时,发射线圈就会在井场周围的地层中形成交变电磁场,在交变电磁场的作用下,地层中就会产生感应电流(I),感应电流又会在地层中形成二次电磁场(或叫次生电磁场),在次生电磁场的作用下,接收线圈会产生感应电动势,地面记录仪将感应电动势的信号记录下来,就成为感应测井曲线。

图4-10 感应测井原理图

(2)感应测井曲线形态

由于感应电流大小与地层电导率成正比,所以,地层电导率大,感应测井曲线幅度高;地层电导率小,感应测井曲线幅度低。

(3)感应测井的应用

A.确定岩性

与其他曲线配合,可区分出砂岩、泥岩、泥质砂岩、砂质泥岩等岩性。划分厚度大于2m的地层,按半幅点确定其界面;厚度小于2m的地层,因用半幅点分层较麻烦,实际中往往不用感应曲线分层。

注意的是,感应曲线上读的是电导率,其单位是毫欧姆/米(mΩ/m)。它的倒数才是视电阻率,单位是欧姆米(Ω·m)。

B.判断含水储层,划分界面

感应测井曲线对地层电阻率反应极为灵敏。由于电阻率的变化导致电导率的变化,水层电导率明显升高,分界面往往在曲线的急剧变化处。

4.侧向测井

(1)侧向测井原理

侧向测井是视电阻率方式之一,不同的是它的电极系中除有主电极系外,还有一对屏蔽电极,其作用是使主电流聚成水平层状电流(又称聚焦测井),极大地降低了钻井液、冲洗带和围岩的影响,能解决普通电极测井不能解决的问题,如在碳酸岩地层、盐水钻井液以及薄层交互剖面中提高解释效果。

侧向测井有三侧向、六侧向、七侧向、八侧向和微侧向。下面仅介绍常用的七侧向、八侧向、双侧向和微侧向。

(2)七侧向测井

1)七侧向测井是一种聚焦测井方法,其主电极两端各有一个屏蔽电极,屏蔽电极使主电流成薄层状径向地挤入地层,此时,井轴方向上无电流通过,七侧向测井曲线就是记录在不变的主电流全部被挤入地层时,所用的电压值。当地层电阻率较大时,主电流不易被挤入地层,所用的电压值就大;相反,当地层电阻率较小时,主电流容易被挤入地层,所用的电压值就小。在测井曲线上,对应高阻层,曲线有较高的视电阻率;对应低阻层,曲线有较低的视电阻率。

2)七侧向测井曲线的应用

七侧向测井曲线的特点是正对高阻层,曲线形状呈中心对称,曲线上有两个“尖子”,解释时取地层中点的视电阻率作为该高阻层的视电阻率值,取突变点作为地层的分界线,如图4-11所示。

七侧向测井可分为深、浅两种侧向。深侧向能反映地层深部的电阻率;浅侧向能反映井壁附近地层的电阻率变化。对于热储层而言,它仅反映钻井液冲洗带附近的电阻率变化。根据七侧向测井的特点,将它们组合起来,就能较好地划分地层所含流体的性质。此外,还可以求出地层的真电阻率。七侧向测井常用于孔隙型地层测井中。

图4-11 七侧向测井曲线形状图

(3)八侧向测井

八侧向测井是侧向测井的一种,原理与七侧向测井相同,实际为一探测深度很浅的七侧向测井,只是电极系尺寸大小和供电回路电极距电极系较近,因此看起来很像一个八个电极的电极系,故名八侧向。八侧向探测深度为0.35m,应用地层电阻率范围0~100Ωm,且泥浆电阻率大于0.1Ωm(魏广建,2004)。因八侧向探测深度浅,纵向分层能力较强。它是研究侵入带电阻率的方法,通常不单独使用,而是和感应测井组合应用,称为双感应-八侧向测井,是目前井下地球物理测井的主要测井项目。

(4)双侧向测井

双侧向电极系结构:由七个环状电极和两个柱状电极构成。

双侧向探测深度:双侧向的探测深度由屏蔽电极A1,A2的长度决定,双侧向采用将屏蔽电极分为两段,通过控制各段的电压,达到增加探测深度的目的。侧向测井由于屏蔽电极加长,测出的视电阻率主要反映原状地层的电阻率;浅侧向测井探测深度小于深侧向,主要反映侵入带电阻率。

双侧向纵向分层能力:与O1,O2的距离有关,可划分出h>O1,O2的地层电阻率变化。

双侧向影响因素:层厚、围岩对深、浅双侧向的影响是相同的,受井眼影响较小。

双侧向测井资料的应用:

1)划分地质剖面:双侧向的分层能力较强,视电阻率曲线在不同岩性的地层剖面上,显示清楚,一般层厚h>0.4m的低阻泥岩,高阻的致密层在曲线上都有明显显示。

2)深、浅侧向视电阻率曲线重叠,快速直观判断油(气)水层。

由于深侧向探测深度较深,深、浅测向受井眼影响程度比较接近,可利用二者视电阻率曲线的幅度差直观判断油(气)、水层。在油(气)层处,曲线出现正幅度差;在水层,曲线出现负幅度差。如果钻井液侵入时间过长,会对正、负异常差值产生影响,所以,一般在钻到目的层时,应及时测井,减小泥浆滤液侵入深度,增加双侧向曲线差异。

3)确定地层电阻率。

根据深、浅双侧向测出的视电阻率,可采用同三侧向相同的方法求出地层真电阻率Rt和侵入带直径Di。

4)计算地层含水饱和度。

5)估算裂缝参数。

(5)微侧向测井

微侧向装置是在微电极系上增加聚焦装置,使主电流被聚焦成垂直井壁的电流束,电流束垂直穿过泥饼,在泥饼厚度不大的情况下可忽略不计,测量的视电阻率接近冲洗带的真电阻率。

由于主电流束的直径很小(仅4.4cm),所以,微侧向测井的纵向分辨能力很强。因此,应用微侧向测井曲线可以划分岩性,划分厚度为5cm的薄夹层、致密层,常用于碳酸盐岩地层测井中。

5.声波时差测井

(1)声波时差测井原理

声波时差测井原理如图4-12所示,在下井仪器中有一个声波发射器和两个接收装置。当声波发射器向地层发射一定频率的声波时,由于两个接收装置与发射器之间的距离不同,因此,初至波(首波)到达两个接收器的时间也不同。第一个接收器先收到初至波,而第二个接收器在第一个接收器初至波到达Δt时间后才收到初至波。Δt的大小只与岩石的声波速度有关,而与泥浆影响无关。通常两接收器之间的距离为0.5m,测量时仪器已自动把Δt放大了一倍,故Δt相当于穿行1m所需的时间。这个时间又叫做声波时差,单位是μs/m (1s=106μs)。声波时差的倒数就是声波速度。

图4-12 声波时差测井原理图

(2)声波时差测井的应用

A.判断岩性

岩石越致密,孔隙度越小,声波时差就越小;岩石越疏松,孔隙度越大,声波时差就越大。因此,可以利用声波时差曲线判断岩性,从泥岩、砂岩到碳酸盐岩声波时差是逐渐减小的(泥岩252~948μs/m;砂岩300~440μs/m;碳酸盐岩125~141μs/m)。

B.划分油、气、水层

当岩层中含有不同的流体时,由于流体密度存在差异,声波在不同流体中传播速度不同。因此,在其他条件相同的前提下,沉积地层中的流体性质也影响声波时差,如淡水声波时差为620μs/m,盐水为608μs/m,石油为757~985μs/m,甲烷气为2260μs/m。同样,岩石中有机质含量也可影响声波的速度,一般情况下,泥页岩中有机质含量越高,所对应的声波时差值越大(操应长,2003)。

实际应用中,气层声波时差较大,曲线的特点是产生周波跳跃现象。油层与气层之间声波时差曲线的特点油层小,气层大,呈台阶式增大;水层与气层之间声波时差曲线的特点是水层小,气层大,也呈台阶式增大。但水层一般比油层小10%~20%,如图4-13所示。

C.划分渗透性岩层

当声波通过破碎带或裂缝带时,声波能量被强烈吸收而大大衰减,使声波时差急剧增大。根据这个特征,可以在声波时差曲线上将渗透性岩层划分出来。

D.沉积地层孔隙度、地层不整合面研究

在正常埋藏压实条件下,沉积地层中孔隙度的对数与其深度呈线性关系,声波时差对数与其深度也呈线性关系,并且随埋深增大,孔隙度减小,声波时差也减小,若对同一口井同一岩性的连续沉积地层,表现为一条具有一定斜率的直线。但是,有的井声波时差对数与其深度的变化曲线并不是一条简单的直线,而是呈折线或错开的线段,可能就是地层不整合面或层序异常界面。

图4-13 声波时差测井曲线应用

6.自然伽马测井

(1)自然伽马测井原理

在自然界中,不同岩石含有不同的放射性。一般地,岩石的泥质含量越高放射性越强,泥质含量越低放射性越弱。其射线强度以γ射线为最。

自然γ测井中,井下仪器中有一γ闪烁计数器,计数器将接收到的岩层自然γ射线变为电脉冲,电脉冲由电缆传至地面仪器的放射性面板,变为电位差,示波仪把电位差记录成自然伽马曲线。岩层的自然伽马强度用脉冲/分表示,如图4-14所示。

图4-14 自然伽马测井装置及曲线形状图

h—岩层厚度;d0—井径

(2)自然伽马曲线形态

1)自然伽马曲线对称于地层层厚的中点;

