❶ 乙酸含量有哪些测定方法
1、色度的测定 色度的测定 2、乙酸含量的测定 乙酸含量的测定 3、甲酸含量的测定 4、乙醛含量的测定 5、水含量的测定 6、蒸发残渣含量的测定 7、铁含量的测定 8、高锰酸钾时间的测定 实验目的 了解冰乙酸需测得的各类物质, 1、了解冰乙酸需测得的各类物质,并掌握各 类测定方法 2、掌握分光光度计的特性和使用方法 掌握比色管、移液管、 3、掌握比色管、移液管、滴定管等实验室仪 器的使用方法和注意事项 第一项 ? 色度的测定:分光光度法 色度的测定: ? 原理:黄度指数可定量地描述式样的颜色,用分光光 原理: 度计或比色计测定并计算试样的黄变度,从标准比色液的 黄变度-铂钴色度号的标准曲线查得试样的色度号,以铂钴色号表示结果。 注:黄变度为标准比色液与水的黄度指数的差值。 试剂: 试剂:铂-钴标准比色液 于10个色号的标准比色液。 在0到30号范围内配制不少 比色计 仪器: 仪器:分光光度计 比色皿:厚度1cm 操作步骤: 操作步骤: (1)在1000ml容量瓶中将1.00g六水合氯化钴和1.245g铂酸 钾溶于水中,加100ml盐酸溶液,定容至刻度,混匀。 配制成标准比色母液。(500色度号) (2)用移液管将标准比色母液2ml,5ml,7ml,10ml,12ml, 15ml,17ml,20ml,22ml,25ml,27ml,30ml,分别 移于500ml的容量瓶中加水至刻度混匀,配成2, 5,7,10,12,15,17,20,22,25,27,30,铂-钴色度号的标 准铂-钴对比溶液。 (3)调整分光光度计(空皿放入参比池,水放入样品池) 使透光度为100%,测试并计算水、标准比色液及样品 的透光度和黄变度:以标准比色液的铂-钴色号为横坐 标,对应的黄变度为纵坐标,绘制标准曲线。根据式 样的黄变度,由标准曲线查出样品的色度号。 第二项 ? 乙酸含量的测定:滴定法 乙酸含量的测定: 试剂:酚酞指示液:5g/L 试剂: 氢氧化钠标准溶液:1mol/L 原理:以酚酞为指示液,用氢氧化钠标准滴定 原理: 溶液中和滴定,计算时扣除甲酸含量。 操作步骤: 操作步骤: 乙酸含量的测定:滴定法(GB/T1628-2008) 乙酸含量的测定:滴定法(GB/T1628-2008) 用具塞称量瓶称取约2.5g试样,(精确至0.0002g), 置于250ml锥形瓶中,加50ml无二氧化碳水,并将称量 瓶盖摇开,滴加0.5ml 酚酞指示液,用氢氧化钠标准 滴定溶液滴定至微粉红色,保持5s不褪色为终点。 计算结果 乙酸的质量分数W1,数值以%表示,按式(1)计算: W % ( (V / 1000)cM 1 w1 = ×100 - 1.305w2 m …………….(1) 式中: 式中: V——试样消耗氢氧化钠标准滴定溶液的体积,单位 为 ml ; C——氢氧化钠标准滴定溶液的浓度,单位 mol/L ; m——试样的质量的数值,单位 g ; M1——乙酸的摩尔质量,单位 g/mol(M1=60.05); ( ); 1.305——甲酸换算为乙酸的换算系数; ; W2——测得的甲酸的质量分数,数值以%表示。 。 