‘壹’ 高中生物遗传题解题技巧
高中生物遗传题解题技巧如下:
一、显、隐性的判断:
①性状分离,分离出的性状为隐性性状;
②杂交:两相对性状的个体杂交;
③随机交配的群体中,显性性状,隐性性状;
④假设推导:假设某表型为显性,按题干的给出的杂交组合逐代推导,看是否符合;再设该表型为隐性,推导,看是否符合;最后做出判断。
二、纯合子杂合子的判断:
①测交:若只有一种表型出现,则为纯合子(体);若出现两种比例相同的表现型,则为杂合体。
②自交:杂合(或者双杂合)的个体自交,若子代出现3:1(1:2:1)或者9:3:3:1(其他的变式也可),则符合;否则,不符合。
③通过鉴定配子的种类也可以;如:花粉鉴定;再如:通过观察雄峰的表型及比例推测蜂王产生的卵细胞的种类进而验证是否符合分离定律。
‘贰’ 必修2生物遗传解题技巧 急求!
自由组合定律中有关规律及常用的解题方法
解题技巧之一:
一 、解题思路:将自由组合问题转化为若干个分离定律问题:(即:单独处理、彼此相乘)
在独立遗传的情况下,将多对性状,分解为单一的相对性状然后按基因的分离定律来单独分析,最后将各对相对性状的分析结果相乘,其理论依据是概率理论中的乘法定理。乘法定理是指:如某一事件的发生,不影响另一事件发生,则这两个事件同时发生的概率等于它们单独发生的概率的乘积。基因的自由组合定律涉及的多对基因各自独立遗传,因此依据概率理论中的乘法定理,对多对基因共同遗传的表现就是其中各对等基因单独遗传时所表现的乘积。
二 、题型:
(一)正推:
1、已知亲本基因型,求产生的配子种类数、求配子的类型、求配子比例、求个别配子所占的比例。
例1:基因型为AaBbDd(各对基因独立遗传)的个体
(1)产生配子的种类数:
解题思路:分解:AaBbDd→Aa、Bb、Dd,单独处理:Aa→2种配子;Bb→2种配子;Dd→2种配子。彼此相乘:AaBbDd→2×2×2=8种。
(2)配子的类型:
解题思路:单独处理、彼此相乘——用分枝法书写迅速准确求出。
D——AB D
B
A d——AB d
D——A b D
b
d——A b d
D——aB D
B d——aB d
a D——a b D
b
d——a b d
(3)配子的类型及比例:
解题思路:分解:AaBbDd→Aa、Bb、Dd,单独处理:Aa→(A:a)=(1:1);Bb→(B:b)=(1:1);Dd→(D:d)=(1:1)。彼此相乘:AaBbCc→(A:a)×(B:b)×(D:d)=(1:1)×(1:1)×(1:1)。ABD:Abd:AbD:aBD:abD:aBd:abd :Abd=1:1:1:1:1:1:1:1
(4)其中ABD配子出现的概率:
解题思路:分解:AaBbCc —→ Aa、Bb、Dd, 单独处理:Aa→1/2A,Bb→1/2B,Dd→1/2D, 彼此相乘:ABD→1/2×1/2×1/2=8。
2、已知亲本基因型,求子代基因型种类数、种类和比例及某种基因型体出现的概率。
例2:基因型为AaBb的个体和基因型为AaBb的个体杂交(两对基因独立遗传)后代能产生多少种基因型?基因型的类型有哪些?其中基因型为AABB的几率为多少?