2)当地层厚度大于3倍井径时,自然伽马曲线极大值为一常数,用半幅点确定岩层界面;

3)当地层厚度小于3倍井径时,自然伽马曲线幅度变小,小于0.5倍井径时,曲线表现为不明显弯曲,岩层越薄,分层界限越接近于峰端,如图4-14所示。

(3)自然伽马测井的应用

A.划分岩性

在砂泥岩剖面中,泥岩、页岩自然伽马曲线幅度最高,砂岩最低,而粉砂岩、泥质砂岩则介于砂岩和泥岩之间,并随着岩层泥质含量增多而曲线幅度增高(见图4-15)。

在碳酸盐岩剖面中,泥岩、页岩自然伽马曲线值最高,纯灰岩、白云岩最低;而泥质灰岩、泥质白云岩则介于二者之间,并随着泥质含量的增加而自然伽马值也增加。

图4-15 应用自然伽马和中子伽马曲线判别岩性

B.判断岩层的渗透性

根据自然伽马曲线的幅度可判断泥质胶结砂岩渗透性的好坏,也可间接判断碳酸盐岩裂缝的发育程度,划分裂缝段。

C.进行地层对比

由于自然伽马曲线不受井眼、钻井液、岩层中流体性质等因素的影响,所以,在其他测井曲线难以对比的地层中,可用自然伽马曲线进行地层对比。

D.跟踪定位射孔

由于自然伽马测井不受套管、水泥环的影响,所以,在下完套管之后的射孔作业中,将下套管的自然伽马测井曲线与裸眼测井曲线对比,确定跟踪射孔层位。

Ⅸ 常用测井项目的符号、单位、物理意义、理论基础/测量方法、主要地质应用及影响因素

其实你完全没有必要再网络上问这么专业的问题的。你可以到一些石油论坛上问一下。这些都是的测井专业的问题,很难有人能全知道的。尤其是物理意义,测量方法,地质应用这些方面的知识。这是一门专业所涵盖的内容了啊。
曲线名称 符号 单位 物理意义 地质应用 影响因素
自然伽马 GR API,伦琴/小时 自然界的天然反射性 可以求泥质含量和粒度 泥质含量,放射性矿物是主要影响因素,而井径是主要的导致仪器测不准地层真实值的因素

自然电位 SP mv 地层的天然电位差 识别渗透层 地层水和泥浆滤液的变化,泥质含量的不同是主要影响因素

井径 CAL,HCAL m,cm,inch 井筒的直径 判断是否存在扩径/缩径 用于曲线校正

深探测电阻率 ILD 姆欧,西门子 原装地层视电阻率 判别地层的流体 主要影响因素是地层水矿化度,泥浆侵入,泥质含量等

浅探测电阻率 ILM 姆欧,西门子 过渡带视电阻率 判别地层的流体 主要影响因素是地层水矿化度,泥浆侵入,泥质含量等

微球聚焦 MSFL 姆欧 过渡带视电阻率 判别地层的流体 主要影响因素是地层水矿化度,泥浆侵入,泥质含量等

太多了,没时间写了。请其他人补充吧。你的问题是在很大。

Ⅹ 核磁共振测井方法

(一)测井仪器

1.组合式核磁共振测井仪(CMR)

CMR测井仪采用磁性很强永久磁铁产生静磁场,磁体放入井中,在井眼之外的地层中建立一个比地磁场强度大1000倍的均匀磁场区域,天线发射自旋回波脉冲序列(CPMG)信号并接收地层的回波信号。CMR原始数据由一系列自旋回波幅度组成,经处理得到T2弛豫时间分布。T2分布为主要的测井输出,由此T2回波串可导出孔隙度、束缚流体饱和度、自由流体饱和度和渗透率。

CMR为小型滑板型仪器,连接长度4.33 m,重148 kg,额定温度177℃,额定压力138 MPa,其结构及横截面见图5-54。

CMR必须用弓形弹簧、用偏心器或动力井径仪进行偏心测量。探测器极板最大宽度5.3 in,带有滑套弓型弹簧的最大总直径为6.6 in。

对于一般的井眼条件,推荐的最小井径为6.25 in。当井眼条件很好,CMR可在5.785 in以下的井眼中进行测井。

(1)CPMG脉冲序列参数的选择

核磁共振测量为周期性的,而不是连续的。测量周期由等待时间和自旋回波采集时间段组成。采集时间比等待时间短许多。在等待时间段,氢核重新回到仪器磁场方向。等待时间根据孔隙流体的T1而定。在采集时间段,仪器的发射线圈快速发出自旋回波。隔一定的时间段(回波间隔)收集回波。

等待时间、采集的回波数和回波间隔被称为脉冲序列参数。这些参数决定了NMR的测量,必须在测井前加以说明。参数的优化选择与岩性和流体类型有关,并与CMR仪是连续测量还是点测有关。