取两次平行测定结果的算术平均值为 测定结果, 测定结果,两次平行测定结果的绝对差值 不大于0.15% 不大于 乙酸含量的测定 记录项目 第一份 第二份 第三份 第四份 氢氧化钠标准溶液滴定(V1/ml) 无二氧化碳水 酚酞指示剂 试样的质量/g 乙酸的含量W1/% 50mL 2―3滴 2.5 W1的平均值/% 备注: 第三项 ? 甲酸含量的测定(碘量法) 甲酸含量的测定(碘量法) ? 试剂:盐酸溶液:1+4 试剂: 碘化钾溶液:250g/L 次溴 酸钠溶液:c(1/2NaBrO)=0.1mol/L 溴化钾-溴酸钾溶 液:c(1/6KBrO3)=0.1mol/L 硫代硫酸钠标准滴定溶液: c(Na2S2O3)=0.1mol/L 10g/L的淀粉指示液 100ML容量瓶 (维持真空度1X104Pa以下) 真空泵或水流泵 ? 仪器:500ML锥形瓶 仪器: 原理: 原理:总还原物的测定:过量的次溴酸钠溶液氧 化试样中的甲酸和其他还原物,剩余的次溴酸钠用 碘量法测定。 除甲酸外其他还原物的测定:在酸性介质中,过量 的溴化钾-溴酸钾氧化除甲酸外的其他还原物,剩余 的溴化钾-溴酸钾用碘量法测定。 甲酸含量由两步测定值之差求得。 步骤: 步骤: 1.总还原物的测定 1.总还原物的测定: 总还原物的测定 将100ml耐真空的滴液漏斗置于盛有80ml水的500ml耐真 空的锥形瓶上,打开滴液漏斗活塞,用泵抽取能吸入 200ml液体的真空度,关闭活塞,拔出连接泵的活塞, 通过滴液漏斗吸入用移液管吸取的25ml次溴酸钠溶液, 每次用5ml水冲洗滴液漏斗,洗两次,再通过滴液漏斗 吸入用移液管吸取的10ml试样,每次仍用5ml水冲洗滴 液漏斗,冲洗两次,混匀。在室温下静置10分钟,然后 通过滴液漏斗吸入5ml碘化钾溶液和20ml盐酸溶液,剧 烈振摇30s打开滴液漏斗活塞,取下滴液漏斗,加50ml 水于锥形瓶中,用硫代硫酸钠标准滴定溶液滴定至溶液 呈浅黄色时,加约2ml淀粉指示液,继续滴定至蓝色刚 好消失为终点,同时做空白试验。 2.除甲酸外其他还原物的测定: 2.除甲酸外其他还原物的测定: 除甲酸外其他还原物的测定 移取25ml溴化钾——溴酸钾溶液于已盛有90ml水 的500ml锥形瓶中,将滴液漏斗置于锥形瓶上,用 泵抽取能吸入200ml液体的真空度,关闭滴液漏斗 活塞,拔出连接泵的活塞,通过滴液漏斗吸入用 移液管吸取的10ml试样,每次用5ml水冲洗滴液漏 斗,冲洗两次,再吸入10ml盐酸溶液,混匀。在 室温下静置10分钟,然后通过滴液漏斗吸入5ml碘 化钾溶液和50ml水混匀后打开滴液漏斗活塞,取 下滴液漏斗,用硫代硫酸钠标准滴定溶液滴定至 溶液呈浅黄色时,加约2ml淀粉指示液,继续滴定 至蓝色刚好消失为终点,同时做空白试验。 结果计算 第四项 ? 乙醛含量的测定(滴定法) 乙醛含量的测定(滴定法) ? 试剂:亚硫酸氢钠溶液:18.2 g/L 试剂: 称取1.66g 碘标准溶液:c(1/2I2)=0.02mol/L 硫代硫酸钠标准溶液:c(Na2S2O3)=0.02mol/L 粉指示液:10g/L 淀 操作步骤: 操作步骤: (1)移取10mL试样,置于已盛有10mL水的50mL容量 瓶中,加入50mL亚硫酸钠溶液,用水稀释至刻度, 混匀并静置30min,为试验溶液。 (2)移取50ml 碘标准溶液于碘量瓶中,并放到冰 水浴中静置。