⑴ 常用的统计分析方法总结(聚类分析、主成分分析、因子分析)
1. 系统聚类法 :由N类--1类
2. 分解法 :由1类---N类
3. K-均值法 :事先在聚类过程中确定在K类,适用于数据量大的数据
4. 有序样品的聚类 :N个样品排序,次序相邻的样品聚成一类
5. 模糊聚类法 :模糊数学的方法,多用于定性变量
6. 加入法 :样品依次加入,全部加入完得到聚类图。
a.夹角余弦
b.相关系数
a.常用的类间距离定义有8种之多,与之相应的 系统聚类法 也有8种,分别为
a. 中间距离法
b. 最短距离法 :类与类之间的距离最近两个样品的距离。
c. 最长距离法 :类与类之间的距离最远两个样品的距离。【先距离最短,后距离最远合并】
d. 类平均法 :两类元素中任两个样品距离的平均。
e. 重心法 :两个重心xp 和xq 的距离。
f. 可变类平均法
e. 离差平方和法(Ward法) : 该方法的基本思想来自于方差分析,如果分类正确,同 类样品的离差平方和应当较小,类与类的离差平方和较大。 具体做法是先将 n 个样品各自成一类,然后每次缩小一类,每 缩小一类,离差平方和就要增大,选择使方差增加最小的两 类合并,直到所有的样品归为一类为止。
a. 最短距离法的主要缺点是它有链接聚合的趋势,容易形 成一个比较大的类,大部分样品都被聚在一类中,所以最短 距离法的聚类效果并不好,实际中不提倡使用。
b. 最长距离法克服了最短距离法链接聚合的缺陷,两类合 并以后与其他类的距离是原来两个类中的距离最大者,加大 了合并后的类与其他类的距离。
a. 定义 :主成分分析(Principal Component Analysis,简记 PCA)是将 多个指标化为少数几个综合指标的一种统计分析方法 ,通常我们把转化成的综合指标称为主成分。
b. 本质:降维
c. 表达 :主成分为原始变量的线性组合
d. 即信息量在空间降维以后信息量没有发生改变,所有主成分的方差之和与原始的方差之和
e. 多个变量之间有一定的相关性,利用原始变量 的线性组合形成几个综合指标(主成分),在保留原始变量主要信息的前提下起到降维与简化问题的作用。
f. 累积贡献率一般是 85% 以上
(1)每一个主成分都是各 原始变量的线性组合
(2)主成分的数目大大少于原始变量的数目
(3)主成分保留了原始变量绝大多数信息
(4)各主成分之间 互不相关
a. 基本目的:用 少数几个综合因子去描述多个随机变量之间的相关关系 。
b. 定义:多个变量————少数综合因子(不存在的因子)
c. 显在变量:原始变量X;潜在变量:因子F
d. X=AF+e【公共因子+特殊因子】
e. 应用: 因子分析主要用于相关性很强的多指标数据的降维处理。
f. 通过研究原始变量相关矩阵内部 的依赖关系,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。
g. 定义:原始的变量是可观测的显在变量,而 综合 的因子是 不可观测 的 潜在变量 ,称为因子。
i. 根据相关性大小把原始变量分组,使得同组内的变量之间相关性较高,而不同组的变量间的相关性则较低。
ii. 公共因子 :每组变量代表一个基本结构,并用一个不可观测的综合变量表示。
iii. 对于所研究的某一具体问题,原始变量分解成两部分:
i. R 型因子分析——研究变量之间的相关关系
ii. Q 型因子分析——研究样品之间的相关关系
a. 因子载荷 是第i个变量与第j个公共因子的相关系数,绝对值越大,相关的密切程度越高。
a. 变量 Xi 的共同度是因子载荷矩阵的第i行的元素的平方和。记为
b. 所有的公共因子与特殊因子对变量 Xi 的贡献和为1。
a. 确定因子载荷
b. 因子旋转
c. 计算因子得分
a. 寻找简单结构的载荷矩阵:载荷矩阵A的所有元素都接 近0或±1,则模型的公共因子就易于解释。
b. 如果各主因子的典型代表变量不突出,就需要进行旋转使因子载荷矩阵中载荷的绝对值向0和1两个方向分化。
a.意义:对公共因子作正交旋转相当于对载荷矩阵 A 作一正交变换 ,右乘正交矩阵 T ,使 A* = AT 能有更鲜明的实际意义。
b.几何意义:是在 m 维空间上对原因子轴作一刚性旋转。 因子旋转不改变公共因子的共同度,这是因为 A A '=ATT'A'=AA'
c. 旋转方法有:正交旋转和斜交旋转
d. 最普遍的是: 最大方差旋转法
a. 定义:通过坐标变换使各个因子载荷的方差之和最大。
b. 任何一个变量只在一个因子上有高贡献率,而在 其它因子上的载荷几乎为0;
c. 任何一个因子只在少数变量上有高载荷,而在其 它变量上的载荷几乎为0。
思想相同: 降维
