A. 基因检测最方便最快捷最准确的方式有哪些
需要按照实际需求去选择,没有哪个最好的说法,合适的就是最好的常用基因诊断技术:一、Southern印迹法(Southern blot)基本原理是:硝酸纤维膜或尼龙滤膜对单链DNA的吸附能力很强,当电泳后凝胶经过DNA变性处理,覆以上述滤膜,再于其上方压上多层干燥的吸水纸,借助它对深盐溶液的上吸作用,凝胶上的单链DNA将转移到滤膜上。转移是原位的,即DNA片段的位置保持不变。转移结束后,经过80℃烘烤的DNA,将原位地固定于膜上。当含有特定基因片段已原位转移到膜上后,即可与同位素标记了的探针进行杂交,并将杂交的信号显示出来。杂交通常在塑料袋中进行,袋内放置上述杂交滤膜,加入含有变性后探针的杂交溶液后,在一定温度下让单链探针DNA与固定于膜上的单链基因DNA分子按碱基到互补原理充分结合。结合是特异的,例如只有β珠蛋白基因DNA才能结合上β珠蛋白的探针。杂交后,洗去膜上的未组合的探针,将Ⅹ线胶片覆于膜上,在暗盒中日光进行放射自显影。结合了同位素标记探针的DNA片段所在部位将显示黑色的杂交带,基因的缺失或突变则可能导致带的缺失或位置改变。二、聚合酶链反应近年来,基因分析和基因工程技术有了革命性的突破,这主要归功于聚合酶链反应(polymerase chain reaction,PCR)的发展和应用。应用PCR技术可以使特定的基因或DNA片段在短短的2-3小时内体外扩增数十万至百万倍。扩增的片段可以直接通过电泳观察,也可用于进一步的分析。这样,少量的单拷贝基因不需通过同位素提高其敏感性来观察,而通过扩增至百万倍后直接观察到,而且原先需要一、二周才能作出的诊断可以缩短至数小时。三、扩增片段长度多态性小卫星DNA和微卫星DNA的长度多态性可以通过PCR扩增后电泳来检出,并用于致病基因的连锁分析,这种诊断方法称为扩增片段长度多态性(amplified fragment length polymorphism,Amp-FLP)连锁分析法。PCR扩增后,产物即等位片段之间的差别有时只有几个核苷酸,故需用聚丙烯酰胺凝胶电泳分离鉴定。此法多用于突变性质不明的连锁分析. 四、等位基因的特异寡核苷酸探针诊断法当基因的突变部位和性质已完全明了时,可以合成等基因特异的寡核苷酸探针(allele-specific oligonucleotide,ASO)用同位素或非同位素标记进行诊断。探针通常为长20bp左右的核苷酸。用于探测点突变时一般需要合成两种探针,与正常基因序列完全一致,能与之稳定地杂交,但不能与突变基因序列杂交;另一种与突变基因序列一致,能与突变基因序列稳定杂交,但不能与正常基因序列稳定杂交,这样,就可以把只有一个碱基发生了突变的基因区别开来. PCR可结合ASO,即PCR-ASO技术,即先将含有突变点的基因有关片段进行体外扩增,然后再与ASO探针作点杂交,这样大大简化了方法,节约了时间,而且只要极少量的基因组DNA就可进行。五、单链构象多态性诊断法单链构象多态性(signle strand conformation polymorphism,SSCP)是指单链DNA由于碱基序列的不同可引起构象差异,这种差异将造成相同或相近长度的单链DNA电泳迁移率不同,从而可用于DNA中单个碱基的替代、微小的缺失或手稿的检测。用SSCP法检查基因突变时,通常在疑有突变的DNA片段附近设计一对引物进行PCR扩增,然后将扩增物用甲酰胺等变性,并在聚丙烯酰胺凝胶中电泳,突变所引起的DNA构象差异将表现为电泳带位置的差异,从而可据之作出诊断。
B. 当前有哪些筛选基因突变的有效方法
1.功能互补法:使突变株表达,与空白相对比
2.核酸杂交法:唤型搭使用突变株基因单链与原基因杂交和拿,能完租陆全配就未能成功
3.定位克隆
4.差别杂交分离目地基因
C. 在医学遗传学中常用什么方法检测基因突变
SNP检测,
楼上答的挺多一看就是网上摘的,但有点错误,我更正和补充一下。 主观填空题 1.干系 2.基因组DNA 3.遗传物质 4.染色体(或DNA)复制一次 5.交叉遗传 6.细胞癌基因 7.点突变 8.完全显性遗传 9.罗伯逊易位 10.重排 四、名词解释 聚合酶链式反应(PC...
11多重PCR 12正确 13正确 14正确 15正确 16正确 17错误 18正确 19正确 20错误
1.减数分裂是指生殖细胞成熟过程中(DNA复制一次 )后,细胞连续分裂二次。 2.发生于近端着丝粒染色体间的易位称为(着丝粒融合 )。 3.在一个肿瘤细胞群体中,占主导地位的克隆就构成其(干系 ) 4.结构异常是指由于染色体断裂、重接后,形成结构改变...