取试验溶液20mL于碘量瓶中,硫代 硫酸钠标准滴定溶液滴定至溶液呈浅黄色时,加 入0.5ml 10g/L 的淀粉指示液,继续滴定至蓝色 刚好消失为终点。 (3)在测定的同时,按与测定相同的步骤,对不加 试料而使用相同数量的试剂溶液做空白试验。 结果计算 乙醛含量的测定 记录项目 滴定硫代硫酸钠标液的体积/ml 碘标准液/ml 试验溶液/mL 空白值-V0/ml W(%) 平均W(%)1 相对极差 标准规定平行测定的相对极差 ≤0.2% 本次测定是 否符合平行 测定的要求 50 20 第一份 第二份 第三份 第四份 备注: 第五项 ? 水分的测定 操作步骤: 操作步骤: 向仪器中加入卡尔费休试剂(电解液),调节仪器,使仪器 进入工作状态,按要求进行标定。取50ul或适量样品,注 入水分测定仪中,待反应完毕后,在显示屏上读取水的质 量或质量分数值。 ? 用注射器称取试样3.5g,精确到0.001g。称样时,注射器 针头应用橡胶垫密封。 ? 取两次平行测定的算术平均值为测定结果,两次平行测定 结果之差不大于0.01%。 第六项 ? 蒸发残渣的测定(6324.2-2004) 蒸发残渣的测定(6324.2-2004) 操作步骤: (1)将150ml洁净的石英蒸发皿放入(110±2)℃ 的烘箱中加热2h取出,放入干燥器中冷却至室温, 称重,精确至0.1mg。移取100ml试样于已恒重的 蒸发皿中,放于水浴上,维持适当温度,在通风 橱中蒸发至干,再将蒸发皿置于预先已恒温至 (110±2)℃的烘箱中加热2h取出,放入干燥器 中冷却至室温,称重,精确至0.1mg。重复上述 操作至恒重。 (2)取两次平行测定的算术平均值为测定结果, 两次平行测定结果之差不大于0.001%。 结果计算 蒸发残渣(质量百分数): W=[(m-m0)/ρ.V]×100 式中: m------蒸发残渣加空蒸发皿的质量数值,g m0----空皿的质量数值,g ρ------试验温度下试样的密度,g/ml V------试样体积,ml 表格 V/mL m/g M0/g W(%) 第七项 ? 铁含量的测定 实验试剂和仪器 ? ? ? ? ? 水 盐酸溶液:1+1 铁标准溶液,0.01mg/mL:吸收铁标准溶液(0.1mg/mL) 用水稀释10倍。使用时配制; 乙炔:体积分数不小于99.5% ? 原子吸收光谱仪(附铁空心阴极灯) 步骤 ? 试样的制备 ? 移取100mL试样于150mL圆底瓷或玻璃蒸发皿中,在沸水 浴上蒸干,残渣用2mL盐酸溶液溶解,移入25mL容量瓶 中,稀释至刻度。 工作曲线的绘制 ? 试样的测定 ? 按照测定标准溶液吸光度的方法测定试样的吸光度。从工 作曲线中查得浓度值(或直接读取浓度值) 结果计算 表格一 V 试 样 0.00 /mL c 铁 /ug/mL A吸光度 2.00 4.00 6.00 8.00 10.00 表格二 试样1 V1/mL V/mL A吸光度 c铁/ug/mL W/% 试样2 试样3 第八项 高锰酸钾时间的测定 试剂:配制高锰酸钾溶液用水 高锰酸钾溶液:0.2g/L 标准比色溶液 仪器:比色管:50mL;长型、磨口、聚塞、光学透明。 恒温水浴 操作步骤: (1)取适量水加足量高锰酸钾煮沸30min,如褪色再补加高 锰酸钾使溶液成淡粉红色,冷却至室温制成配制溶液用水。 