(1)基因型的种类数:
解题思路:分解:AaBb×AaBb→(Aa×Aa)、(Bb×Bb), 单独处理:Aa×Aa→3种基因型,Bb×Bb→3种基因型,彼此相乘:(Aa×Aa)×(Bb×Bb)=3×3=9种基因型。
(2)基因型的类型:
解题思路:单独处理,彼此相乘——用分枝法书写迅速准确求出。
↗BB→AABB ↗BB→AaBB ↗BB→aaBB
AA →Bb→AABb Aa→ Bb→AaBb aa→ Bb→aaBb
↘bb→AAbb ↘ bb→Aabb ↘ bb→aabb
(3)基因型的比例:
解题思路:分解:AaBb×AaBb→(Aa×Aa)、(Bb×Bb), 单独处理:Aa×Aa→(AA: Aa:aa)=(1:2:1),Bb×Bb→(BB:Bb:bb)=(1:2:1)彼此相乘:(Aa×Aa)×(Bb×Bb)= = 1:2:1:2:4:2:1:2:1
(4)其中基因型为AABB个体出现的几率:
解题思路:分解:AaBb×AaBb→(Aa×Aa)、(Bb×Bb), 单独处理:Aa×Aa→1/4AA,Bb×Bb→1/4BB, 彼此相乘:AABB=1/4×1/4=1/16。
3、已知亲本基因型,求子代表现型种类数、种类和比例
例3:基因型为AaBb的个体与基因型为AaBb的个体杂交(各对基因独立遗传),后代能产生多少种表现型?表现型的类型有哪些?其中表现型为A B 的个体出现的几率为多少?
(1)表现型的种类:
解题思路:分解:AaBb×AaBb→(Aa×Aa)、(Bb×Bb), 单独处理:Aa×Aa→2种表现型;Bb×Bb→2种表现型,彼此相乘(Aa×Aa)×(Bb×Bb)→2种×2种=4种表现型。
(2)表现型的类型:
单独处理、彼此相乘:--------用分枝法书写迅速准确求出。
↗B →A B (双显) ↗B →aaB (一隐一显)
A__ aa
↘bb→A bb(一显一隐) ↘bb→aabb(双隐)
(3)表现型的比例:
解题思路:分解:AaBb×AaBb→(Aa×Aa)、(Bb×Bb), 单独处理:Aa×Aa→(显:隐)=(3:1);Bb×Bb→(显:隐)=(3:1),彼此相乘(Aa×Aa)×(Bb×Bb)→(3:1)×(3:1)
=9:3:3:1。
(4)其中表现型为A B 的个体出现的几率:
解题思路:分解:AaBb×AaBb→(Aa×Aa)、(Bb×Bb);单独处理:Aa×Aa→3/4A ;Bb×Bb→3/4B ;彼此相乘:A B →3/4×3/4=9/16
(二)逆推
1、已知子代表现型及比例,求亲代的基因型:
例4:两亲本豌豆杂交,所得种子中,黄色圆粒:绿色圆粒:黄色皱粒:绿色皱粒=9:3:3:1、求两亲本的基因型。
解题思路:分解:黄色圆粒:绿色圆粒:黄色皱粒:绿色皱粒=9:3:3:1为(黄色:绿色)×(圆粒:皱粒)=(3:1)×(3:1)。
第一步:由(黄色:绿色)=(3:1),判断,两亲本的基因型为Yy和Yy;由(圆粒:皱粒)=(3:1),判断,两亲本的基因型为Rr和Rr 。
第二步:将两对相关基因相乘,即得两亲本的基因型YyRr和YyRr。
思考:黄色圆粒:绿色圆粒:黄色皱粒:绿色皱粒=1:1:1:1,两亲本的基因型为:
思考:黄色圆粒:绿色圆粒:黄色皱粒:绿色皱粒=3:3:1:1,两亲本的基因型为:
例1:番茄红果(A )对黄果(a)为显性,子房二室(B)对多室(b)为显性。两对基因独立遗传。
① 若F1代植株中红果二室:红果多室:黄果二室:黄果多室=9:3:3:1,则两个亲本的基因型?
AaBb×AaBb
② 若F1代植株中红果二室:红果多室:黄果二室:黄果多室=3:3:1:1,则两个亲本的基因型?
AaBb×Aabb
③ 若F1代植株中红果二室:红果多室:黄果二室:黄果多室=3:1:3:1,则两个亲本的基因型?
