Ⅰ 求曲线方程的一般步骤是什么
现在新课标都教矩阵了吧,请允许我用相关知识解释一下。圆锥曲线是二次曲线,教材上的圆锥曲线方程,只是标准方程。
二次曲线的一般方程是:ax^2+by^2+cxy+dx+ey+f=0
这个方程表示什么呢?——表示所有的二次曲线,包括圆、椭圆、双曲线、抛物线、点、双直线图形和无轨迹。这些图形可以是任意平移旋转过的。
如果给定方程ax^2+by^2+cxy+dx+ey+f=0,要判断曲线类型,这时候直接看是不容易看出来的,就需要做一些处理。
(1)先考虑退化的曲线——双直线和点,当且仅当行列式det3=
|a
c/2
d/2|
|c/2
b
e/2
|
=
0
时,
|d/2
e/2
f
|
二次曲线是退化的。这时,如果det2=ab-c^2/4=0则是椭圆退化成了一点;如果不等于0,就是直线。
如果是直线,先把a化成正的,
①平行或重合直线,由(ax+by+c)(ax+by+d)=0展开对比得,ab是同号的。
当d/e=√(a/b)或者是d√b=e√a,且c=2√(ab)时,两直线斜率一样,此时,若2f=d/√a或2f=e/√b,则重合,否则平行。如果要求直线,则a=√a,b=√b,c+d=d/√a=e/√b,cd=f
②相交直线,不符合①的双直线就是相交直线,如果a=-b,则分解因式验证其是否垂直。
(2)对于非退化的二次曲线,det3≠0,这时看
det2=
|a
c/2|
|c/2
b
|
即det2=ab-c^2/4
det2>0,椭圆,如果a=b则是圆;如果det1=a+b>0(先把a化成正的)、且det3>0,则是无轨迹的图形(不算退化)。
det2<0,双曲线;
det2=0,抛物线。
----------------------
再说一下退化,对于标准形式,
椭圆左右各除以无穷大,就有x^2/a^2+y^2/b^2=0,就退化成了一点。
双曲线退化,x^2/a^2-y^2/b^2=0,退化为相交双直线,也就是她的渐近线。
抛物线退化,y^2=a,退化成了平行或重合的双直线。
三种曲线和他们的退化形式,经过旋转和平移,上文det1、det2、det3的符号特征是不变的,所以可以这样判断,这三个值,称为二次曲线的不变量。
Ⅱ 曲线拟合一般有哪些方法
曲线拟合一般方法包括:
1、用解析表达式逼近离散数据的方法
2、最小二乘法
拓展资料:
实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。
最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
Ⅲ 求双曲线方程有几种方法 例如 待定系数法 定义法 相关点法 还有什么
一、直接法由题设所给的动点满足的几何条件列出等式,再把坐标代入并化简,得到所求轨迹方程,这种方法叫做直接法.
二、定义法由题设所给的动点满足的几何条件,经过化简变形,可以看出动点满足二次曲线的定义,进而求轨迹方程,这种方法叫做定义法.
三、待定系数法由题意可知曲线类型,将方程设成该曲线方程的一般形式,利用题设所给条件求得所需的待定系数,进而求得轨迹方程,这种方法叫做待定系数法.
四、参数法选取适当的参数,分别用参数表示动点坐标,得到动点轨迹的参数方程,再消去参数,从而得到动点轨迹的普通方程,这种方法叫做参数法.
五、数形结合,由几何学的定理找到中间变量,进行替换,
我只有这五种,应付高中数学足够了,
Ⅳ 求曲线方程的一般步骤顺口溜
当时老师给总结的是“建设限代化”。即1根据题目要求建立适当的坐标系。2设出方程。3注意写出限制条件。4代入。5化简。
求曲线方程的步骤如下:
(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;
(2)写出适合条件的p(M)的集合P={M|p(M)};
(3)用坐标表示条件p(M),列出方程f(x,y)=0;
(4)化方程f(x,y)=0为最简形式;
(5)验证(审查)所得到的曲线方程是否保证纯粹性和完备性。
这五个步骤可简称为:建系、设点、列式、化简、验证 [2] 。
Ⅳ 高中数学 圆锥曲线部分有四种解题方法 求这四种方法 具体点 求学霸指点
1、牢记核心知识
核心的知识点是基础,好多同学在做圆锥曲线题时,特别是小题,比如椭圆,双曲线离心率公式和范围记不清,焦点分别在x轴,y轴上的双曲线的渐近线方程也傻傻分不清,在做题时自然做不对。
2、计算能力与速度
计算能力强的同学学圆锥曲线相对轻松一些,计算能力是可以通过多做题来提升的。后期可以尝试训练自己口算得到联立后的二次方程,然后得到判别式,两根之和,两根之积的整式。
当然也要掌握一些解题的小技巧,加快运算速度。
3、思维套路
拿到圆锥曲线的题,很多同学说无从下手,从表面感觉很难。老师建议:山重水复疑无路,没事你就算两步。大部分的圆锥曲线大题,都有共同的三部曲:一设二联立三韦达定理。
一设:设直线与圆锥曲线 的两个交点,坐标分别为(x1,y1),(x2,y2),直线方程为y=kx+b。
二联立:通过快速计算或者口算得到联立的二次方程。
三韦达定理:得到二次方程后立马得出判别式,两根之和,两根之积。
走完三部曲之后,在看题目给出了什么条件,要求什么。例如涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的 斜率、弦的中点坐标联系起来,相互转化.总结起来:找值列等量关系,找范围列不等关系,通常结合判别式,基本不等式求解。
4、圆锥曲线解题方法技巧归纳
Ⅵ 求曲线方程的几种常见方法
求曲线的轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点的轨迹方程,实质就是利用题设中的已知条件,用“坐标化”将其转化为寻求变量间的关系。
这类问题除了考查学生对圆锥曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是一大难点。
下面我们就用一道例题,来感受分析不同方法的异同。
【经典例题】
由圆x²+y²=9外一点P(5,12)引圆的割线交圆于A、B两点,求弦AB的中点M的轨迹方程。
【方法一:直接法】
根据题设条件列出几何等式,从而求出曲线方程。
这里考虑在圆中有关弦中点的一些性质,圆心和弦中点垂直于弦,可得下面解法。
【方法二:定义法】
判断并确定轨迹的曲线类型,运用待定系数法求出曲线方程。
这里我们可以得出垂直关系,在解析几何中,“垂直意味着圆”,这是需要各位有效积累的。
【方法三:交轨法】
将问题转化为求两直线的交点轨迹问题。
在本题中,因为动点M可看作直线OM与PM的交点,而由于它们的垂直关系,从而获得解法。
【方法四:点差法】
设而不求,代点运算,这是点差法的精髓。通过中点公式联系起来,点差法通常是涉及弦中点问题的重要解题法宝。
根据共点的斜率相等,可求得轨迹方程。
喜