A. 免疫学技术知识总结 第二章
第二章 抗体制备技术
抗体的基本概念:多克隆抗体(多个淋巴细胞克隆所分泌的抗体)和单克隆抗体(单个B淋巴细胞克隆所分泌的抗体)
单克隆抗体的特点:
高度均质(同一亚类),化学组成均一,不含或很少含Ig
特异性强,只针对某一种抗原表位
亲和力强
抗原用量少,无须纯化
无批间差异
来源稳定,可达批生产,容易标准化
不易形成沉淀线
操作比较麻烦
什么条件下需要制备单抗:
目的蛋白有类似的结构
抗原不纯,无法分开
多抗的效果不好(已经排除非特异性反应)
希望将抗体用于治疗,研制成药物
希望将抗体用于诊断,研制成诊断试剂。
第一节 多克隆抗体的之别
一、多克隆抗体制备的原理
抗体制备、动物免疫、抗体纯化
二、多抗的基本条件
1. 免疫原的制备
颗粒性抗原:细胞、病毒、细菌等,一般具有较强的免疫原性,可以不加佐剂,直接进行腹腔注射。
可溶性抗原:可溶性抗原的来源主要是天然纯化,或者用目的基因在原核细胞或者真核细胞中表达,可溶性抗原需要与弗氏佐剂完全或不完全混匀,才可以进行免疫。
(1) 完全抗原的提取:细胞破碎法、抗原提取、抗原的纯化
(2)半抗原与载体的交联:载体的选择、半抗原与载体偶联的方法、偶联复合物的鉴定
(3)合成肽抗原:免疫原性肽的选择、肽的合成和纯化
2. 免疫动物的选择:
3. 佐剂的准备:
佐剂的种类:无机佐剂、有机佐剂、合成佐剂、油剂
三、多克隆抗体制备的基本方法
1. 抗原计量、免疫途径与免疫日程
免疫动物的方法:
免疫原值被:
无佐剂免疫法:适用于颗粒性抗原
弗氏佐剂免疫法:适用于可溶性抗原
铝佐剂免疫法:适用于人的免疫
免疫动物(一般选择雌性动物,温顺并且可以生产)
皮内免疫法
皮下或肌肉免疫法
淋巴结免疫法
混合法
抗体效价满意后静脉注射加强免疫
常见的注射方法;皮下注射、皮内注射、尾静脉注射、静脉注射
2. 小样试血与采血
抗血清的获得:眼眶取血、颈动脉放血、心脏采血
免疫效果评价:取血(兔耳动脉、鼠尾静脉)、检测(双向免疫扩散、ELISA)
3. 抗体的分离和纯化技术
盐析法、凝胶过滤法、离子交换层析、亲和层析法、电泳分离法
亲和层析法原理:利用蛋白质之间的特异性结合(抗原-抗体、受体-配体)将一种配基与凝胶颗粒结合,捕捉与他相配的物质,洗脱另外一种物质,并且洗脱一般用改变pH的方法。
主要步骤:将蛋白质与活化柱子结合,将腹水或者血清处理后过柱子,用结合缓冲液洗柱子(知道A280为零),永安氨酸缓冲液洗脱抗体,等量收集洗脱液,测定洗脱液的A280值,保留A280值明显升高的样品。
4. 抗体的鉴定
蛋白质浓度的测定:紫外分光比色法、双缩脲法、福林酚法、
免疫效果评价:双向免疫扩散、ELISA
纯度分析:免疫印迹(WB)
抗体类别分析:免疫金试条
亲和力分析:ELISA、荧光偏振
5. 抗体的保存
抗体的浓缩:吸收、蒸发、超滤
抗体的保存:浓缩抗议+甘油+防腐剂
免疫效果不佳的原因可能是:抗原纯度不够、免疫原性低、免疫途径乳化不合格、免疫剂量不合适、动物疾病或者种属差异小。
第二节 单克隆抗体制备技术
一、单克隆抗体制备的原理
1个B细胞只能产生1个抗体。方法是细胞工程杂交技术和B细胞杂交瘤技术
需要将单克隆B细胞和肿瘤细胞相结合才可以永久产生单抗
Barski等发现细胞额自然融合现象,但是频率很低
冈田等发现灭火的仙台禀赋和聚乙二醇能显着提高细胞融合的效率。
二、单抗制备的基本条件
需要培养正常的B细胞以及B细胞融合的肿瘤细胞
1. 动物的免疫抗原与载体、动物的选择、免疫途径
举例:小鼠免疫
第一次免疫:可溶性抗原加弗氏完全佐剂——小鼠背部皮下注射(4周后)
第二次免疫:可溶性抗原加弗氏不完全佐剂——小鼠背部皮下注射(3周后)
第三次免疫:可溶性抗原加生理盐水——小鼠腹腔注射(10天后检测血清效价)
加强免疫:可溶性抗原加生理盐水——小鼠腹腔注射(3天后)
细胞融合
2. 酶缺陷型骨髓瘤细胞的培养
细胞DNA合成途径:
次黄嘌呤(H)通过嘌呤合成跑路途经合成HGPRT(次黄嘌呤鸟嘌呤磷酸核糖转移酶)进一步合成鸟嘌呤核苷酸
胸腺嘧啶核苷(T)通过嘧啶合成旁路途经合成TK(胸腺嘧啶核苷激酶),进一步合成胸腺嘧啶脱氧核苷酸
氨基酸、谷氨酰胺、鸟核苷单磷酸通过核酸生物合成主要途径结合上面两步合成的鸟嘌呤核苷酸以及胸腺嘧啶脱氧核苷酸形成DNA
将第三步当中氨基端变为氨基碟呤(A),则无法形成DNA。
因此酶缺陷型细胞的筛选就是HAT筛选
3. 单抗检测方法的建立
免疫酶技术
免疫荧光技术
免疫扩散技术
三、单抗制备的基本方法
1. 酶缺陷型骨髓瘤细胞的培养
组织培养的基本条件:
仪器:包括CO2培养箱、倒置显微镜、超净台、液氮罐、低速低温离心机
试剂:培养液、HAT选择培养液、HT培养液、血清、抗生素
耗材:培养板、培养品、吸管、移液管
骨髓瘤细胞系的选择要点:
(1) 所选的骨髓瘤细胞应与提供免疫脾细胞的动物品系相同
(2) 自身不产生免疫球蛋白的重链和轻链
(3) 对氨基碟呤敏感
(4) 与免疫脾细胞融合后产生稳定分泌的Ig杂交细胞
2. 饲养细胞的制备
饲养细胞的作用:
(1) 增加细胞浓度,满足新生杂交瘤细胞对细胞密度的要求
(2) 吞噬清楚死亡的细胞
(3) 分泌生长刺激因子促进杂交瘤细胞的生长
饲养细胞的种类和制备方法
(1) 小鼠腹腔巨噬细胞
