‘壹’ ols,gls,fgls和wls的区别
ols,gls,fgls和wls的区别有计算方法、概念、回归模型等的区别。
一、方法上的区别
GLS是(广义最小二乘估计量)是一种常见的消除异方差的方法.它的主要思想是为解释变量加上一个权重,从而使得加上权重后的回归方程方差是相同的.
因此在GLS方法下我们可以得到估计量的无偏和一致估计,并可以对其进行OLS下的t检验和F检验。
二、概念上的区别
OLS是最小二乘法,用于一元或多元回归,其基本思想是minQ=∑(Yi-β0-β1Xi);
FGLS又称可行的GLS,用于解决当异方差函数未知的情况下采用的方法;
WLS是加权最小估计量,当方差函数已知的情况下用于矫正异方差性的GLS估计量,其思想是,对误差方差越大的观测赋予越小的权数,而在OLS中每个观测的权数一样。;
在线性条件下,OLS是GLS的一种特殊形式。具体说,GLS修正了线性模型随机项的异方差和序列相关问题!在没有异方差和序列相关情形下,GLS=OLS。
三、回归模型上的区别
在高-马经典假设下,回归模型叫ordinaryregressionmodel,我们知道,在此条件下,得到的OLS是BLUE的,但这个假定更现实的是如二楼所说的放宽同方差的假定,此时的回归模型是generalizedregressionmodel在这种模型里,如果varience-covariencematrix是已知的,则GLS可行,这就是我们书上常看到的FGLS。
但如果varience-covariencematrix是不知道的,则我们需要估计出varience-covariencematrix,进而得到FGLS,但此时的估计量是一致的渐近有效的估计量。另外,我们常看到的WLS实际就是FGLS,因而是blue的,但是并不是所有的FGLS都是blue的。
以上就是ols,gls,fgls和wls计算方法、概念、回归模型的区别。
(1)最常用的异方差方法扩展阅读
最小二乘法历史与发展过程:1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。
高斯使用的最小二乘法的方法与1809年他的着作《天体运动论》中,勒让德于1806年独立发明“最小二乘法”,但因不为世人所知而默默无闻。勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-马尔可夫定理。
‘贰’ 异方差的解决方法
异方差性的检测方法
1、残差图
通过绘制残差图,将残差项分别与模型的自变量X或者因变量Y,作散点图,查看散点是否有明显的规律性。
残差图
通常存在异方差时,散点图会呈现出自变量X值越大,残差项越大/越小的分布规律。如上图中散点图呈现出这样的规律性,说明模型具有异方差性。
2、white检验
怀特检验是最常用于检验异方差的方法。SPSSAU中会自动输出怀特检验结果。
3、BP检验
除此之外,也可用BP检验结果判断,SPSSAU中会自动输出此结果。如果BP结果与white检验结果出现矛盾,建议以怀特检验结果为准。
通过案例也许能够能清楚地说明,以下是关于工资的影响因素的OLS回归分析。共涉及四个因素分别是起始工资、性别、受雇月数和受教育年限。采用OLS回归,得到如下结果:
SPSSAU分析界面
SPSSAU-OLS回归分析结果
由上图可得到起始工资、受雇时间、受教育时间对当前工有显着的正向影响关系。
但根据异方差检验结果显示,White检验和BP检验均拒绝原假设(P<0.05)(原假设为模型没有异方差),说明模型存在异方差问题,因此需要进一步处理。
异方差性处理方法
解决异方差问题一般有三种办法,分别是数据处理(取对数)、Robust稳健标准误回归和FGLS法;三种办法可以同时使用去解决异方差问题。
1. 对原数据做对数处理
针对连续且大于0的原始自变量X和因变量Y,进行取自然对数(或10为底对数)操作,如果是定类数据则不处理。
取对数可以将原始数据的大小进行‘压缩’,这样会减少异方差问题。事实上多数研究时默认就进行此步骤处理。负数不能直接取对数,如果数据中有负数,研究人员可考虑先对小于0的负数,先取其绝对值再求对数,然后加上负数符号。