称取0.2g高锰酸钾精确至0.001g,用已制备的水溶解,在 1000ml棕色容量瓶中定容至刻度,混匀。避光保存2周。 称取190mg六水合氯化钴,加入16ml 500号铂钴标准溶液, 溶解后,用水定容至50ml混匀,该标准比色液的颜色为样 品溶液在高锰酸钾试验中褪色后的终点颜色。 (2)移取20ml试样,加入到50ml比色管中,再加6ml水置 于(15±0.5)℃的恒温水浴中,水浴的水保持距比色管 顶约25mm处,恒温15min,当样品达到规定温度后,用 移液管加入3.0ml高锰酸钾溶液,边加边计时,立即盖上 瓶塞,摇匀,放回水浴中,经常将比色管取出与同体积的 标准比色液比较。接近结果时,每分钟比较一次,记录两 种溶液颜色一致的时间。以分钟计时。(注意:避免试液 暴露在强日光下) 四、生产工艺 1、生产原理 、 主反应 2CH3CHO+O2→2CH3COOH 副反应 CH3CHO+O2 →CH3COOOH CH3COOH →CH3OH+H2O CH3OH+O2 →HCOOH+H2O CH3COOH+CH3OH →CH3COOCH3+H2O 3CH3CHO+O2 →CH3CH(OCOCH3)2+H2O CH3CH(OCOCH3)2 →(CH3CO)2O+CH3CHO 2、工艺条件 、 原料配比:乙醛与投氧量摩尔比为 : 原料配比:乙醛与投氧量摩尔比为2:1 反应温度:343~353K 反应温度: 反应压力: 反应压力: 0.15MPa 催化剂: 催化剂: 醋酸锰 3、工艺流程图 、 理化性质 ? ? ? ? ? ? 相对密度(水为1):1.050 凝固点(℃):16.7 沸点(℃):118.3 粘度(mPa.s):1.22 (20℃) 20℃时蒸气压(KPa):1.5 外观及气味:无色液体,有刺鼻的醋味。 溶解性:能溶于水、乙醇、乙醚、四氯化碳 及甘油等有机溶剂。 相容性:材料:稀释后对金属有强烈腐蚀性, 316#和318#不锈钢及铝可作良好的结构材料。
❷ 色度测量的方法
色度测量主要有两种。第一种方法是利用光电色度计测色的方法,光电色度计在原理上非常类似于密度计,其外观、操作方法甚至是购买价格都相当接近。光电色度计直接显示三刺激值x(—)(λ)、y(—)(λ)、z(—)(λ),大多数还把三刺激值转换为色空间标度,例如转换成CIELAB标度,但大多数只有一种或两种照明,所以用色度计测得的色彩并不总是表现视觉色彩,另外,CIELAB并不是对印刷非常理想的色度系统,因为它无法向CIELUV一样计算出色彩的饱和度。光电色度计在确定色差方面是足够的,因此可以在印刷车间用做色差比较的测量。许多高档的光电色度计的精度也高到足以进行绝对色彩和相对色差的测量,但是一般说来,人们更喜欢用分光光度计去完成上述任务。
色度计可以看成是一个反射率计,或一个不带对数变换器但带有一套专门滤色片的密度计。当然,这是一种能完成色度测量的方法。附加一套滤色片的目的是根据CIE光谱三刺激值在色度计的每个通道中给光谱的各个波长加权。但色度计不同于密度计,它涉及的主要是反射率问题而不是一个对数问题,但反射率很容易转换成密度,反之也是可以的。色度计的光谱成分被认为跟人的视觉灵敏度有良好的线性关系。但事实上这是不可能的(涉及到卢瑟条件*问题),因此光电色度计在原理上存在误差。