(2) 小鼠脾细胞
(3) 成纤维细胞
3. 脾细胞的分离
(1) 拉颈椎处死小鼠
(2) 无菌操作取出脾脏
(3) 清洗、研磨
(4) 收集细胞
(5) 离心洗涤
(6) 细胞计数
4. 细胞融合:骨髓瘤细胞和脾细胞按照1:10或1:5的比例混合并加入促融剂PEG
细胞融合的方法:PEG融合、仙台病毒、电融合
5. HAT选择性培养
HAT选择性培养的原理:细胞的DNA生物合成右主要途径和补偿途径。当A存在是,能够阻断DNA合成的主要途径,须通过补偿途径合成DNA,这时就需要HGPRT利用H合成DNA,或者TK利用T合成DNA。
由于选用西黄嘌呤鸟嘌呤荷塘转移酶缺陷型(HPRR-)骨髓瘤在细胞或者胸腺嘧啶割肝激酶缺陷型(TK-)细胞作为亲本,该校只能通过群全条件的DNA培养基才可合成,因此杂种细胞通过互补作用获得HGPPT或者TK基因。只有杂种细胞可以活,酶缺乏性细胞完全无法存活,单克隆B细胞一般不能长期生长,就起到了分离杂交细胞的作用。
细胞生长情况:融合3-4天之后,可以看到刑诉骨髓瘤细胞,混元透亮的克隆。融合后第7-9天去培养上清,检测特异性抗体。
筛选后存活的细胞就是脾细胞和骨髓瘤细胞融合细胞。
6. 阳性克隆的筛选
分泌单克隆抗体杂交瘤细胞的检测方法
免疫酶技术:简介ELISA法
免疫荧光技术:间接免疫荧光测定法、流式细胞分析技术(阴性对照:骨髓瘤细胞培养上清,阳性对照:免疫鼠血清)
7. 克隆化培养:阳性细胞的单克隆化
克隆是指由单个细胞繁殖、扩增而形成的性状均一的细胞集落的过程。
常见方法有:有限稀释法和软琼脂克隆技术
有限稀释法:从阳性分泌孔收集杂交瘤细胞。
软琼脂克隆技术:从阳性分泌孔中收集杂交瘤细胞,一适当浓度杂交瘤细胞加入到软琼脂培养基中,形成有一个细胞增殖来的细胞集群。
单克隆抗体的鉴定:
(1) 抗体敏感性检测:对腹水和培养基上清进行效价测定
(2) 抗体特异性鉴定:是否与其他抗原右交互反应。
(3) 抗体效价测定
(4) 抗体亚类鉴定:IgG(IgG1、IgG2、IgG3)、IgM
(5) 抗体亲和力鉴定
(6) 识别表位分析
8. 单克隆抗体的扩大生产:细胞培养法、小鼠体内诱生法、生物反应器
细胞培养法:杂交瘤细胞、培养瓶或罐中培养、收集上清液、纯化抗体
动物体内诱生法:Balb/c小鼠、腹腔注射0.5ml液体是啦或降植烷、腹腔内接种杂交瘤细胞、收集腹水
生物反应器:发酵罐培养
单抗培养常见的问题:
(1) 污染:培养环境、操作
(2) 融合细胞不生长:PEG、血清、HAT培养基
(3) 抗体分泌不足:支原体污染、细胞突变、培养体系有问题
(4) 杂交瘤细胞难以克隆化:血清质量、细胞活性
第三节 基因工程抗体制备技术
基因工程抗体:通过基因工程的手段,按照个人意愿进行细胞人工改造的技术。
优点主要有:特异性高、质量稳定、成本低廉、工艺简单、异源性滴低、穿透性好、功能丰富。
一、鼠源抗体人源化
鼠源抗体应用中的障碍:免疫原性、半衰期短、抗体功能片段失活。
1. 嵌合抗体:可变区基因克隆、表达载体的构建、嵌合抗体的表达
2. 改型抗体
二、小分子抗体:Fab抗体、Fv抗体和单链抗体、单域抗体、最小识别单位
小分子抗体的优点:
(1)可在原核体系中表达,降低生产成本。
(2)因为其分子量小,穿透能力强,易进入病灶部位,有利于对肿瘤等疾病的治疗。
(3)不含Fc片段,不与Fc受体结合,可减少因广泛分布的Fc受体而带来的不利影响。
(4)在体内半衰期短,有利于体内毒性物质的消除
(5)易于进一步基因工程分改造。
三、]基于抗体的应用
1. CAR-T免疫治疗:
CAR-T免疫疗法:即嵌合抗原受体T细胞免疫疗法,是一种新型的过继性细胞疗法,即利用病人自身的免疫细胞来清除癌细胞的细胞疗法,并非药物。
CAR-T技术:通过整个嵌合抗原受体的经过基因修饰的T细胞抵抗肿瘤细胞的疗法。嵌合抗原受体可以特异性识别肿瘤相关抗原或者肿瘤特异性抗原,识别结合后将激活及增值信号传递到T细胞内,引起T细胞激活,增殖释放细胞因子,从而杀伤肿瘤细胞。
2. 免疫检查点
3. 免疫毒素
4. ADC
5. 双特异性抗体
第四节 [endif]抗体库技术
抗体库技术:即用基因克隆技术将全套抗体轻重链可变区基因克隆出来,重组到原核表达载体上,通过原核系统直接表达有功能的抗体分子片段,并筛选出特异性的抗体分子和可变区基因。
一、噬菌体展示技术原理:噬菌体展示技术是将外源蛋白质或者DNA序列查到噬菌体外壳上的适当位置,使外源基因随着外壳蛋白的表达而表达,同时,外源蛋白随着噬菌体的重新组装而展现倒是菌体表面的生物技术。到目前为止,人们已经靠发出单链丝状噬菌体展示系统、T4噬菌体展示系统、λ噬菌体展示系统等。
二、噬菌体抗体制备的基本程序
1. 收集淋巴细胞提取mRNA并转录到cDNA或直接提取斯堡基因组的DNA
2. 扩增DNA的抗体可变区基因
3. [构建重组噬菌体库
4. 筛选所需特征的重组噬菌体
5. 采用突变或链置换使亲和力成熟
三、噬菌体抗体技术的特点
1. 筛选步骤简单、快速、有效
2. 扩大了筛选流量,一次就可以筛选多于1010个的克隆
3. 抗体基因型与表现性联系密切,基因稳定且容易改造
4. 模拟天然免疫系统亲和力成熟过程
5. 无需人工接种
6. 可替代动物多克隆抗体