AaBb×aaBb
④ 若F1代植株中红果二室:红果多室:黄果二室:黄果多室=1:1:1:1,则两个亲本的基因型?
AaBb×aabb或Aabb×aaBb
2、已知子代基因型及比例,求亲代的基因型:
例5:已知AABB:AABb: AAbb:AaBB:AaBb:Aabb: aaBB:aaBb:aabb=1:2:1:2:4:2:1:2:1,求亲本基因型。
解题思路:分解:AABB:AABb: AAbb:AaBB:AaBb:Aabb: aaBB:aaBb:aabb=1:2:1:2:4:2:1:2:1为(AA: Aa:aa)×(BB:Bb:bb)=(1:2:1)×(1:2:1)。
第一步:由(AA:Aa:aa)=(1:2:1),判断,两亲本的基因型为Aa和Aa;
由(BB:Bb:bb)=(1:2:1),判断,两亲本的基因型为Bb和Bb。
第二步:将两对相关基因相乘,即得两亲本的基因型AaBb和AaBb。
解题技巧之二:隐性性状突破法,又叫填空法。
1.前提:已知双亲的表现型和子代表现型及数量,推知双亲基因型,这是遗传习题中的常见类型。
2.解题思路:按基因的分离定律单独处理,再彼此相乘。
(1)列出基因式
①凡双亲中属于隐性性状的,其基因型可直接写出。
②几双亲中属于显性性状的,则至少含有一个显性基因,即至少写出基因型的一半。
(2)根据后代出现的隐性性状推出亲本未知基因型。
解题技巧之三:利用自由组合定律预测遗传病的概率(当两种遗传病独立遗传时)
序号 类型 推断公式
1 患甲病的概率为m 不患甲病的概率=1﹣m
2 患乙病的概率为n 不患乙病的概率=1﹣n
3 只患甲病的概率 m﹣mn
4 只患乙病的概率 n﹣mn
5 两种病都换的概率 mn
6 只患一种病的概率 m﹢n﹣2mn或m(1﹣n)﹢n(1﹣m)
7 不患病的概率 (1﹣m)(1﹣n)
8 患病概率 m﹢n﹣mn或1﹣不患病概率
例6人类并指(T)对正常(t)为显性,白化病(a)对正常(A)是隐性,都在常染色体上,而且都是独立遗传。一个家庭中,父亲并指,母亲正常,他们有一个白化病但手指正常的孩子,如果他们再生一个孩子,则:
(1)这个孩子不患并指的概率?___________
(2)这个孩子不患白化病的概率?___________
(3)这个孩子患并指的概率?___________
(4)这个孩子患白化病的概率?___________
(5)这个孩子只患一种病的概率?___________
(6)这个孩子同时患有两种病的概率?___________
(7)这个孩子患病的概率?___________
(8)这个孩子为患病男孩的概率?___________
(9)这个孩子正常的概率?___________
二、伴性遗传病的类型和特点
1、伴Y遗传
(1)特点:①患者全为男性;②遗传规律是父传子,子传孙。(全男)
(2)实例:人类外耳道多毛症
2、伴X显性遗传
(1)特点:①女性患者多于男性;②具有时代连续几代代都有患者的现象;
③难患者的母亲和女儿一定是患者。
(2)实例:抗维生素D佝偻病
3、伴X隐性遗传
(1)特点:①男性多于女性。②交叉遗传。即男性(色盲)→女性(色盲基因携带者,男性的女儿)→男性(色盲,男性的外孙,女性的儿子)。③一般为隔代遗传。即第一代和第三代有病,第二代一般为色盲基因携带者。④女性患者的父亲和儿子一定是患者。
(2)实例:人类红绿色盲症、血友病
三、系谱图中遗传病、遗传方式的判断方法