第二种方法是利用分光光度计测量色彩的方法。正像三滤色片光电色度计可看成是一个专门的反射率测量仪器一样,分光光度计也可以这样看,但它与光电色度计不同,分光光度计测量的是一个物体的整个可见反射光谱,分光光度计是在可见光谱域逐点测量,即在一些离散点上进行测量,通常每隔10或20nm测量一个点,在400~700nm的范围内测量16~31个点。有些分光光度计是连续地对光谱进行测量,而三滤色片光电色度计只对三个点进行测量,所以分光光度计能提供的信息要多得多,至少是对16个点进行测量。
分光光度计把色彩作为一种不受观察者支配的物理现象进行测量。为了获得三刺激值它可以对反射光谱进行积分,可以把色彩作为视觉响应加以解释,它是一种最灵活的色彩测量仪器。
印刷工艺中的某些现象如纸上网点覆盖率、油墨强度、等本质上就是在窄波段范围内发生的物理现象,当然最好还是用窄带测量进行评价。但是应当指出,窄密度测量不能用于测量视觉色彩,但分光光度测量能解决这个问题。因为它所作的测量是窄带测量,它对光谱的抽样是充足的,所以可以做与视觉一致的色彩测量。为了进行预期类型的测量(窄带或宽带),可以为分光光度计预先编写计算程序。许多新型分光光度计包含有计算机,根据程序去完成标准的印刷复制质量控制和窄带测量都是合适的,但它明显的比密度计昂贵。
❸ 谁能告诉我怎么用分光光度计测活性炭的亚甲基蓝值亚蓝溶液配好了,活性炭搅拌吸附也做好了,怎么测
这个标准的叙述是有点令人费解,关键之处没有说的很清楚(也许还有上下文,你没全部打出来)。
用滴定管加入适量的亚甲基蓝试验液,所谓适量,你开始时是不知道的(你做的多了,以后就心中有数了)。需要多次试验,越来越接近所谓的适量。假定这样最终得到的试液与硫酸铜标准滤色液的吸光度相同,则你最后一次试验中所加入的亚甲蓝试验液的消耗量就是吸附值。
标准硫酸铜在这里就起着一个标准色度的作用(其实也可以用相同吸光度的亚甲蓝标准溶液代替,但亚甲蓝试剂本身纯度不象硫酸铜那么高,并且不够稳定,容易发生氧化而变色,作为标准色度溶液不合适,每次需要新配)。亚甲基蓝吸附值就是用这个标准确定的。
当活性炭量一定的时候,并且它的吸附值一定的时候,它对亚甲蓝的吸附量是一定的,你加入的亚甲蓝越少,吸附后残留亚甲蓝的浓度越低,颜色越淡。如果它产生的吸光度比标准硫酸铜低的话,说明你加的亚甲蓝还不够,到了相同吸光度到时候,说明你加的正好。反过来说,要使残留液的吸光度和标准硫酸铜相同的话,对于某个0.100g活性炭样品,你加的亚甲蓝越多,就说明这个样品的吸附能力越强(吸附值越高)。
你用的应是较老式的分光光度计,调零(不透光)只要把样品室舱门打开(此时光路不通光电管不接受光)就可以了。调满度(全透光)样品室中放入装有蒸馏水的相同比色皿时进行。
还有一点补充一下,第一次做的时候,你对什么叫适量一无所知,你随便加一定量例如20ml,按照方法操作后得到样品液,去测一下它的吸光度,和标准硫酸铜比较一下,如果低了,下次就多加点亚甲蓝,低得多就加的多。如果高了,下次就减半。还高再减半,如此下去有个3-4次就心中有数了。
为什么我配的亚甲基蓝标准溶液(未经活性炭吸附的)上了分光光度计就超过满度了?