7. 构建康体苦时。轻重链可变区基因在体外随机组合,可产生体内部存在的轻重链组合,得到新的特异性抗体。
8. 可以在预案和系统中表达,大规模生产方便,且成本低。
四、抗体库技术的应用
1. 制备全人源抗体
2. 改良基因工程抗体
B. 请问检测动物机体免疫功能的方法都有哪些
细胞免疫(CMⅠ)是由多种细胞相互作用的结果。免疫细胞间相互作用导致多种细胞因子的释放。因此细胞功能测定不仅涉及T细胞的数量和功能与包括各类因子活性测定,因此评价机体的细胞免疫功能不仅程序复杂,且很难标准化
一、迟发型过敏反应的体外检测方法
皮肤试验和接触性过敏的诱发是检测迟发型过敏反应(DTH)的两种常用方法。皮肤试验中诱发对曾经使病人致敏的抗原的再次应答,而接触性过敏是测试受者对从未接触过的物质发生致敏的能力。
1.皮肤试验 用皮肤试验诊断DTH,常用的抗原有结核菌纯蛋白衍生物(PPD)、腮腺炎病毒、念珠菌素等,在人类试验时在前臂皮内注射少量可溶性抗原,24~48小后,测量红肿硬结的大小,硬结直径大于10mm即被看作为阳性。表明受试者对该病原菌有了一定的细胞免疫能力,若皮试无反应,可用更高浓度的抗原重复试验,若仍无反应即为阴性,需排除皮试技术误差,也可能受试者从未接触过此抗原,也可能由于细胞免疫功能缺损,或由于细胞免疫功能缺损,或由于严重感染(麻疹、慢性播散性结核)造成的无反应性。
2.接触性过敏常应用低分子量化合物如二硝基氯苯(DNCB)诱生接触性过敏。化合物与皮肤蛋白质结合而导至DTH反应。在动物试验时,初次皮肤上涂抹DNCB后间隔7~10天再激发刺激,则皮肤出现即为阳性。此试验人类已不使用。
二、细胞免疫的体外检测方法
体外检测淋巴细胞的数量和功能,最易采集的是血标本,首先需分离或纯化淋巴细胞,一般使用萄聚糖-泛影葡胺配成比重为1.077的淋巴细胞分层液,当将血液重叠于淋巴细胞分层液之上离心时,由于红细胞(1.092)、多形核白细胞(1.090)、淋巴细胞(1.070)的比重不同而相互分开。淋巴细胞和单核细胞在血浆和分层液交界处形成一薄层。仔细分出这一薄层的细胞,其中淋巴细胞占80%,单核细胞占20%,淋巴细胞中T细胞占80%,B细胞占4%~10%,其作为非DT、非B细胞。
1.T细胞计数
(1)E花环法:人类T细胞表面有SRBC受体(CD2)能与SRBC结合形成玫瑰花环样结构,将经分层液分离现的RBM悬液与SRBC在含有血清的平衡盐水中混合,经37℃培养5~10分钟放4℃过夜,取细胞悬计数,外周血淋巴细胞中约70%~80%淋巴细胞结成花环即为T细胞。目前此方法已用来分离T细胞,而不用做T细胞计数。
(2)用单克隆抗体计数T细胞:将人的PBM分成三等份,分别用小鼠抗人CD3、CD4和CD8的单克隆抗体作第一抗体与细胞结合,再用FITC标记的兔抗小鼠IgG抗体作第二抗体进行间接免疫荧光染色,在荧光显微镜下或流式细胞仪检测结果,在PBM中被CD3抗体染上荧光的细胞称为CD3+细胞即总T细胞。正常人在PBM中T细胞占70%~80%。正常人的CD4+细胞和CD8+细胞之和应与CD3+细胞数一致。CD4+细胞与CD8+细胞的比值正常人约为2/1而艾滋病患者则比值小于1.7。
2.T细胞活化试验 T细胞能被非特异的物质称为有丝分裂原所激活而向淋巴母细胞转化。T细胞转化过程可伴随有DNA、RNA、蛋白质的合成增加,最图导致细胞分裂。在光学显微镜下可计数转化后的淋巴细胞数,也可用氚标记的胸腺嘧啶核苷(3HTdR)掺入正在分裂的淋巴细胞,用液闪测定仪检查掺入正在分裂的淋巴细胞,用液测量仪检查掺入的3H-TdR的多少确定淋巴细胞转化率。最近有一种不用同位素,又可用仪器测量的淋巴细胞增殖反应的检查法,称为MTT检测法,MTT是一种甲氮唑盐,它是细胞线粒体脱氢酶的底物,细胞内的酶可将MTT分解产生蓝黑色甲(fromazan)产物。该产物的多少与活性细胞数正相关。结果可用酶标检测仪(595mm)测量汇丰银行密度,做为MTT法的检查指标。此法的结果与3H-TdR掺入法平行,并能反应试验中的活细胞数(表20-3)。
表20-3 淋巴细胞增殖反应的刺激物
分裂原
T细胞
B细胞
植物血凝素(PHA)
+
-
刀豆蛋白A(ConA)
+
-
美洲商陆(PWM)
+
+
葡萄球菌蛋白A(SPA)
±*
+
副伤寒杆B(SPB)
±
+
注: PWH主要是T细胞分裂原,也可通过刺激T细胞分泌可溶性因子诱导B细胞增殖分化;
*SPA诱导B细胞分裂不需要T细胞协助,但诱导B细胞激活抗体分泌细胞需要T细胞协助
3.细胞毒试验 TC细胞、NK细胞、LAK细胞、TIL细胞对其靶细胞有直接的细胞毒(杀伤)作用。常用的栓测细胞毒效应的方法是51Cr-Na2Cro4盐水溶液与靶细胞胞混合,于37℃培养1小时左右,51Cr即可进入靶细胞,与胞浆蛋白结合,洗去游离的51Cr后,即可得到51Cr标记的靶细胞,将待检细胞毒性的细胞与51Cr标记的靶细胞混合(比例约为50:1或100:1)靶细胞被杀伤越多,释放到上清液中的液游离的51Cr越多,且不能被其他细胞吸收。用γ射线测量仪检测上清液中的cpm值,即可计算出待检细胞杀伤活性的高低。
细胞毒试验检测Tc细胞效应功能是否健全,及经IgG介导的ADCC效应,或NK细胞在抗肿瘤免疫中的作用是有意义的。