图5-54 实验型脉冲NMR仪器

1)测量周期。为校正电子路线的偏置,自旋回波序列成对采集,称为相位交替对。

采集一个相位交替对的总周期时间为

地球物理测井

式中:TW为等待时间,s;NE为回波数;TE为回波间隔,s。

周期时间长可提高CMR测井的精度。但是,对于环境变化大的井,长周期导致低测速和长的点测停留时间。

2)测速。在连续测井中,调节仪器测速确保在井下每个采样率段(通常为6 in,即15.24 cm)中完成一次新的测量周期。最大测井速度为

地球物理测井

图5-55为最大测速与等待时间和采集回波数的关系。大多数CMR测井速度在45.7~183 m/h之间。在束缚流体测井模型下测速可达244 m/h以上。

3)脉冲参数选择的约束条件。①回波间隔。为提高对快速衰减组分(即小孔隙及高黏度油)测量的敏感性,CMR测井通常采用最小回波间隔(0.28 ms)。随着硬件的改进,期望最小回波间隔随之减小。为增强扩散弛豫,也增长回波间隔。这适用于不含大量微孔隙的纯净地层。为保持对小孔隙的敏感性,回波间隔很少超过1ms。②回波数。采集的回波灵敏度为:200,300,600,1200,1800,3000,5000 和8000。回波间隔0.28 ms时对应的采集时间分别为:0.056 s、0.084 s、0.17 s、0.34 s、0.50 s、0.84 s、1.40 s和2.24 s。在连续测井时采集的最多回波数常为1800。计算机模拟和现场经验表明:再增加回波数对CMR孔隙测井造成的变化可忽略。③等待时间。理想情况下等待时间足够长,以使氢核完全极化。因为不完全极化的氢对自旋回波幅度的贡献不完全。实际上,等待时间受制于井场效率的要求,对不完全极化要进行校正。通常,等待时间比孔隙流体的平均T1长三倍。④最小等待时间。由于发射线圈频宽比的限制,最小等待时间约为采集时间的两倍。实际上,这不成为一种限制,因为等待时间和采集时间均由孔隙流体的弛豫时间控制(T1和T2),具有长T2的孔隙流体也有长T1,因此需要长的等待时间。

图5-55 最大测速与等待时间和采集回波数的关系

4)参数选择。脉冲序列参数选择基于预工作计划和现场测量进行。

预工作计划包括估算孔隙水和侵入带烃(原有烃或油基泥浆)的平均弛豫时间(平均T1)。对于一般的仪器操作,等待时间近似为这两种T1中较大值的四倍。

在估算孔隙流体弛豫时间时,通常假设岩石为水湿润性。在此情况下,烃以体积速率弛豫,油的体积弛豫根据储层条件下的黏度估算。气体的体积弛豫与储层温度和压力有关。T1和T2与流体黏度的关系曲线见图5-49。

脉冲序列检查常常通过在产层段的一次长等待时间测井后再用短等待时间重复测井实现。产生精确CMR孔隙度和小的极化校正(例如小于2 p.u.)的最小等待时间用于主要测井。

在一个地区或地层几次CMR测井之后,常可确定出最优序列。该序列便可用于后续CMR测井。

下面介绍已成功用于现场测试的几种预定义脉冲序列。

A.具有中至高黏度油(大于4 mPa·s)的储层。中高黏度油的T1值相对短,CMR脉冲序列主要根据孔隙水的T1选择。

孔隙水的T1由面弛豫而定,它随着孔隙尺寸和岩性不同而变化。碳酸盐岩的表面弛豫比砂岩弱,需要较长的等待时间。当岩石具有很大孔隙时(例如孔洞性碳酸盐岩),弛豫时间接近体积水的值(为已知的温度函数)。但是,CMR仪探测侵入带,其中原生水被钻井泥浆滤液驱替,由于滤液中存在溶解的顺磁离子,因此减小了体积泥浆滤液的T1

实际上,孔隙水的T1值是很难确定的,因此脉冲序列根据适用于大部分井下环境的最小周期时间而定。根据经验,推荐用于连续测井的脉冲序列见表5-3。表中第二列为油的黏度阈值,超过阈值需要较长的等待时间。如果储层含有特别大孔隙(例如,高渗透率、未固结砂岩和孔洞碳酸盐岩),也需要较长等待时间。

表5-3 常规连续测井

B.具有低黏度油(小于4 mPa·s)储层。当储层含轻油或当用油基泥浆钻井时,CMR脉冲序列根据油的T1确定。需要长的等待时间和慢的测速。表5-4为MAXIS测井软件中预定义的脉冲参数。若已知储层条件的油黏度,该序列的等待时间须修正。这时,由图5-49估算平均T1,而等待时间设定为3T1。当井眼条件允许使用较高测速,推荐使用9 in采样率,测速提高1.5倍。