1、先确定是否为伴Y遗传
(1)若系谱图中患者全为男性,而且男性全为患者,女性都正常,则为伴Y遗传
(2)若系谱图中,患者有男有女,则不是伴Y遗传
2、确定是否为母系遗传
(1)若系谱图中,女患者的子女全都患病,正常的女性的子女全正常,则为母系遗传
(2)若系谱图中,出现母亲患病,子女有正常的情况,或子女患病母亲正常,则不是母系遗传
3、确定致病基因的显性还是隐性,确定致病基因在常染色体还是X染色体上:
(1)无中生有为隐性,隐性遗传看女病,父子都病是伴性;否则为常染色体上隐性遗传。
(2)有中生无为显性,显性遗传看男病,母女都病是伴性;否则为常染色体上隐性遗传。
(1)在
(2)在,父亲患病女儿正常或母亲正常儿子患病,为常染色体显性遗传。
5、人类遗传病的判定口诀:
父子相传为伴Y,子女同母为母系;无中生有为隐性,有中生无为显性;
隐性看女病,女病男正非伴性; 显性看男病,男病女正非伴性。
例:现有基因型为AaBbCc和aaBbCC的两种个体,已知三对基因分别位于三对同源染色体上,回答下列问题:
(1)若AaBbCc的个体为动物,则:
a.该个体经减数分裂可能产生_________种精子或卵细胞
b.一个精原细胞经减数分裂,实际产生________个_________种精子
c.一个卵原细胞经减数分裂,可产生______个卵细胞
d.自交后代表现型有___种,新出现的表现型有________种
e.自交后代新出现的基因型有_____________种
(2)AaBbCc的个体自交,则:
a.后代出现AaBbcc的几率是_________;b.后代出现新基因型的几率是_________。
c.后代出现纯合子的几率是_________;d.后代全显性的个体中,杂合子的几率是_______。e. 后代中出现新表现型的几率是______; f.后代中表现型为A__B__cc 的几率是______。
(3)AaBbCc×aaBbCC,其后代:
a.基因型为为AAbbCC 的几率是_____ b. 与亲代具有相同基因型的 个体的几率是_______;
c. 与亲代具有相同性状的个体的几率是___________。d.杂合子的几率是_________;
达标:
1.基因型为AAbbCC与aaBBcc的小麦进行杂交,这三对等位基因分别位于非同源染色体上,F1杂种形成的配子种类数和F2的基因型种类数分别是 ( )
A.4和9 B.4和27 C.8和27 D.32和81
2.在完全显性且三对基因各自独立遗传的条件下,ddEeFF与DdEeff杂交,其子代表现型不同于双亲的个体占全部子代的( )
A.5/8 B.3/8 C.3/4 D.1/4
3.如果已知子代基因型及比例为1YYRR:1Yyrr:1YyRR:1Yyrr:2YYRr:2YyRr,并且也知道上述结果是按自由组合定律产生的,那么双亲的基因型是()
A.YYRR×YYRr B.YYRr×YyRr C.YyRr×YyRr D.YyRR×YyRr
4.人类的多指是由显性基因(A)控制的一种遗传病,,白化病是由隐性基因(b)控制的另一种遗传病,由一对夫妇,男性为多指患者,女性表现型正常,他们生了一个白化病(aabb)的男孩,由此可知这对夫妇的基因型为()
A.AaBb和aaBb B.AaBb和aaBB C.AABB和aaBB D.AaBB和aaBb