4.混合淋巴细胞的反应(MIR) 是体外研究T细胞的较好的方法,双向MLR常被用来筛选骨髓移植的供体。来自不同供体的淋巴细胞分别与病人的淋巴细胞混合培养4~5天,在最后8小时掺入51TdR掺入法测T细胞的反应性。或用细胞毒法观察受刺激的T细胞与活的靶细胞混合(靶细胞来自与刺激细胞相同的个体)如果T细胞受刺激后产生了细胞毒T细胞,可杀死活的细胞,根据靶细胞释放51Cr的多少算出T细胞移动抑制因子)和LIF(白细胞移动抑制因子)来评估细胞免疫功能。近年来应用测定IL-2的免疫酶技术,操作简单,并能定量以取代了MIF和LIF的测定。单个核细胞与分裂原一起培养24小时,然后测定清液中的IL-2活性。在细胞免疫功能缺损时,特别是AIDS病人,IL-2分泌明显降低。而有些疾病,如多发性硬化、类风湿关节炎、移植排斥反应等病人体内血清中IL-2水平升高,表明病人T细胞活性增高。发生移植排斥反应的病人尿中IL-2也可升高。
也可用酶联免疫吸附试验测定各种体液中活化的T细胞脱落的IL-2受体(CD25),一般来说IL-2的水平和IL-2受体水平是平行的,IL-2和IL-2受体的检测可用于对某些疾病的监测,如移杆排斥、自身免疫病以及接受免疫抑制治疗的病人。
对体外培养的细胞进行细胞因子产生能力检测是检查细胞培养上清液中细胞因子的生物活性或抗原性。现已可用核酸杂交技术,即从组织中或细胞中提取RNA,与同位素或酶标记的该种细胞因子的cDNA探针作分子杂交试验,即印迹(dot blotting)或Northern印迹,若查出有某种因子的mRNA存在,即说明该细胞在所处培养条件下有产生某种细胞因子的能力。
C. 免疫分析方法有哪些
(1)放射免疫分析法(radioimmunoassay,RIA)。RIA技术是使用以放射性同位素(如125I、32P、3H等)作标记的抗原或抗体,用γ-射线探测仪或液体闪烁计数器测定γ-射线或β-射线的放射性强度,来测定抗体或抗原量的技术。它包括以标记抗原为特点的放射免疫分析和以标记抗体为特点的免疫放射分析(immunoradiometricassay,IRMA)。前者以液相竞争结合法居多,既测大分子抗原又测小分子抗原;后者以固相法测大分子抗原为主。
RIA在早期建立的农药免疫分析方法中占了很大比重,建立了狄氏剂、艾氏剂、2,4-D和2,4,5-T、对硫磷和百草枯等农药的放射免疫分析法。尽管该方法灵敏度非常敏锐(RIA通常为10-9g、10-12g,甚至10-15g),应用范围广,但进行RIA需使用昂贵的计数器,也存在放射线辐射和污染等问题,因此在农药残留检测领域的应用和发展受到了一定的限制,并逐步为其他免疫分析方法所取代。
(2)酶免疫分析法(enzymeimmunoassay,EIA)。EIA是继RIA之后发展起来的一项免疫分析技术。其检测原理与放射免疫法类似,但所用的标记物为酶,它将抗原、抗体的特异性免疫反应和酶的高效催化作用有机结合起来,通过测定结合于固相的酶的活力来测定被测定物的量。用做标记物的酶有辣根过氧化物酶(horseradishperoxidase,HRP)和碱性磷酸酶(alkalinephosphatase,AKP)、葡萄糖氧化酶(glucoseoxidase,GO)、脲酶(urease)等。酶标记反应的固相支持物有聚苯乙烯塑料管、膜等。目前大多数采用96孔酶标板(MTP)作为固相支持物。这种板的检测容量大,样本数量多,只需有台简单的酶标仪就可得出准确的检测数据。也有学者采用磁珠作为固相材料进行EIA研究,其原理是将高分子材料(聚苯乙烯、聚氯乙烯等)包裹到金属小颗粒(Fe2O3,Fe3O4)外面,再通过化学方法键合上氨基(-NH2)、羧基(-COOH)、羟基(-OH)等活性基团,再与抗体或抗原耦联,制成免疫性微珠。该方法的优点是微珠比表面积大,吸附能力强,能悬浮在液相中快速均匀的捕获样品中的待测物,通过外加磁场后能够实现微珠与样品液的快速分离,从而减少检测时间、提高检测灵敏度。
由于酶标试剂制备容易、稳定、价廉,酶免疫分析的灵敏度接近放射免疫技术,故近年来EIA技术发展很快,已开发了多种EIA方法。其中酶联免疫法(,ELISA)是目前农药残留检测中应用最广泛的酶免疫分析技术。
(3)荧光免疫分析法(fluorescenceimmunoassay,FIA)。FIA检测的基本原理是将抗原抗体的高度特异性与荧光的敏感可测性有机地结合,以荧光物质作为示踪剂标记抗体、抗原或半抗原分子,制备高质量的特异性荧光试剂。当抗原抗体结合物中的荧光物质受到紫外光或蓝光照射时,能够吸收光能进入激发态。当其从激发态回复基态时,能以电磁辐射形式放射出所吸收的光能,产生荧光。绘制农药浓度-荧光强度曲线,可以定性、定量检测样品中的农药残留量。
适用于抗体、抗原或半抗原分子标记的荧光素须符合要求:①应具有能与蛋白质分子形成稳定共价键的化学基团,或易转变成这类反应形式而不破坏其荧光结构;②标记后,荧光素与抗体或抗原各自的化学结构和性质均不发生改变;③荧光效率高,与蛋白质结合的需要量很少;④荧光素与蛋白质结合的过程简单、快速,游离的荧光素及其降解产物容易除去;⑤结合物在一般储存条件下性能稳定,可保存使用较长时间。
(4)化学发光免疫分析法(luminescentimmunoassay,LCIA)。LCIA又可分为化学发光免疫测定(chemiluminescentimmunoassay,CLCIA)和生物发光免疫测定(bio-luminescentImmunoassay,BLCIA)。