表5-4 MAXIS测井软件中预定义的脉冲参数

C.含气储层。在潜在含气层中,CMR测井的主要应用是识别传统测井曲线(例如中子-密度)未示出的气层。CMR孔隙度低估了气层的孔隙度。原因如下:气体氢指数明显小于1;在较宽的温度和压力范围内,气体具有长T1(大于3 s),因此在连续测井中不能完全极化;由于扩散影响,气体T2较短(约400 μs)。因此高的T1/T2比使极化校正失效。

气体信号幅度值为

地球物理测井

式中:HI为气体氢指数;Vg为侵入域的气体体积,p.u.;T1effect为等待时间中极化气体的部分影响,即1-exp(-Tw/T1g)(T1g为气体的T1;Tw为等待时间)。

许多环境中,气体信号太小而不能被检测到,这发生于浅地层(气体氢指数太小)和低至中孔隙地层(含少量残余气体积)中。这些地层中,最有效的方法是用相对短的等待时间测井,只要有足够时间使水极化即可(例如,砂岩或碳酸盐岩序列)。这使气信号幅度变为最小,CMR孔隙度的减小可能是由于气体影响造成的。

在深部高孔隙地层中,气信号可能大于3 p.u.或4 p.u.。在这些地层中,单独的CMR测井通过改变等待时间和回波间隔就可识别出气层。

用这种方法通过改变等待时间而改变T1分布。第一次测井用使水充分极化的一种等待时间(例如砂岩或碳酸盐岩序列)。第二次测井用一种较长的等待时间,以增高气信号的幅值。于是通过第二次测井得出的CMR孔隙度的增量可识别出气体。第二次测井的等待时间应选择能得到至少4p.u的额外气信号。额外气信号计算如下:

地球物理测井

式中:T1w为第一次测井的等待时间;T2w为第二次测井的等待时间;T1g为气体的T1

在良好的环境下,通过处理不同回波间隔的两次测井采集的自旋回波序可以计算出孔隙流体的扩散系数(Flaum等,1996)。于是通过其与油和水相关的高扩散系数可识别气体。4 p.u.的最小气信号是希望值,所需的等待时间由等式(5-42)计算。通常需要4 s或5 s的最小等待时间,两次测井都用相同的等待时间,表5-5中的脉冲序列已成功用于几种高孔隙砂岩中计算扩散系数。

表5-5 不同回波间隔测井

D.束缚流体。束缚流体具有低T1,通常在砂岩和碳酸盐岩中分别小于50 ms和150 ms。因此,束缚流体测井曲线用短等待时间、高测速的测量得出。束缚流体测井的推荐参数见表5-6。

表5-6 束缚流体测井

5)点测参数选择。进行点测是为提高CMR孔隙度测井精度并获取详细的T2分布。测量原理与连续测井相同,但点测没有周期时间的限制。一般使用较长的等待时间,收集更多的回波数以便与连续测井进行比较。表5-7给出预定义的砂岩,碳酸盐岩和轻质油/油基泥浆的脉冲序列。

表5-7 点测脉冲序列

(2)信号处理

在CMR仪器研制的同时,必须设计一种经济完整的数据采集和信号处理方法,用于分析以CPMG脉冲序列期间采集到的成百上千的自旋回波幅值。信号处理主要是计算T2分布曲线。

在仪器研制的早期就意识到有关反演方法不适于CMR测井数据的实时处理。特别是实时计算连续T2分布需多台计算机完成大量采集数据的计算。由于成百上千的自旋幅值组成的一个自旋回波序列仅包含几个线性相关的参数,而NMR测量的核心参数近似于线性,所以自旋回波数据有冗余量,它可被压缩成几个数值而不丢失信息。用现场的计算设备可实时地利用采集的压缩数据计算T2分布。

数据压缩算法必须适应性强,且可与实时数据采集和处理环境兼容。井下数据压缩使用仪器电子盒内的数字信号处理芯片,这需要一个快速的压缩算法。井下数据压缩减少了对遥测能力的需求,及磁盘和磁带的存储量。未压缩数据也能传输到井下并存储在磁盘中,用于后期处理。一种新的反演和相关数据压缩算法——窗处理算法(WP)已开发出来。

通过确定在预选T2值处的信号幅度计算出T2分布。再由幅度拟合出一条曲线以显示出一连续函数。预选的T2值等间隔位于T2min和T2max之间的对数坐标上。预选T2值的数目为分布中的组份数。

T2的计算和测井曲线输出首先选择一组处理参数:多指数弛豫模型中的组份数目;计算的T2分布中的T2最大值T2max和最小值T2min;自由流体截止值;输入的T1/T2;泥浆滤液的弛豫时间。输入上述参数用于计算T2分布、自由流体和束缚流体孔隙度的相对数量、平均弛豫时间。