医学遗传学英文名称:medical genetics定义:应用遗传学的理论与方法研究遗传因素在疾病的发生、流行、诊断、预防、治疗和遗传咨询等中的作用机制及其规律的遗传学分支学科。 遗传学在医学中的应用,包括,生理、病理和药理的遗传学分析。遗传学...
遗传学是研究生物的遗传和变异,即研究亲子间的异同的生物学分支学科。 遗传学的研究范围包括遗传物质的本质、遗传物质的传递和遗传信息的实现三个方面。遗传物质的本质包括它的化学本质、它所包含的遗传信息、它的结构、组织和变化等;遗传物质...
D. 6,dna点突变常用的检测方法有哪些
基因突变检测方法:
(1)
pcr-sscp法是在非这性聚丙烯酰胺凝胶上,短的单链dna和rna分子依其大街基序列不同而形成不同构象,一个碱基的改变将影响其构象而导致其在凝胶上的移动速度改变。其基本原理为单链dna在中性条件下会形成二级结构,这种二级结构依赖于其碱基组成,即使一个碱基的不同,也会形成不同的二级结构而出刺同的迁移率。由于该法简单快速,因而被广泛用于未知基因突变的检测。
(2)异源双链分析法(ha)
ha法直接在变性凝胶上分离杂交的突变型一野生型dna双链。由于突变和野生型dna形成的异源杂合双链dna在其错配处会形成一突起,在非变性凝胶中电泳时,会产生与相应的同源双dna不同的迁移率。该法与sscp相似,所不同的是sscp分离的是单链dna,ha法分离的是双链dna,也只适合于小片段的分析。
(3)突变体富集pcr法(mutant-enriched
pcr)本法的基本原理是利用ras基因家族某个密码子部位存在已知的限制性内切酶位点,如k-ras基因第12密码子的bstni位点,第13密古巴子有bgⅰⅱ位点。用链续二次的巢式pcr来扩增包括k-ras第12、13密码子的dna片段,在两次扩增反应之间用相应的内切酶消化扩增的dna片段,野生型因被酶切而不能进入第二次pcr扩增,而突变型则能完整进入第二次pcr扩增并得到产物的富集。
E. 基因检测方法
一般有三种基因检测方法:生化检测、染色体分析和DNA分析。
1.生化检测
生化检测是通过化学手段,检测血液、尿液、羊水或羊膜细胞样本,检查相关蛋白质或物质是否存在,确定是否存在基因缺陷。用于诊断某种基因缺陷,这种缺陷是因某种维持身体正常功能的蛋白质不均衡导致的,通常是检测测试蛋白质含量。还可用于诊断苯丙酮尿症等。
2.染色体分析
染色体分析直接检测染色体数目及结构的异常,而不是检查某条染色体上某个基因的突变或异常。通常用来诊断胎儿的异常。
常见的染色体异常是多一条染色体,检测用的细胞来自血液样本,若是胎儿,则通过羊膜穿刺或绒毛膜绒毛取样获得细胞。将之染色,让染色体凸显出来,然后用高倍显微镜观察是否有异常。
3.DNA分析
DNA分析主要用于识刖单个基因异常引发的遗传性疾病,如亨廷顿病等。DNA分析的细胞来自血液或胎儿细胞。
F. 基因突变的分类方法
PCR-SSCP法 PCR-SSCP法是在非这性聚丙烯酰胺凝胶上,短的单链DNA和RNA分子依其大街基序列不同而形成不同构象,一个碱基的改变将影响其构象而导致其在凝胶上的移动速度改变。其基本原理为单链DNA在中性条件下会形成二级结构,这种二级结构依赖于其碱基组成,即使一个碱基的不同,也会形成不同的二级结构而出刺同的迁移率。由于该法简单快速,因而被广泛用于未知基因突变的检测。用PCR-SSCP法检测小于200bp的PCR产物时,突变检出率可达70%-95%,片段大于400bp时,检出率仅为50%左右,该法可能会存在1%的假阳性率。应用PCR-SSCP法应注意电泳的最佳条件,一般突变类型对检测的灵敏度无大的影响,同时该法不能测定突变的准确位点,还需通过序列分析来确定。Sarkar等认为对于大于200bp的片段,用其RNA分子来做SSCP会提高其录敏度。应用PCR-SSCP检测点突变已见报道于人类大部分的肿瘤组织或细胞,如乳腺癌、食管癌、肺癌、胃癌、肝癌、胰腺癌等。检测的基因包括多种癌基因及抑癌基因,也是检测抑癌基因p53突变最常用的方法,仅检测第5-8外显子即可发现85%以上的p53基因突变。由于该法简便快速,特别适合大样本基因突变研究的筛选工作。
异源双链分析法(HA) HA法直接在变性凝胶上分离杂交的突变型一野生型DNA双链。由于突变和野生型DNA形成的异源杂合双链DNA在其错配处会形成一突起,在非变性凝胶中电泳时,会产生与相应的同源双DNA不同的迁移率。该法与SSCP相似,所不同的是SSCP分离的是单链DNA,HA法分离的是双链DNA,也只适合于小片段的分析。但HA对一些不能用SSCP检出的突变有互补作用,两者结合使用,可使突变检出率提高到近100%。