1976年,Shroeder首先用生物素(B)-亲和素(A)系统建立了均相化学发光免疫测定技术,尔后Halman和Velan又将其引伸到非均相体系,现已渗入到生物学研究的各个领域。其原理是以发光指示抗原与抗体的结合,当发光标记物与相应的抗体或抗原结合后,底物与酶作用,或与发光剂产生氧化还原反应,或使荧光物质(例如红荧烯等)激发,释放光能。最后用光度计测定其发光强度,进行定量分析。常用发光标记物有辣根过氧化物酶(HRP)、鲁米诺(luminol)、异鲁米诺(isoluminol)、咯粉碱(lophine)、光泽精(lucigen)、双(2、4、6-三氯苯)草酸酯、联苯三酚和6[N-(4-二氨基丁基)-N-乙基]-氨基-2,3-二氢吩嗪-1,4-二酮(ABEI)等。用上述发光标记物标记的抗体(或抗原)在一定的pH缓冲溶液中与相应的抗原(或抗体)结合时,在协同因子(例如H2O2等)的作用下发光,其发光强度与被测物的浓度成正比,故可以用于定量分析。
发光免疫测定具有特异性强、灵敏度高(检测限量达10-15mol/L)、快速(1~3h)、发光材料易得等优点。但其发光过程和强度常受到发光物质本身的化学结构、介质的pH、协同发光物质和金属离子杂质等影响。
(5)金免疫层析分析法(goldimmuno-chromatographyassay,GICA)。GICA检测原理是将配体(抗体或抗原)以线状包被固化于硝酸纤维素膜等微孔薄膜上,胶体金标记另以配体或其他物质并以干态固定在吸水材料上,通过毛细作用,使样品溶液在层析条上泳动,当泳动至胶体金标记物处时,如样品中含有待检受体,则发生第一步高度特异性的免疫反应,形成的免疫复合物继续泳动至线状包被区时,发生第二步高度特异性的免疫反应,形成的免疫复合物被截留在包被的线状区,通过标记的胶体金而显红色条带(检测带),而游离的标记物则越过检测带,与结合的标记物自动分离。通过检测带上颜色的有无或色泽深浅来实现定性或定量测定2。
2金标试纸条检测
GICA法具有快速(5~20min)、廉价、结果明确、无需复杂操作技巧和特殊设备、携带方便等优点。但相对于其他免疫分析方法,该方法检测灵敏度稍低,主要适合现场快速定性或半定量测定。目前该方法已被应用于医学和生物学等众多研究领域,尤其在发达国家已经得到了广泛的应用。
(6)免疫分析与仪器分析技术的联用技术。使用单一的IA技术进行农药残留分析获得的信息量少,而理化分析方法的选择性又比较差。Kramer等人将免疫分析法和液相色谱法(LC)联合起来使用,从而简化了分析方法,提高了检测效率。LC-IA的联用,将LC的高分离能力和IA的高灵敏性和高特异性融为一体。该分析法尤其适合多组分残留分析和微量分析。免疫分析与气相色谱/质谱(GC/MS)的联用可减少结构相似的农药或代谢产物分析中的交叉反应,以降低假阳性。
D. 免疫检测方法
免疫检测方法大全2017
免疫学检测技术的用途非常广泛,它们可用于有关免疫疾病的诊断、疗效评价及发病机制的研究。如对传染病、免疫增殖性疾病、免疫缺损病、超敏反应、自身免疫病、移植排斥反应肿瘤的免疫学检测,对诊断、治疗均有很大帮助。此外在医学生物学研究中对抗原性物质或细胞的定性、定量检查不仅推动了对各种免疫学现象的研究,而且扩大免疫学与医学生物许多领域的联系。本章仅介绍常用免疫学检测方法的原理,简要过程和实用意义。下面是我为大家带来的关于免疫学检测法的知识,欢迎阅读。
第一节抗原或抗体的检测
一、检测的原理
借助抗原和抗体在体外特异结合后出现的各种现象,对样品中的抗原或抗体进行定性、定量、定位的检测。
1.抗原与抗体的亲和力(affinity)抗原抗体的结合就像酶与底物的结合,激素与其受体的结合一样不是化学的反应,而是非共价键的可逆的结合。抗原决定簇和抗体分子可变区互补构型,造成两分子间有较强的亲和力。空间构型互补程度不同,抗原和抗体分子之间结合力强弱也不同。互补程度高,则亲和力强。此外,反应温度、酸碱度和离子浓度对抗原和抗体分子上各基因的解离性和电荷特性也有重要的影响,抗体与抗原决定簇之间的结合力大小可用亲合力来表示。高亲合力的抗体与抗原的结合力强,即使抗原浓度很低时也有较多的抗体结合抗原形成免疫复合物。
2.抗原或抗体外检测原理根据抗原抗体结合形成免疫复合物的性状与活性特点,对标本中的抗原或抗体进行定性、定位或定量的检测。定性和定位检测比较简单,即用已知的抗体和待检样品混合,经过一段时间,若有免疫复合物形成的现象发生,就说明待检样品中有相应的抗原存在。若无预期的现象发生,则说明样品中无相应的抗原存在。同理也可用已知的抗原检测样品中是否有相应抗体。
对抗原或抗体进行定量检测时,以反应中加入抗原和抗体的浓度与形成免疫复物的浓度呈函数关系。
(1)根据免疫复合物产生的多少来推算样品中抗原(或抗体)的含量:在一定的反应条件下,加入的已知抗体(或抗原)的浓度一定,反应产生的免疫复合物多少与待检样品中含有相应抗原(或抗体)量成正比。也就是抗体浓度一定时,免疫复合物越多则样品中的抗原量也越多。可用实验性标准曲线推算出样品中抗原(或抗体)的含量。如免疫单向扩散试验、免疫比浊试验和酶联免疫检测等都属于这类方法。