前提条件:各变量间必须有 相关性 ,否则各变量之间没有共享信息
⑵ SPSS聚类分析 系统聚类分析
SPSS聚类分析:系统聚类分析
一、概念:(分析-分类-系统聚类)
系统聚类法常称为层次聚类法、分层聚类法,也是聚类分析中使用广泛的一种方法。它有两种类型,一是对研究对象本身进行分类,称为Q型聚类;另一是对研究对象的观察指标进行分类,称为R型聚类。同时根据聚类过程不同,又分为分解法和凝聚法。
二、聚类方法(分析-分类-系统聚类-方法)
1、聚类方法。可用的选项有组间联接、组内联接、最近邻元素、最远邻元素、质心聚类法、中位数聚类法和Ward法。◎Between-groupslinkage:组间平均距离法。系统默认选项。合并两类的结果使所有的两类的平均距离最小。◎Within-groups linkage:组内平均距离法。当两类合并为一类后,合并后的类中的所有项之间的平均距离最小。◎Nearestneighbor:最近距离法。采用两类间最近点间的距离代表两 类间的距离。◎Furthest Neighbor:最远距离法。用两类之间最远点的距离代表两类之间的距离。◎Centroidclustering:重心法。定义类与类之间的距离为两类中各 样品的重心之间的距离。◎Medianclustering:中位数法。定义类与类之间的距离为两类中各 样品的中位数之间的距离。◎Ward’s method:最小离差平方和法。聚类中使类内各样品的离差平方和最小,类间的离差平方和尽可能大。
2、度量。允许您指定聚类中使用的距离或相似性测量。选择数据类型以及合适的距离或相似性测量:◎Euclideandistance:欧氏距离。◎SquaredEuclideandistance:欧氏距离平方。两项之间的距离是每个变量值之差的平方和。系统默认项。◎Cosline:余弦相似性测度,计算两个向量间夹角的余弦。◎Pearsonconelation:皮尔逊相关系数。它是线性关系的测度,范围是-1~+1。◎Chebychev:切比雪夫距离。◎Block:曼哈顿(Manhattan)距离,两项之间的距离是每个变量值之差的绝对值总和。◎Minkowski:闵科夫斯基距离。◎Customized:自定义距离。
2.1、区间。可用的选项有Euclidean距离、平方Euclidean距离、余弦、Pearson相关性、Chebychev、块、Minkowski及定制。
2.2、计数。可用的选项有卡方测量和phi平方测量。
2.3、二分类。可用的选项有Euclidean距离、平方Euclidean距离、尺度差分、模式差分、方差、离差、形状、简单匹配、Phi 4点相关性、lambda、Anderberg的D、骰子、Hamann、Jaccard、Kulczynski 1、Kulczynski 2、Lance和Williams、Ochiai、Rogers和Tanimoto、Russel和Rao、Sokal和Sneath 1、Sokal和Sneath 2、Sokal和Sneath3、Sokal和Sneath 4、Sokal和Sneath 5、Yule的Y以及Yule的Q。
3、转换值。允许您在计算近似值之前为个案或值进行数据值标准化(对二分类数据不可用)。可用的标准化方法有z得分、范围1至1、范围0至1、1的最大量级、1的均值和使标准差为1。
4、转换度量。允许您转换距离测量所生成的值。在计算了距离测量之后应用这些转换。可用的选项有绝对值、更改符号和重新调整到0–1范围。
三、统计量(分析-分类-系统聚类-统计量)
1、合并进程表。显示在每个阶段合并的个案或聚类、所合并的个案或聚类之间的距离以及个案(或变量)与聚类相联结时所在的最后一个聚类级别。
2、相似性矩阵。给出各项之间的距离或相似性。
3、聚类成员。显示在合并聚类的一个或多个阶段中,每个个案被分配所属的聚类。可用的选项有单个解和一定范围的解。
⑶ 什么是系统聚类分析系统聚类方法有几种
1.k-mean聚类分析 适用于样本聚类; 2.分层聚类 适用于对变量聚类; 3.两步聚类 适用于分类变量和连续变量聚类; 4.基于密度的聚类算法; 5.基于网络的聚类; 6.机器学习中的聚类算法; 前3种,可用spss简单操作实现;
⑷ 系统聚类的原理
确定了距离和相似系数后就要进行分类。分类有许多种方法,最常用的一种方法是在样品距离的基础上定义类与类之间的距离。首先将n个样品分成n类,每个样品自成一类,然后每次将具有最小距离的两类合并,合并后重新计算类与类之间的距离,这个过程一直持续到将所有的样品归为一类为止,并把这个过程画成一张聚类图,参照聚类图可方便地进行分类。因为聚类图很像一张系统图,所以这种方法就叫系统聚类法。系统聚类法是在实际中使用最多的一种方法,从上面的分析可以看出,虽然我们已给了计算样品之间距离的方法,但在实际计算过程中还要定义类与类之间的距离。定义类与类之间的距离也有许多方法,不同的方法就产生了不同的系统聚类方法,常用的有如下六种:
(1)最短距离法:类与类之间的距离等于两类最近样品之间的距离;
(2)最长距离法:类与类之间的距离等于两类最远样品之间的距离:
(3)类平均法:类与类之问的距离等于各类元素两两之间的平方距离的平均;
(4)重心法:类与类之间的距离定义为对应这两类重心之间的距离对样品分类来说,每一类的类重心就是该类样品的均值;
(5)中间距离法:最长距离法夸大了类间距离,最短距离法低估了类间距离介于两者问的距离法即为中间距离法,类与类之问的距离既不采用两类之间最近距离。也不采用最远距离,而是采用介于最远和最近之间的距离;
(6)离差平方和法(Ward法):基于方差分析的思想,如果分类正确,同类样品之间的离差平方和应当较小,类与类之间的离差平方和应当较大
⑸ 聚类分析方法有哪些
问题一:什么是聚类分析?聚类算法有哪几种 聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于
分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行
定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识
难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又
将多元分析的技术引入到数值分类学形成了聚类分析。
聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论
聚类法、聚类预报法等。
聚类分析计算方法主要有如下几种:分裂法(partitioning methods):层次法(hierarchical
methods):基于密度的方法(density-based methods): 基于网格的方法(grid-based
methods): 基于模型的方法(model-based methods)。
问题二:聚类分析方法有什么好处 5分 聚类分析:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。
常用聚类方法:系统聚类法,K-均值法,模糊聚类法,有序样品的聚类,分解法,加入法。
注意事项:
1. 系统聚类法可对变量或者记录进行分类,K-均值法只能对记录进行分类;
2. K-均值法要求分析人员事先知道样品分为多少类;
3. 对变量的多元正态性,方差齐性等要求较高。
应用领域:细分市场,消费行为划分,设计抽样方案等
优点:聚类分析模型的优点就是直观,结论形式简明。
缺点:在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映珐试间内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。
问题三:什么是聚类分析? 聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于
分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行
定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识
难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又
将多元分析的技术引入到数值分类学形成了聚类分析。
聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论
聚类法、聚类预报法等。
聚类分析计算方法主要有如下几种:分裂法(partitioning methods):层次法(hierarchical
methods):基于密度的方法(density-based methods): 基于网格的方法(grid-based
methods): 基于模型的方法(model-based methods)。
问题四:常用的聚类方法有哪几种?? 1.k-mean聚类分析 适用于样本聚类;
2.分层聚类 适用于对变量聚类;
3.两步搐类 适用于分类变量和连续变量聚类;
4.基于密度的聚类算法;
5.基于网络的聚类;
6.机器学习中的聚类算法;
前3种,可用spss简单操作实现;
问题五:spss聚类分析方法有哪些 首先,k-means你每次算的结果都会不一样,因为结果跟初始选取的k个点有关