5.人类的多指是一种显性遗传病,白化病是一种隐性遗传病。已知控制这两种疾病的等位基因都在常染色体上,而且都是独立遗传的。在一个家庭中,父亲多指,母亲正常,他们有一个患白化病但手指正常的孩子,则下一个孩子正常和同时患有两种疾病的概率分别为( )
A、3/4、1/8 B、3/8、1/8 C、1/4、1/4 D、1/4、1/8
7.人类中男人的秃头(S)对非秃头(s)是显性,女人在S基因纯合时才秃头。褐眼(B)对蓝眼(b)为显性,现有秃头褐眼的男人和蓝眼非秃头的女人婚配,生下一蓝眼秃头的女儿和一个非秃头的褐眼的儿子,请回答:
(1)这对夫妇的基因型分别是________、_________。
(2)他们若生下一个非秃头褐眼的女儿,基因型可能是__________。
(3)他们所生的儿子与父亲、女儿与母亲具有相同基因型的几率分别是_______、______。
‘叁’ 生物遗传学中常用的解题方法有哪些
一、仔细审题:
明确题中已知的和隐含的条件,不同的条件、现象适用不同规律:
1、基因的分离规律:A、只涉及一对相对性状; B、杂合体自交后代的性状分离比为3∶1;C测交后代性状分离比为1∶1。
2、基因的自由组合规律: A、有两对(及以上)相对性状(两对等位基因在两对同源染色体上) B、两对相对性状的杂合体自交后代的性状分离比为 9∶3∶3∶1 C 、两对相对性状的测交后代性状分离比为1∶1∶1∶1。
3、伴性遗传:A已知基因在性染色体上 B、♀♂性状表现有别、传递有别 C记住一些常见的伴性遗传实例:红绿色盲、血友病、果蝇眼色、钟摆型眼球震颤(X-显)、佝偻病(X-显)等。
二、掌握基本方法:
1、最基础的遗传图解必须掌握:一对等位基因的两个个体杂交的遗传图解(包括亲代、产生配子、子代基因型、表现型、比例各项)例:番茄的红果—R,黄果— r,其可能的杂交方式共有以下六种,写遗传图解: P ①RR × RR ②RR × Rr ③RR × rr ④Rr × Rr ⑤Rr × rr ⑥rr × rr★注意:生物体细胞中染色体和基因都成对存在,配子中染色体和基因成单存在▲一个事实必须记住:控制生物每一性状的成对基因都来自亲本,即一个来自父方,一个来自母方。
2、关于配子种类及计算:
A、一对纯合(或多对全部基因均纯合)的基因的个体只产生一种类型的配子
B、一对杂合基因的个体产生两种配子(Dd D、d)且产生二者的几率相等 。
C、 n对杂合基因产生2n种配子,配合分枝法 即可写出这2n种配子的基因。例:AaBBCc产生22=4种配子:ABC、ABc、aBC、aBc 。
3、计算子代基因型种类、数目:后代基因类型数目等于亲代各对基因分别独立形成子代基因类型数目的乘积(首先要知道:一对基因杂交,后代有几种子代基因型?例:AaCc ×aaCc其子代基因型数目? ∵Aa×aa F是Aa和aa共2 种 [参二、1⑤] Cc×Cc F是CC、Cc、cc共3种 [参二、1④] ∴答案=2×3=6种 (请写图解验证)
4、计算表现型种类:子代表现型种类的数目等于亲代各对基因分别独立形成子代表现型数目的乘积[只问一对基因,如二1①②③⑥类的杂交,任何条件下子代只有一种表现型;则子代有多少基因型就有多少表现型]例:bbDd×BBDd,子代表现型=1×2=2种 , bbDdCc×BbDdCc ,子代表现型=2×2×2=8种。
三 基因的分离规律(具体题目解法类型)
1、正推类型:已知亲代(基因型或纯种表现型)求子代(基因型、表现型等),只要能正确写出遗传图解即可解决,熟练后可口答。