(2)抗原或抗体效价滴定的原理:当抗原抗体复合物形成多少不能反应抗原抗体反应强弱时,就不能以检测反应强度来对抗原或抗体进行定量。在实际工作中,把浓度低的反应成分(抗原或抗体)的浓度固定,把浓度高的另一种反应成分作一系列稀释。例如用人血清作抗原免疫3只家兔,比较3只家兔产生抗体的多少,即滴定3只兔血清抗体效价,可用双向琼脂扩散法来滴定,例如将抗体浓度固定,将抗原作不同的稀释度,分别将抗原或抗体滴入琼脂的相应小孔中,观察免疫兔血清与不同稀释度的抗原出现明显沉淀浅的抗原稀释度(如甲兔的抗体效价为1/2000,而丙免的是1/8000则可比较出后者比前者产生抗体的效价要高)。也就是表示效价的稀释度越高,样品中所含待检成分越多。因人血清(抗原)和抗体(免疫兔血清)相比,浓度高,故应稀释抗原。
二、抗原或抗体检测的实用意义
1.抗体检测的意义检测抗体可用于评价人和动物免疫功能的指标。抗体用于临床治疗或实验研究时也需做纯度分析和定量测定。临床上检测病人的抗病原生物的抗体、抗过敏原的抗体、抗HLA抗原的抗体、血型抗体及各种自身抗体,对有关疾病的诊断有重要意义。
2.抗原检测的意义可做为抗原进行检测的物质可分为以下四类:
(1)各种微生物及其大分子产物:用于传染病诊断、微生物的分类及鉴定以及对菌苗、疫苗的研究。
(2)生物体内各种大分子物质:包括各种血清蛋白(如各类免疫球蛋白、补体的各种成分)、可溶性血型物质、多肽类激素、细胞因子及癌胚抗原等均可做为抗原进行检测。在对这些成分的生物学作用的研究以及各种疾病的诊断有重要意义。
(3)人和动物细胞的表面分子:包括细胞表面各种分化抗原(如CD抗原)、同种异型抗原(血型抗原或MHC抗原)、病毒相关抗原和肿瘤相关性情抗原等。检测这些抗原对各种细胞的分类、分化过程及功能研究、对各种与免疫有关的疾病的诊断及发病机制的研究,均有重要意义。
(4)各种半抗原物质:某些药物、激素和炎症介质等属于小分子的半抗原,可以分别将它们偶联到大分子的载体上,组成人工结合的完全抗原。用其免疫动物,制备出各种半抗原的抗体,应用于各种半抗原物质的检测,例如对某些病人在服用药物后进行血中药物浓度的监测。对运动员进行服用违禁药品的检测,都是应用半抗原检测的方法。
三、抗原或抗体检测的方法
由于各种检测方法中所用的抗原性状不同,出现结果的现象也不同。最广泛应用方法有下述几种:
(一)沉淀反应
可溶性抗原与抗体结合,在两者比例合适时,可形成较大的不溶性免疫复合物。在反应体系中出现不透明的沉淀物,这种抗原抗体反应称为沉淀反应(precipitation neaction)。
1.环状沉淀试验先将含抗体的未稀释的免疫血清加到直径小于0.5cm的小试管底部。将稀释的含有可溶性抗原的材料重叠于上,让抗原与抗体在两液体的界面相遇,形成白色免疫复合物沉淀环,故名为环状沉淀试验(ring precipitationtest),此法简便易行,需用材料较多是其缺点。
2.单向免疫扩散试验单向免疫扩散试验(single immunodiffusion)是在凝胶中进行的沉淀反应。将抗体混入加热溶解的琼脂中,倾注于玻片上,制成含有抗体的琼脂板,在适当位置打孔,将抗原材料加入琼脂板的小孔内,让抗原从小孔向四周的琼脂中扩散,与琼脂中的抗体相遇形成免疫复合物。当复合物体积增加到一定程度时停止扩散,出现以小孔为中心的圆形沉淀圈,沉淀圈的直径与加入的抗原浓度成正相关。本方法简便,易于观察结果,可测定抗原的灵敏度(最低浓度)约为10~20μg/ml,常用于定量测定人或动物血清IgG、IgM、IgA和C3等,其缺点是需1~2天才能看结果
3.免疫比浊法 当抗体浓度高,加入少量可溶性抗原,即可形成一些肉眼看不见的小免疫复合物,它可使通过液体的光束发生散射,随着加入抗原增多,形成的免疫复合物也增多,光散射现象也相应加强。免疫比浊法(immunonephelomytry)就是在一定的抗体浓度下,加入一定体积的样品,经过一段时间,用光散射浊度计(nephelometry)测量反应液体的浊度,来推算样品中的抗原含量。本法敏感、快速简便,可取代单向扩散法定量测定免疫球蛋白的浓度。
4,双向免疫扩散试验 双免疫扩散试验(double immunodiffusion)是在琼脂板上按一定距离打数个小孔,在相邻的两孔内分别放入抗原和抗体材料。当抗原和抗体向四周凝胶中扩散,在两孔间可出现2~3条沉淀线,本法常用于抗原或抗体的定性或定量检测,或用于两种抗原材料的抗原相关性分析。
5.对流免疫电泳对流电泳(counterimmunoelectrophoresis)是一敏感快速的检测方法,即在电场作用下的双向免疫扩散。将琼脂板放入电泳槽内,使琼脂板的两孔沿着电场的方向,于负极侧的孔内加入抗原,于正极侧的孔内加入抗体,通电后,抗原带负电荷向正极泳动,抗体分子虽也带负电荷,但因分子量大,向正极的位移小,而受琼脂中电渗作用向负极移动,抗原和抗体能较快地集中在两孔之间的琼脂中形成免疫复合物的沉淀线。只需1小时左右即可观察结果。
6.免疫电泳 免疫电泳(immunoelectrophoresis)的方法分成两个步骤,即先进行电泳,再进行琼脂扩散。先将样品加入琼脂中电泳,将抗原各成分依电泳速度不同而分散开。然后在适当的位置上沿电泳方向挖一直线形槽,于槽内加入含有针对各种抗原混合抗体液,让各抗原成分与相应抗体进行双向免疫扩散,可形成多答卷沉淀线。常用此法进行血清的蛋白种类分析。对于免疫球蛋白缺损或增多的疾病的诊断或鉴别诊断有重要意义