1)组份数。现场数据的模拟和处理指出,若使用至少10个组份模型,组份数对CMR测井输出的影响可以忽略。若要得到平滑T2分布则必须增加更多的组份。通常,连续测井用30个组份模型,点测使用50个组份模型。

2)T2min。根据测量对短弛豫时间固有的敏感性确定最小T2值,这与测量的回波间隔有关。当使用回波间隔为0.28 μs时,T2min为0.5 μs。

3)T2max。T2max值的选择在T2分布中的最长弛豫时间与测量可分辨的最长弛豫时间之间取折中,后者根据采集时间(即采集的回波数和回波间隔)确定。模拟显示在合理的取值范围内,CMR测井输出对T2max值不敏感。对采集600~1800个回波的连续测井,T2max取3000 μs。对于点测,一般采集3000~8000个回波,T2max定为5000 μs。

4)T1/T2比。极化校正时需输入T1/T2。当储层含黏滞油时,推荐T1/T2定为2。当存在轻质油,T1/T2增至3。

(3)刻度和校正

在车间中用含氯化镍稀释液的一种混合物完成精确刻度。溶液的信号幅度代表标准的100 p.u.。

在测量周期的等待时间中完成电子刻度。在此期间,一个小信号被送入位于天线上的一个测试线圈中。信号由天线采集并被处理,然后信号幅值被用于系统增益中由操作频率、温度和周期介质电导率产生的变化进行校正。

信号幅度必须作温度校正、磁场强度校正(磁场强度随温度和附在磁体上金属碎屑量而变化)、流体氢指数校正(当地层水或泥浆滤液矿化度较高时,该校正十分重要)。

图5-56 MRIL仪器框图

此外,CMR测井须对氢核不完全极化进行校正。

(4)测井质量控制

测井质量控制包括:仪器定位、采样率和测速、叠加与精度、仪器调谐、泥浆滤液弛豫时间等。

2.核磁共振(成像)测井(MRIL)

(1)仪器说明

MRIL仪器,由三部分构成:探头(长8 in,直径为4.5 in或6.0 in);长13 ft、直径3.626 in的电子线路短节和长10 ft、直径为3.626 in的储能短节(图5-56)。

仪器的探头由永久磁铁、调谐射频(RF)天线和测量射频磁场幅度的传感器组成。磁场呈圆柱形轴对称,磁力线指向地层,磁场幅度与径向距离的平方成反比。调整RF磁场形状,使其符合磁场空间分布,且使RF磁场与静磁场相互垂直,这种结构形成一个圆柱形共振区域。其长度为43 in(或24 in,这取决于RF天线的张角)、额定厚度为0.04 in。有两种探头可供选择,直径为6 in的标准探头,用于直径7.785~12.25 in的井眼;直径为4.5 in的小井眼探头,用于直径6.0~8.5 in的井眼。仪器的工作频率为650~750 kHz,共振区域半径19.7~21.6 cm(对于标准探头)。

仪器为数字化仪器,原始回波按载波被数字化处理,所有的后续滤波和检测均在数字域实现。

(2)仪器特点

1)多频工作。MRIL的C型仪器具有灵活的变频特性,可从一个频率跳变到另一个频率。对于17×10-4 T/cm的额定磁场梯度,一个15 kHz的频率跳跃对应于共振区域半径0.23 cm的变化,该设计也支持在两种频率下同时测量,双频测量的几何图见图5-57。

2)测低阻井。低阻井相当于一种对射频天线的负载,负载常用天线因子Q表示。在直径8.5 in的井眼中,Rm>10 Ω·m的淡水泥浆井眼中天线Q值为100;而在Rm=0.02 Ω·m的井眼中,Q值变为7,低Q值对MRIL信号质量有不良影响。

3)信噪比(SWR)高。测量频率为725 kHz时,在淡水泥浆井眼环境下,仪器的单回波信噪比(SWR)为70∶1。计算结果经多次回波提高了信噪比,其自由流体指数(FFI)的信噪比为240∶1。

4)调幅与调相功能。C型仪对每个回波提供完全幅度和相位调制。

5)测速快。测速取决于MRIL输出的单次实验信噪比、期望的测井精度纵向张角及地下T1能允许的测量周期时间Tc。在单一共振体内,要使恢复达到95%以上,恢复时间TR必须满足:

图5-57 MRIL双频测量示意图

地球物理测井

由于多频工作的结果,周期时间稍长于标准化所用频率数的T2。在双频工作情况下,TC=TR/2。在T1=500 ms、1000 ms和2000 ms的条件下,地层极化完全恢复对应于周期为750 ms、1500 ms、3000 ms。依测井环境不同,C型仪测速约为B型的4.4~14.4倍。