问题六:聚类分析方法是什么? 5分 聚类分析:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。
问题七:聚类分析的算法 聚类分析是数据挖掘中的一个很活跃的研究领域,并提出了许多聚类算法。传统的聚类算法可以被分为五类:划分方法、层次方法、基于密度方法、基于网格方法和基于模型方法。1 划分方法(PAM:PArtitioning method) 首先创建k个划分,k为要创建的划分个数;然后利用一个循环定位技术通过将对象从一个划分移到另一个划分来帮助改善划分质量。典型的划分方法包括:k-means,k-medoids,CLARA(Clustering LARge Application),CLARANS(Clustering Large Application based upon RANdomized Search).FCM2 层次方法(hierarchical method) 创建一个层次以分解给定的数据集。该方法可以分为自上而下(分解)和自下而上(合并)两种操作方式。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。典型的这类方法包括:BIRCH(Balanced Iterative Recing and Clustering using Hierarchies) 方法,它首先利用树的结构对对象集进行划分;然后再利用其它聚类方法对这些聚类进行优化。CURE(Clustering Using REprisentatives) 方法,它利用固定数目代表对象来表示相应聚类;然后对各聚类按照指定量(向聚类中心)进行收缩。ROCK方法,它利用聚类间的连接进行聚类合并。CHEMALOEN方法,它则是在层次聚类时构造动态模型。3 基于密度的方法,根据密度完成对象的聚类。它根据对象周围的密度(如DBSCAN)不断增长聚类。典型的基于密度方法包括:DBSCAN(Densit-based Spatial Clustering of Application with Noise):该算法通过不断生长足够高密度区域来进行聚类;它能从含有噪声的空间数据库中发现任意形状的聚类。此方法将一个聚类定义为一组“密度连接”的点集。OPTICS(Ordering Points To Identify the Clustering Structure):并不明确产生一个聚类,而是为自动交互的聚类分析计算出一个增强聚类顺序。。4 基于网格的方法,首先将对象空间划分为有限个单元以构成网格结构;然后利用网格结构完成聚类。STING(STatistical INformation Grid) 就是一个利用网格单元保存的统计信息进行基于网格聚类的方法。CLIQUE(Clustering In QUEst)和Wave-Cluster 则是一个将基于网格与基于密度相结合的方法。5 基于模型的方法,它假设每个聚类的模型并发现适合相应模型的数据。典型的基于模型方法包括:统计方法COBWEB:是一个常用的且简单的增量式概念聚类方法。它的输入对象是采用符号量(属性-值)对来加以描述的。采用分类树的形式来创建一个层次聚类。CLASSIT是COBWEB的另一个版本.。它可以对连续取值属性进行增量式聚类。它为每个结点中的每个属性保存相应的连续正态分布(均值与方差);并利用一个改进的分类能力描述方法,即不象COBWEB那样计算离散属性(取值)和而是对连续属性求积分。但是CLASSIT方法也存在与COBWEB类似的问题。因此它们都不适合对大数据库进行聚类处理.传统的聚类算法已经比较成功的解决了低维数据的聚类问题。但是由于实际应用中数据的复杂性,在处理许多问题时,现有的算法经常失效,特别是对于高维数据和大型数据的......>>
问题八:主成分分析法和聚类分析法的区别
问题九:聚类分析方法具体有哪些应用?可不可以举个例子? 比如说现在要把n个产品按产品的m个指标继续聚类,因为产品可能之前的特色是不一样的。而这个时候影响产品的因素有m个,不可能一个一个的考虑,那样是分不出类来的。所以只能对产品的m个指标综合考虑,采用SPSS中的样本聚类方法,就可以直接将产品分好类。并且从分析结果还可以看出各类产品的特色分别是什么。。就是最主要的分类标准是什么。
聚类分析不仅可以用于样本聚类,还可以用于变量聚类,就是对m个指标进行聚类。因为有时指标太多,不能全部考虑,需要提取出主要因素,而往往指标之间又有很多相关联的地方,所以可以先对变量聚类,然后从每一类中选取出一个代表型的指标。这样就大大减少了指标,并且没有造成巨大的信息丢失。