2、逆推类型:已知子代求亲代(基因型),分四步①判断出显隐关系②隐性表现型的个体其基因型必为隐性纯合型(如aa),而显性表现型的基因型中有一个基因是显性基因,另一个不确定(待定,写成填空式如A ?); ③根据后代表现型的分离比推出亲本中的待定基因 ④把结果代入原题中进行正推验证。
四、基因的自由组合规律的小结:
总原则是基因的自由组合规律是建立在基因的分离规律上的,所以应采取“化繁为简、集简为繁”的方法,即:分别计算每对性状(基因),再把结果相乘。
1、正推类型:要注意写清♀♂配子类型(等位基因要分离、非等位基因自由组合),配子“组合”成子代时不能♀♀相连或♂♂相连。
2、逆推类型:(方法与三2相似,也分四步)条件是:已知亲本性状、已知显隐性关系(1)先找亲本中表现的隐性性状的个体,即可写出其纯合的隐性基因型(2)把亲本基因写成填空式,如A?B?×aaB?(3)从隐性纯合体入手,先做此对基因,再根据分离比分析另一对基因(4)验证:把结果代入原题中进行正推验证。若无以上两个已知条件,就据子代每对相对性状及其分离比分别推知亲代基因型
五、伴性遗传:(也分正推、逆推两大类型)
有以下一些规律性现象要熟悉:常染色体遗传:男女得病(或表现某性状)的几率相等。伴性遗传:男女得病(或表现某性状)的几率不等(男女平等);女性不患病——可能是伴Y遗传(男子王国);非上述——可能是伴X遗传;X染色体显性遗传:女患者较多(重女轻男);代代连续发病;父病则传给女儿。X染色体隐性遗传:男患者较多(重男轻女);隔代遗传;母病则子必病。
六、综合题:需综合运用各种方法,主要是自由组合。
所有的遗传学应用题在解题之后都可以把结果代如原题中验证,合则对,不合则误。 若是选择题且较难,可用提供的A—D等选项代入题中,即试探法;分析填空类题,可适当进行猜测,但要验证!
测交原理及应用:
①隐性纯合体只产生含隐性基因的配子,这种配子与杂合体产生的配子受精,能够让杂合体产生的配子所携带的基因表达出来(表达为性状),所以,测交能反映出杂合体产生的配子 的类型和比例,从而推知被测杂合体的基因型。即:测交后代的类型和数量比 = 未知被测个体产生配子的类型和数量比。
②鉴定某一物种(在某个性状上)是纯合体还是杂合体的方法:测交———后代出现性状分离(有两种及以上表现型),则它是杂合体;后代只有一个性状, 则它是纯合体。
七、遗传病的系谱图分析(必考):
1、首先确定系谱图中的遗传病的显性还是隐性遗传:①只要有一双亲都正常,其子代有患者,一定是隐性遗传病(无中生有)②只要有一双亲都有病,其子代有表现正常者,一定是显性遗传病(有中生无)
2、其次确定是常染色体遗传还是伴性遗传:
①在已经确定的隐性遗传病中:双亲都正常,有女儿患病,一定是常染色体的隐性遗传;
②在已经确定的显性遗传病中:双亲都有病,有女儿表现正常者,一定是常染色体的显性遗传病;
③X染色体显性遗传:女患者较多;代代连续发病;父病则传给女儿。X染色体隐性遗传:男患者较多;隔代遗传;母病则子必病。
3、反证法可应用于常染色体与性染色体、显性遗传与隐性遗传的判断(步骤:假设——代入题目——符合,假设成立;否则,假设不成立).
‘肆’ 高中生物遗传题解题方法
遗传题知识基础建立在自由组合定律和分离定律上。高中学生在解答这类生物题型时,需要讲究一定的解题 方法 和技巧。下面我为高中生整理生物遗传题解题方法,希望对大家有所帮助!