怎么可能超满度?你讲的满度是吸光度A,还是透光率T,如果前面调好的话,两个都不可能超满度。除非仪器坏了,仪器坏了,调满度T,根本调不了。另外这个原溶液是不测定的,测定的是经过吸附脱色的样品液,以及硫酸铜标准液。
如仍有不明,请追问。
❹ 彩色钻石颜色测量方法
世界各国的颜色科学家和宝石学家及工程师尝试使用过各种颜色测量方法来测量宝石的颜色,包括测量彩色钻石的颜色。在所尝试过的颜色测量方法中,使用积分球的颜色测量方法的测量精度远好于其他的颜色测量方法。在积分球宝石颜色测量方法中,将钻石放在积分球中心来测量无色钻石的D—Z 颜色的测量方法比其他方法较为实用,图5—7为这种积分球颜色测量方法的示意图。
图5-7 利用积分球进行钻石颜色测量方法示意图
A—石钻放在积分球的中心,光由下入射到钻石的台面,积分球再将钻石的出射光积分后送到色度计进行颜色测量;B—钻石放在积分球的下面,漫射光经钻石的亭部入射到钻石,然后经台面出射到分光光度仪进行光谱测量
另外一种积分球颜色测量方法具有双光束,一个光束用于宝石的颜色测量,另外一个光束用作标准参照。从理论上讲,这种双光束积分球方法设计合理,而且广泛用于光谱测量。但对于测量宝石的颜色并不理想。
图5-8 宝石光谱颜色测量实验装置
1-分积球;2—光源;3—分光光谱图像仪;4—A/D转换器
准直光经钻石台面射入,钻石的反射光经钻石台面射入积分球,积分球将反射光积分后传送到分光光谱图像仪进行光谱测量
着者曾在美国宝石学院研究部专门设置一台使用积分球的光谱颜色测量实验装置,如图5—8所示。此光谱颜色测量实验装置由光源、积分球、分光光谱图像仪和A/D 转换器组成。光源所提供的稳定连续光经准直后照射在宝石的台面,反射光经积分球漫反射均匀后入射到分光光谱图像仪。分光光谱图像仪的衍射光栅将入射光分解为可见光谱,并成像在CCD 矩阵元件上。CCD 矩阵所产生的模拟信号经A/D 转换器变为数字信号后传送到计算机。计算机由宝石光谱的数字信号计算出光谱反射率,并计算色度值。着者利用这台光谱颜色测量实验装置进行了许多宝石颜色测量方面的研究,其中包括“塔维涅”钻石的变色研究以及许多彩色钻石、无色钻石和有色宝石的颜色测量。该实验装置可利用改变入射光孔径的方法来测量不同尺寸和形状的宝石。因为该实验装置不能将形状、尺寸、折射率和荧光等因素纳入计算因素,所得到的颜色色度测量值主要用于对宝石颜色的定性研究,不能达到对宝石颜色的定量研究,也无法利用测量所得到的颜色色度值对所测宝石进行直接的颜色评定。
图5-9 测量宝石颜色的双积分球分光光度仪
经多年的潜心研发和不断地改进,着者成功研发了一台采用双积分球和三光谱校正的分光光度仪(图5—9),解决了宝石颜色的仪器测量和评定难题。由于该分光光谱仪还提供宝石的可见光谱,可以用来进行宝石的光谱研究和利用光谱进行宝石的鉴定。图5-10为双积分球分光光度仪的原理示意图。图中的两个积分球具有各自的功能。测量积分球为被测样品提供均匀照明,并通过测量准直镜接受样品的反射光。样品积分球为被测样品提供一个稳定、一致的背景。光源所辐射的可见光经漫射挡光板漫反射到测量积分球的内壁,再经积分球内壁的多次漫反射形成均匀光照射到样品的台面。漫射挡光板除将光源的入射光漫反射到测量积分球内壁外,另一个重要作用是防止光源的入射光直接照射到样品和测量准直镜,以提高颜色测量的精确度。测量准直镜接受经样品反射的可见光,并直接或经光缆传送到分光光度仪。分光光谱仪将样品的反射光分解为光谱,再经光电元件转换为电信号,然后经A/D 转换的数字信号传送到计算机进行颜色的色度计算和颜色的评定。