突变体富集PCR法(mutant-enriched PCR)本法的基本原理是利用ras基因家族某个密码子部位存在已知的限制性内切酶位点,如K-ras基因第12密码子的BstNI位点,第13密古巴子有BgⅠⅡ位点。用链续二次的巢式PCR来扩增包括K-ras第12、13密码子的DNA片段,在两次扩增反应之间用相应的内切酶消化扩增的DNA片段,野生型因被酶切而不能进入第二次PCR扩增,而突变型则能完整进入第二次PCR扩增并得到产物的富集。
变性梯度凝胶电泳法(denaturing gradinent electrophoresis,DGGE) DGGE法分析PCR产物,如果突变发生在最先解链的DNA区域,检出率可达100%,检测片段可达1kb,最适围为100bp-500bp。基本原理基于当双链DNA在变性梯度凝胶中进行到与DNA变性湿度一致的凝胶位置时,DNA发生部分解链,电泳适移率下降,当解链的DNA链中有一个碱基改变时,会在不同的时间发生解链,因影响电泳速度变化的程 而被分离。由于本法是利用温度和梯度凝胶迁移率来检测,需要一套专用的电泳装置,合成的PCR引物最好在5`末端加一段40bp-50bp的GC夹,以利于检测发生于高熔点区的突变。在DGGE的基础上,又发展了用湿度梯度代替化学变性剂的TGGE法(温度梯度凝胶电泳temperature gradient gelelectrophoresis,TGGE)。DGGE和TGGE均有商品化的电泳装置,该法一经建立,操作也较简便,适合于大样本的检测筛选。
化学切割错配法(chemical cleavage of mismatch,CCM)CCM为在Maxam-Gilbert测序法的基础上发展的一项检测突变的技术,其检测突变的准确性可与DNA测序相仿。其基本原理为将待测含DNA片段与相应的野生型DNA片段或DNA和RNA片段混俣变性杂交,在异源杂合的双链核酸分子中,错配的C能被羟胺或哌啶切割,错配的T能被四氧化饿切割,经变性凝胶电泳即可确定是否存在突变。该法检出率很高,也是检片段最长的方法,已有报功检测了1.7kb片段,如果同时对正、反义链进行分析,检出率可达100%。应用荧光检测系统可增强敏感度,可检测到10个细胞中的1个突变细胞。该法中的化学试剂有毒,又发展了碳二亚胺检测(catodiimide,CDI),CDI为无毒物质,也可检测大片段DNA的点突变。
等位基因特异性寡核苷酸分析法(allele-specific oligonucleotide,ASO) ASO为一种以杂交为基础对已知突变的检测技术。以PCR和ASO相结合,设计一段20bp左右的寡核苷酸片段,其中包含了发生突变的部位,以此为探针,与固定在膜上的经PCR拉增的样品DNA杂交。可以用各种突变类型的寡核苷酸探针,同时以野生型探针为对照,如出现阳性杂交带,则表运河样品中存在与该ASO探针相应的点突变,ASO需严格控制杂交条件和设置标准对照避免假阳性和假阴性。目前已有商品化的检测盒检测部分癌基因ASO突变。
DNA芯片技术(DNA chip) DNA芯片技术是90年代后发展的一项DNA分析新技术,它集合了集成电路计算机、激光共聚焦扫描、荧光标记探针和DNA合成等先进技术。可用于基因定位、DNA测序、物理图谱和遗传图谱的构建等。在基因突变检测方面DNA芯片也有广阔的前景,其基本原理为将许多已知序列的寡核苷酸DNA排列在1块集成电路板上,彼此之间重叠1个碱基,并覆盖全部所需检测的基因,将荧光标记的正常DNA和突变DNA发别与2块DNA芯片杂交,由于至少存在1个碱基的差异,正常和突变的DNA将会得到不同的杂交图谱,经过共聚集显微镜分别检测两种DNA分子产生的荧光信号,即可确定是否存在突变,该方法快速简单、片动化程度高,具有很大的发展潜力,将在基因突变检测中心发挥非常重要的作用。
G. 用基因识别方法如何识别基因突变
•基因突变是指基因组DNA分子发生的突然的、可遗传的变异现象。从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。 方式有:
• 基因上单个碱基的突变
• 基因的片段的丢失和增加
• 拷贝数增加。
•遗传性突变(父母亲遗传,先天的)
–遗传性基因突变存在于生殖细胞的DNA上。携带基因突变的生殖细胞结合并生成后代,后代的所有细胞中都存在这些基因突变,使得以体细胞和血细胞为标本开展基因检测成为可能。
–
•获得性突变(自身获得,后天的)
–由于外界环境条件变化引起的,并非接受上代遗传的基因变异。
做一个全面的基因检测,就能检测出个人哪些基因与正常人类基因不同,发生了突变。
但此时还无法分别出,是遗传性还是获得性突变。必须再检测父母的基因,进行比对,才能获知,本人的某些基因突变是遗传性还是获得性的。