6)垂向分辨率高。通过减小射频天线的纵向张角可得到更高的分辨率,目前探头设计张角为43 in,C型仪可兼容更小的张角(24 in)。

(3)脉冲参数选择

MRIL采用CPMG脉冲序列完成对T2的测量。其CPMG脉冲参数选择方式基本上与CMR的脉冲参数选择方式相同。

图5-58 双频MRIL探头及探测区域剖面图

C型仪的回波间隔时间约为1 ms。每个深度测量点上,记录的回波串为:在淡水泥浆井眼中约为1200个回波;在咸水泥浆井眼中,约300~500个回波。

(4)MRIL的垂向分辨率和信噪比

NMR仪的垂向分辨率受控于永久磁场及射频磁场的形状,即决定于磁体物理尺寸及射频天线。理论上,MRIL仪的探测体积为一圆环(图5-58),圆环大小受射频天线的张角影响。

MRIL数据的垂向分辨率和信噪比不仅受控于NMR的物理特性和传感器的设计,而且与数据采集及处理过程有关。C型仪的操作模式为双频双相交替方式。脉冲序列依次为:频率2,原相位;频率1,原相位;频率1,反相位;频率2,反相位。相位交替改变了NMR回波的符号,而干扰信号的相位不变。通过改变所有反向回波的符号并将所有测量求和,相干干扰被消除。根据井眼环境,在完成回波数据转换之前,需要进行附加的求均值以提高信噪比。在井场或后续处理中应用滤波技术进行后续的处理。

使用时序分析法通过比较某一特定层段中两次或多次测井数据可以定量评估垂向分辨率和信噪比。在0.9 m·min-1、3.0 m·min-1和9.1 m·min-1测速下分别进行重复测井得到三对测井曲线,用时序分析计算出相关系数和信噪比与空间频率的关系,平均低频信噪比特征见表5-8。

表5-8

(5)仪器的刻度和环境影响

C型MRIL用100%的标准水进行刻度,水装于一个高1 m、长2 m、宽1 m的屏蔽容器内(在调幅频带内操作)。改变井眼负荷的方法是加入井眼流体或在射频天线上加电阻。在存在井眼负载时,将回波幅度与已知的标准水的简单指数衰减比较进行刻度。仪器还需进行二次刻度。此外,在井场,测井前和测井后还要用标准探头对电子线路进行校对,仪器所有参数都要记录并与标准值比较。

对于使用新的24 in张角的MRIL仪器,实施采集数据进行时序分析现场曲线时可以看出,24 in张角仪器的数据显示出明显的层界,并可分辨出薄层。其时序分析结果见表5-9。与表5-8中43 in张角的结果比较可见,24 in张角的垂向分辨率提高。低频信噪比二者无差别。根据简单的几何推理,我们预计24 in张角的信噪比应降2.5 dB;且信噪比的这种降低与测速无关。测试井的时序分析指出,信噪比降低至小于5 dB。

表5-9

NMR回波幅度随地层温度升高而降低,地层温度与刻度温度之比用于回波输出的校正。MRIL输出对烃密度敏感,故需进行温度、压力对液态烃密度影响的校正;天然气可减小MRIL孔隙度,但不可校正。

(二)信号处理和输出

MRIL测得的原始数据是所接收到的回波串,如图5-59。它是求各种参数和各种应用的基础。

目前C型仪用的信号处理方法是从原始回波串中提取T2分布谱(如图5-60)。

对于一个孔隙系统,可能会存在着多个弛豫组分T2i,每个回波都是多种弛豫组分的总体效应。通常,回波串的衰减速率表现出双指数或多指数特征;所以可以将回波幅度看成是多指数分量之和。

地球物理测井

式中:ai为第i个横向弛豫时间所对应的回波幅度;T2i为第i个横向弛豫时间;n为所划分的T2i个数,通常n取8。

图5-59 MRIL测得的回波串

由一组固定T2弛豫(4 ms,8 ms,16ms,32 ms,64 ms,128 ms,256 ms和512 ms)作出基本函数拟合回波串。这样一组NMR测量信号(回波)Aj(t)(设有m个,m>n)可以得到一组超定方程组,该方程组的最小二乘解求得一组与固定划分的T2i对应的ai,经内插和平滑后得到T2分布谱。每个圈定的T2对应一部分孔隙,各T2分量ai求和经过刻度得到φNMR;FFI为T2大于或等于32 ms对应的孔隙之和,由T2大于截止值的各项ai之和,经过刻度(归一化)得到φFFI;BVI为4ms、8ms和16ms的T2值对应的部分孔隙之和,由T2小于截止值的各项ai之和,经过刻度(归一化)得到φbvi

图5-60 自旋—回波串的多指数拟合及T2分布谱

通过合理地设置MRIL的测量参数TR、TE,测量两组或多组回波串,得到不同的T2分布谱。对它们进行谱差分或谱位移处理,可以定性地识别储层中流体的类型。

(三)核磁共振测井的测量模式(MRIL-C型仪器)