高中生物遗传题解题方法介绍
遗传题主要包括:基本概念题;性状遗传方式判断题;基因型推导题;有关种类、概率、比例计算题;遗传中的特殊情况;遗传系谱图题。
一、基本概念题、性状遗传方式判断题、基因型推导题及有关种类、概率、比例计算题。
此类试题建立在基因分离定律和自由组合定律基础上,应先明确性状、基因、合子、杂交四方面概念及相对应的方法。
(一)性状
1.概念。相对性状——同种生物同一性状不同表现类型;相同性状——同种生物同一性状相同表现类型;显性性状——杂种F1显现出来的性状;性状分离——相同性状杂交,后代出现新的性状。
2.方法。根据概念对相关基因型进行判断。
(1)显隐性判断
1→2法:相同性状杂交,F1出现新的性状;2→1法:一对相对性状杂交,F1只有一种性状。
(2)表达式或基因型。显性表达式:A_____隐性表达式:aa
(3)依据性状分离比判断。A_____×aa→(1∶0为显性纯合;1∶1为杂合)
A_____×A_____→(3∶1双亲为杂合;1∶0双亲有一方为显性纯合;2∶1显纯致死)
(二)基因
1.概念。显性基因、隐性基因、基因型、表现型。
2.基因型和表现型之间的关系。表现型=基因型(内因)+环境(外因)。
(1)白化病——主要由内因决定。
(2)从性遗传——由常染色体上基因控制的性状,在表现型上受个体性别影响。不属质遗传。
(3)环境影响——海龟蛋根据温度决定性别,30℃以上性别不同,30℃以下性别相同。爬行类大多不存在性染色体,但有性别决定基因。
(三)合子
1.概念。纯合子——基因组成相同的配子→合子(受精卵)→个体;杂合子——基因组成不同的配子→合子(受精卵)→个体。
2.方法。合子判断方法:体细胞中有无等位基因;纯合子概率计算:一对等位基因自交:P■=1-1/2■。
(四)杂交
1.杂交——两个体间的交配(一般发生在同种生物不同个体间)。如:杂交育种(集优)。
2.自交——基因型相同的个体杂交。植物——自交;动物——子代间相互交配,可看成自交。
(1)判断显性是否纯合;(2)获取纯合体。
(3)测交——隐性纯合子(隐性性状)×显性性状。检测亲本产生配子的种类及比例;判断显性是否纯合。
测交是一种检测F1基因型的重要方法,是获得隐性纯合的重要方法。
4.正反交。判断是质遗传/核遗传:后代始终和母本性状相同——质遗传(母系遗传);后代一样——核遗传。若为核遗传,未知显隐性。后代相同即为常,后代不同即为性(X)。
二、遗传中的特殊情况,可结合分析遗传定律的特殊情况。
(一)自由组合定律中9∶3∶3∶1的变式
①9∶7:双显基因同时出现为一种表现型,其余为另一种表现型。
②9∶3∶4:存在aa(或bb)表现为隐性性状,其余正常表现。
③15∶1:只要有显性基因表现为同一性状,其余为另一种表现型。
④9∶6∶1:单显为一种性状。
⑤12∶3∶1:双显和一种单显表现为同一性状。
⑥13∶3:双显、双隐、一种单显表现为同一性状。
⑦1∶4∶6∶4∶1:基因叠加(显性基因越多,效果越强)。
(二)致死基因对配子的影响
(三)XY染色体个区段的基因型
三、遗传系谱图题解题思路,以例题的形式进行归纳。
右图表示某遗传病系谱,两种致病基因位于非同源染色体上。下列有关判断错误的是(B)
A.如果2号不携带甲病基因,则甲病基因在X染色体上
B.如果2号不带甲病基因,4号是杂合子的概率为2/3
C.如果2号携带甲病基因,则4号与1号基因型相同的概率是4/9
D.经检查,1、2号均不带乙病基因,则5号致病基因来源于基因突变
思维方向:信息源——关键字“遗传病系谱”“两对非同源染色体”,思考遗传病推断,用自由组合定律进行相关概率计算。
相关知识:遗传病推断方法(三步骤):(1)判断显、隐性:①有中生无,有为隐;②无中生有,有为显;③无上述情况,但每一代都有患者,最可能为显,“假说演绎”进行推理。
(2)判断致病基因位置:①隐性:母病子必病,一定为X隐;母病子无病,一定为常隐;无上述情况,但男明显多于女,最可能为X隐,“假说演绎”进行推理。②显性:父病女必病,一定为X显;父病女无病,一定为常显;无上述情况,但女明显多于男,最可能为X显,“假说演绎”进行推理。(3)完善基因型:写出已知基因型——显性遗传病:男性和正常个体;隐性遗传病:男性和患者。(4)如无上述情况,则运用“假说演绎法”进行判断。
相关方法:(1)两种病同时存在时,单因子法。(2)若存在多种情况,使用假说演绎法。