7.免疫印迹法免疫印迹法(immunoblotting)又称为Western印迹法,用于AIDS的血清抗体检测。第一步,为电泳分离HIV抗原,在电场中根据分子量大小不同病毒抗原各成分散开。第二步,将电泳分离的蛋白质转移到硝酸纤维膜上(电印迹),然后将印迹有病毒抗原的硝酸纤维膜浸湿于病人血清中。如果病人血清中含有与一种或几种抗原相对应的抗体的话,则在该抗原印迹部位形成免疫复合物沉淀。在洗去未沉淀的抗原和抗体后,在膜上加标记的抗人免疫球蛋白的抗体,此抗体可以和病毒抗原与人抗体形成的免疫复合物发生反应,最后加入显色底物(如果抗人Ig是用酶标记的)或做放射自显影(抗人Ig用125Ⅰ标记)以显示结果
第一步:经电泳将HIV混合抗合抗原按分子量大小分离;
第二步:将已分离的抗原经电印迹转移到硝酸纤维膜上;
第三步:将待检病人血清加入覆盖于硝酸纤维膜上;
第四步:加入标记的第二抗体使之覆盖膜上;
第五步:加入显色底物(或放射自显影)显现第二抗体
(二)凝集反应
细菌、红细胞或表面带有抗原的乳胶颗粒等都是不溶性的颗粒抗原,当与相应抗体结合,抗原与抗体结合形成凝集团块,即称为凝集反应(agglutination)。
1.直接凝集 直接凝集(direct agglutination)是将细菌或红细胞与相应抗体结合产生的细菌凝集或红细胞凝集现象。可用于传染病诊断如肥达氏反应(Widal reaction)诊断伤寒病。或利用血细胞凝集现象检查血型。
2.间接凝集 间接凝集(indirect agglutination)是用可溶性抗原包被在乳胶颗粒或红细胞表面,与相应抗体混合出现的凝集现象。如用γ球蛋白包乳胶颗粒检测类风湿关节炎病人血清中的类风湿因子,用甲状腺球蛋白包被乳胶颗粒用于检测甲状腺球蛋的抗体。也可以将抗体吸附到乳胶颗粒上检查临床标本中的抗原,如细菌或真菌性脑膜炎抗体包被的乳颗粒,一旦与含有相应抗原的脑脊液混合,便可发生凝集,可进行快速诊断。故凝集反应即可测定抗原,也可测抗体,方法简便、敏感。
3.抗球蛋白试验 抗球蛋白试验(antiglobulin test,coombs test)的原理为间接凝集试验。例如应用于诊断自身免疫溶血性贫血症时,Rh+红细胞与抗Rh血清间的反应。因抗Rh抗体是IgG只有两个结合价,分子较小(不如IgM结合价多,分子大)很难直接引起Rh+红细胞凝集。如果加入抗IgG的抗体,就可帮助抗Rh的IgG的抗体凝集红细胞。也就是经抗Ig的作用提高凝集反应的'灵敏度。
(三)补体参与抗原抗体反应
这一类反应主要包括溶血反应(hemolytic assay)、补体介导的细胞毒试验(complement mediated cytotoxicuty test)及补体结合试验(complement fixation test)。
1.溶血反应 抗体与红细胞表面抗原相遇,形成红细胞-抗体复合物即可使加入反应中的补体活化,导致红细胞溶解,此方法可用于红细胞的各种抗原或相应抗体的检测,此法比凝集反应敏感。溶血反应也是用于抗体分泌细胞即空斑形成细胞(PFC)检测的原理。
2.补体介导的细胞毒试验各种有核细胞与针对其表面抗原的抗体相遇,所形成的免疫复合物能活化反应中的补体,引起细胞膜穿孔,在一定时间内,细胞仍能维持一定的形态不破碎,加入水溶性染如伊红Y(eosin Y)或台盼蓝(trypan blue)后,染料即可进入被活化补体穿孔的细胞,不带相应抗原细胞膜保持完整的活细胞不着色。此方法可用于带各种抗原的细胞的检测,如进行细胞MHC抗原的鉴定,和进行淋巴细胞中T细胞总数或其亚类的计数。在一些免疫学实验中也可用这种方法,根据需要特异地消除带某种抗原的细胞。
3.补体结合试验当抗原(可溶性或颗粒性)与相应抗体结合,由于浓度低不出现可见反应时,应用补体结合试验可检出此抗原抗体反应,它比凝集反应或沉淀反应灵敏度高。本法包括两个抗原抗体系统。一为检测系统由待检样品与已知抗原(或抗体)组成;另一为指示系统,由绵羊红细胞(SRBC)和抗SRBC组成。另加入作为补体的新鲜豚鼠血清。试验时试管中先加入检测系统和补体,混合经37℃30分钟使抗原、抗体、补体形成复合物,再加入指示系统,如出现溶血现象,说明检测系统中没有相对应的抗原抗体,补体是游离的指示系统的SRBC和抗体结合而出现溶血,即为反应阴性。如不出现溶血,表明检测系统中有抗原抗体复合物并结合补体,则指示系统无多余的补体作用而没有溶血现象,即为阳性。
在敏感的抗原、抗体检测方法(如酶标方法)出现之前补体结合试验曾广泛用于检测各种细菌、病毒或螺旋体(如梅毒)的抗原或抗体,由于本试验影响因素多,结果不稳定现已被新检测方法所代替。
四、用标记抗体或抗原进行的抗原、抗体反应
用荧光素、同位素或酶标记抗体或抗原,用于抗原或抗体检测是目前广泛应用的敏感、可靠的方法。上述三种常用的标记物与抗原或抗体化学连接之后不改变后者的免疫特性。本方法可用于定性、定量或定位检测。
1.免疫荧光技术免疫荧光技术(immunofluorescence techni)是用化学方法使荧光素标记的抗体(或抗原)与组织或细胞中的相应抗原(或抗体)结合,进行定性定位检查抗原或抗体的方法。