图5-10 测量钻石颜色的双积分球分光光度仪的原理示意图
钻石放在样品积分球内,漫射光经钻石的台面射入,钻石的反射光被准直镜接受,然后送到分光光度仪进行光谱测量;计算机利用钻石的光谱反射率计算钻石的平均颜色和特征色,以确定钻石的颜色级别
因为宝石的形状、尺寸、折射率和荧光强度都可能有所不同,而且宝石的颜色受背景的影响较其他颜色材料要大得多,提供一个稳定、一致的背景对宝石颜色测量的精度非常重要。许多过去的宝石颜色测量仪器将宝石放在积分球的中心,使入射光和反射光完全混在一起,影响了颜色测量的精度,也使颜色评定不够准确。双积分球光学装置中,样品积分球是完全独立的,为被测样品提供了一个稳定、一致的背景。测量积分球和样品积分球相互独立,使入射光和反射光的相互影响降至最低,因而大大地提高了宝石颜色的测量精度。
图5-11 双积分球分光光度仪的彩色钻石颜色测量评定视窗
所测的彩色钻石的颜色为艳偏绿蓝色(Vivid Greenish Blue)
宝石的颜色受光源的光谱分布影响,在不同的光源下一颗彩色钻石的颜色可能呈现略微不同的颜色。虽然这种颜色的不同是不能用颜色记忆来察觉,但对于彩色钻石的颜色评定可能影响很大,特别是在颜色级别的边界附近。这台双积分球分光光度仪的光源滤色片可根据要求更换,以提供标准D 65日光光源或标准A 白炽光源。
这台双积分球分光光度仪的宝石颜色测量和评定软件包括有色宝石颜色测量和评定软件、彩色钻石颜色评定的插入软件和D—Z 颜色评定软件。图5-11为彩色钻石的颜色测量和评定软件的视窗。被测的是一颗人工改色的艳偏绿蓝色的圆形彩色钻石。这颗彩色钻石的形状为亮圆形,直径为6.46mm,全深(高)3.92mm,没有考虑紫外荧光。
视窗中显示这颗钻石的反射光谱。在反射光谱中有两个反射带,一个在400~600nm之间,另外一个在长波范围。由于人眼在大于700nm的波长范围的灵敏度很低,长波范围的反射带对此彩色钻石的颜色贡献很小。这一彩色钻石的颜色主要是由400~600nm 之间的反射带所产生的,其反射峰中心大约在485nm,对应的光谱色调为偏绿蓝色。
颜色测量和评定软件利用所测的反射光谱计算在CIELA B颜色空间的色度值。此软件直接给出色调角、亮度和饱和度值。被测彩色钻石的色调为228.14°,亮度值为53.75,饱和度值为19.72。
这台双积分球分光光度仪所测量的反射光谱来自彩色钻石的整个台面,包括特征色区、透光区、消光区和非镜面反射区,所以反射光谱是一个平均光谱。根据测量所获得的平均光谱可以得到一个平均颜色级别。这颗彩色钻石的颜色级别是“浓偏绿蓝色”。
在前一节中介绍过彩色钻石的颜色是由特征色区的颜色来评定的,不是由平均色来确定。根据彩色钻石的平均颜色、形状、尺寸、折射率和荧光,这台双积分球分光光度仪的软件可以利用人工智能方法“模糊”计算彩色钻石的特征颜色,再由特征色确定的颜色级别。这颗彩色钻石的真正颜色级别是“艳偏绿蓝色”。由这台双积分球分光光度仪进行颜色测量所得到的颜色级别与目视颜色评定所获得的颜色级别完全一致。
另外,由颜色计算所获得的色调“偏绿蓝色”与根据所测量的光谱的反射带分析所获得的色调完全一致。一般来讲,彩色钻石颜色的色调测量比较容易,但对亮度,特别是对饱和度测量非常困难。这台双积分球分光光度仪是目前世界上唯一可以准确测量彩色钻石颜色的亮度和饱和度仪器,能准确无误地评定颜色。