1.标准T2测井

提供一般的储层参数,如有效孔隙度、自由流体体积、束缚流体体积、渗透率等。

一般选取等待时间TW=3~4 s,标准回波时间间隔Te=1.2 ms,回波个数Ne≥200。

2.双TW测井

根据油、气、水的弛豫响应特征不同,采用不同等待时间TW进行测量,可定性识别流体性质:

短等待时间TWS:水信号可完全恢复,烃信号不能完全恢复;

长等待时间TWL:水信号可完全恢复,烃信号也能完全恢复。

将用两种等待时间(TWS和TWL)测量的T2分布相减,可基本消除水的信号,剩下部分烃的信号,从而达到识别油气层的目的。

3.双TE测井

地球物理测井

式中:T2CPMG为采用CPMG脉冲法测量的弛豫时间;D为地层流体的扩散系数;G为磁场梯度;TE为回波间隔;γ为氢核的旋磁比。

从上式可看出,增加回波间隔TE将导致T2减小;且T2分布将向减小的方向移动(移谱)。由于油气水的扩散系数不同,在MRIL-C型测井仪的梯度磁场中对T2分布的影响程度不一样,采用长短TE测井,油气水的T2分布变化的程度也不同,据此可定性识别流体性质。

(四)核磁共振测井的测量模式(MRIL-P型仪器)

测量模式就是测井期间控制仪器的一系列参数。MRIL-P型测井仪测井时有4种基本测量方式,根据不同的参数组合成77测井模式。

1.DTP方式

为等待时间TW和粘土束缚水模式。它分5个频带2组测量方式(A,PR),4频带上为PR组信号(TE=0.6 ms,NE=10,TW=0.02 s),共采集8组回波串,用于计算粘土束缚水体积。在0~3频带上为A组信号(TE、TW自定),共采集16个TW信号。每个周期共有24组回波串。该方式主要用于计算总孔隙度、有效孔隙度;确定可动流体体积、毛管束缚流体体积和粘土束缚流体体积、渗透率等参数。

2.DTW方式

又称双TW模式。该模式采用5个频带3组测量模式(A,B,PR)。4频带上为PR组信号(TE=0.6 ms,NE=10,TW=0.02 s),共采集8组回波串,用于计算粘土束缚水体积。在0~3频带上分别采集16个A组和B组信号,A、B组回波间隔TE相同,等待的时间TW不同,A、B之间为长等待时间TWL,B、A之间为短等待时间TWS。每个周期共有40个回波串,根据长、短不同等待时间的T2谱识别油气。

3.DTE方式

又称双TE模式。该模式采用了5个频带3组测量模式(A,B,PR)。4频带上为PR组信号(TE=0.6 ms,NE=10,TW=0.02 s),共采集8组回波串,用于计算粘土束缚水体积。0~3频带各采集16个A、B组信号,A、B组共有相同的等待时间TW,不同的回波间隔TE。A组为短回波音隔TES,B组为长回波间隔TEL,共40个回波串。其主要目的是应用两个不同回波间隔的数据作扩散加权,进行气检测等。

4.DTWE方式

又称双TW+双TE模式。该模式采用5个频带5组测量模式(A,B,D,E,PR)。4频带上为PR组信号(TE=0.6 ms,NE=10,TW=0.02 s),共采集8组回波串,用于计算粘土束缚水体积。0~1频带上各采集8个A、B组信号,2~3频带上各采集8个D、E组信号,其中A、B为短TE双TW模式,D、E为长TE双TW模式。共40个回波串。包含了双TE和双TW测井,一次下井可获得所有信息,大大地提高了工作效率。

实际测井过程中,基本测量方式确定后,根据不同的测量参数从77种测量模式中选取合适的模式进行测井。表5-10列出了常见的10种测量模式参数。

表5-10 常用的10种测量模式参数

阅读全文

与常用测井方法相关的资料

热点内容
如何改善羊水少的方法 浏览:533
ssww浴缸使用方法 浏览:775
毛衣分针计算方法 浏览:315
远程红点训练方法 浏览:405
疑难杂症的治疗方法 浏览:729
汽车镀膜蜡的使用方法 浏览:669
幽门螺菌治疗方法 浏览:362
拉杆上篮锻炼方法 浏览:972
陀螺细胞常用的染色方法 浏览:762
错误3014解决方法 浏览:214
肉粽的食品食用方法 浏览:880
芒果汁的制作方法视频 浏览:785
故障处理方法有哪些 浏览:839
门窗铝材安装方法 浏览:996
牛肉如何做好吃的方法 浏览:2
治疗骨刺的土方法如下 浏览:171
女生后背长痘痘的解决方法 浏览:373
家里喝咖啡有哪些方法 浏览:999
摆摊最难研究的方法 浏览:848
短棍的使用方法 浏览:108