(1)直接荧光法:把荧光抗体加到待检的细胞悬液,细胞涂片或组织切片上进行染色,经抗原抗体反应后,洗去未结合的荧光抗体,将待检标本在荧光显微镜下观察,有荧光的部位即有相应抗原存在,此法可用于病毒感染细胞、带某种特异抗原的细胞(如T细胞和B细胞)或病原菌的检查,也可用于组织中沉着的免疫复合物的检查。本法的缺点是检查多种抗原,就需分别制备相应的多种标记抗体。
(2)间接荧光法:可克服直接法需制备多种荧光抗体的复杂操作。将组织或细胞上的抗原直接与相应抗体(不标记荧光)结合,此为第一抗体,再把能与第一抗体特异结合的荧光标记的抗免疫球蛋白抗体加入,此为荧光标记的第二抗体,观察结果与直接法相同。间接法比直接法敏感性高,如果用于检查抗原的第一抗体是人或动物的只需制备一种抗人或动物的免疫球蛋白荧光抗体
免疫荧光技术在传染病诊断上有广泛的用途,如在细菌、病毒、螺旋体感染的疾病,检查抗原或抗体,如查出IgM抗体,可做为近期接触抗原的标志,所以使用荧光标记抗IgM可诊断近期感染。除微生物学方面的应用外,还可利用单克隆抗体鉴定淋巴细胞的亚类。使用流式细胞仪(fluorescene-activated cell sorting,FACS),能自动检测细胞的大小、荧光强度。针对细胞表面不同抗原,可以使用两种不同的荧光染料,如用异硫氰荧光素(FITC)发黄绿荧光,用罗丹明(TMRITC)发红色荧光。由于荧光颜色不同标记两种不同的抗体,对同一细胞进行双标记染色。对淋巴细胞亚类鉴定起着巨大推动作用。应用间接荧光法也用于自身免疫病的抗核抗体检查。
2.放射免疫分析法 放射免疫分析法(radioimmunoassay RIA)应用竞争性结合的原理,应作放射性同素标记抗原(或抗体)与相应抗体(或抗原)结合,通过测定抗原抗体结合物的放射活性判断结果,本方法可进行超微量分析,敏感性高,可用于测定抗原、抗体、抗原抗体复合物。本法常用的同位素有125Ⅰ和131Ⅰ。
放射免疫分析常用的有液相法和固相法两种:
(1)液相法:将待检标本(例如含胰岛素抗原)与定时的同位素标记的胰岛素(抗原)和定时的抗胰岛素抗体混合,经一定作用时间后,分离收集抗原抗体复合物及游离的抗原,测定这两部分的放射活性,计算结合率。在反应系统中,待检标本的胰岛素抗原与同位素标记的胰岛素竞争夺战性与胰岛素抗体结合。非标记的抗原越多,标记抗原与抗体形成的复合物越少。非标记抗原含量与标记抗原抗体复合物的量呈一定的函数关系。预先用标准的非标记抗原作成标准曲线后,即可查出待检标本中胰岛素的含量
(2)固相法:将抗原或抗体吸附到固相载体表面,然后加待检标本,最后加标记抗体。测定固相载体的放射活性,常用的固相载体有溴化氰(CNBr)海豹化的纸片或聚苯乙烯小管
放射免疫分析法应用范围广泛,包括多种激素(胰岛素、生长激素、甲状腺素等)维生素、药物、IgE等。
3.酶联免疫分析法 酶联免疫分析法(enzyme immunoassay,EIA)是当前应用最广泛的免疫检测方法。本法将抗原抗体反应的特异性与酶对底物高效催化作用结合起来,根据酶作用底物后显色,以颜色变化判断试验结果,可经酶标测定仪作定量分析,敏感度可达ng水平。常用于标记的酶有辣根过氧化物酶(horseradish peroxidase)、碱性磷酶(alkaline phosphatase)等。它们与抗体结合不影响抗体活性。这些酶具有一定的稳定性,制成酶标抗体可保存较长时间。目前常用的方法有酶标免疫组化法和酶联免疫吸附法。前者测定细胞表面抗原或组织内的抗原;后者主要测定可溶性抗原或抗体。本法既没有放射性污染又不需昂贵的测试仪器,所以较放射免疫分析法更易推广。
(1)酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA):是与上述固相RIA相似的原理,将抗原或抗体吸附在固相载体表面。使抗原抗体反应在固相载体表面进行政区。可用间接法、双抗体夹心法或竞争法测定抗原或抗体。
(2)夹心法(sandwich assay):将已知的特异抗体包装在固相载体(塑料板凹孔或纸片上),加入待检标本,标本中的抗原即可与载体上的抗原结合,洗去未结合的材料后加入该抗原的酶标记抗体,洗去未结合的酶标抗体,加底物显色,用酶免疫检测仪测量颜色的光密度,可定量测定抗原。
间接法(indirecr ELISA)常用于检查特异抗体。先将已知特异抗原包被固相载体,加入待检标本(可能含有相应抗体),再加入酶标抗Ig的抗全(即第二抗体),经加底物显色后,根据颜色的光密度计算出标本中抗体的含量。
(3)BAS-ELISA:近年来对酶免设分析法的改进是使用生物素-亲合素-过氧化物酶复合物作为指示剂,组成一新的生物放大系统进一步提高检测的敏感度。可用来检测多种抗原抗体系统如细菌、病毒、肿瘤细胞表面抗原等。一个亲合素(avidin)分子可以结合4个生物素分子(biotin)。结合非常稳定。亲合素和生物素都可与抗全、酶、荧光素等分子结合,而不影响后者的生物活性。一个抗体分子可偶联90个生物素分子,通过生物素又可连接多个亲合素。因此大提高检测的敏感度。目前应用生物-酶标亲合素系统(biotinavidin system- ELISA,BAS-ELISA),它是通过生物素标记抗体连接免疫反应系统,同时借助生物素化酶或酶标亲合素引入酶与底物反应系统。
;