遗传题知识基础是建立在自由组合定律和分离定律上,解答时一定要做到繁化简、用减不易加。教师应善于从试题中归纳相关方法,这种能力必须贯穿于学生的解题过程。生物题解题思路,从思维方向、相关知识、相关方法三方面入手。思维方向引导学生对试题信息源准确定位;相关知识使学生对之前复习内容重现和巩固;运用相关方法使学生学会 总结 解题方法,总结不同题型下同一考点的应对 措施 ,实现从解一题到一类题的过渡。
高中生物遗传规律知识点
1、基因的分离定律
相对性状:同种生物同一性状的不同表现类型,叫做相对性状。
显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做显性性状。
隐性性状:在遗传学上,把杂种F1中未显现出来的那个亲本性状叫做隐性性状。
性状分离:在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象,叫做性状分离。
显性基因:控制显性性状的基因,叫做显性基因。一般用大写字母表示,豌豆高茎基因用D表示。
隐性基因:控制隐性性状的基因,叫做隐性基因。一般用小写字母表示,豌豆矮茎基因用d表示。
等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做等位基因。(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。显性作用:等位基因D和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。等位基因分离:D与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。D∶d=1∶1;两种雌配子D∶d=1∶1。)
非等位基因:存在于非同源染色体上或同源染色体不同位置上的控制不同性状的不同基因。
表现型:是指生物个体所表现出来的性状。
基因型:是指与表现型有关系的基因组成。
纯合体:由含有相同基因的配子结合成的合子发育而成的个体。可稳定遗传。
杂合体:由含有不同基因的配子结合成的合子发育而成的个体。不能稳定遗传,后代会发生性状分离。
2、基因的自由组合定律
基因的自由组合规律:在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这一规律就叫基因的自由组合规律。
对自由组合现象解释的验证:F1(YyRr)X隐性(yyrr)→(1YR、1Yr、1yR、1yr)Xyr→F2:1YyRr:1Yyrr:1yyRr:1yyrr。
基因自由组合定律在实践中的应用:基因重组使后代出现了新的基因型而产生变异,是生物变异的一个重要来源;通过基因间的重新组合,产生人们需要的具有两个或多个亲本优良性状的新品种。
孟德尔获得成功的原因:1)正确地选择了实验材料。2)在分析生物性状时,采用了先从一对相对性状入手再循序渐进的方法(由单一因素到多因素的研究方法)。3)在实验中注意对不同世代的不同性状进行记载和分析,并运用了统计学的方法处理实验结果。4)科学设计了试验程序。
基因的分离规律和基因的自由组合规律的比较:
① 相对性状数:基因的分离规律是1对,基因的自由组合规律是2对或多对;
② 等位基因数:基因的分离规律是1对,基因的自由组合规律是2对或多对;
③ 等位基因与染色体的关系:基因的分离规律位于一对同源染色体上,基因的自由组合规律位于不同对的同源染色体上;
④ 细胞学基础:基因的分离规律是在减I分裂后期同源染色体分离,基因的自由组合规律是在减I分裂后期同源染色体分离的同时,非同源染色体自由组合;
⑤ 实质:基因的分离规律是等位基因随同源染色体的分开而分离,基因的自由组合规律是在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合。
高中 生物 学习方法
①预习
预习是在老师讲课前,先浏览一遍讲课内容,在浏览时,应用笔将自己认为是重点的内容划出来,将自己看不懂的内容标出来,将浏览后产生的问题记下来,有能力、有条件的还可以自己做出预习笔记。通过这样的预习,为下一步听讲奠定基础,使自己的听讲更加有的放矢,听讲时就可以对自己已经弄懂的或重点知识重新加深印象,并比较一下老师的理解与自己的理解有什么差距,如果自己理解得不深,则可以进一步加深理解。对于自己预习时还不懂的问题,则是听讲的重要内容,一定要当堂弄清楚。对于在预习中产生的问题,如果老师讲到了,则要听懂,如果老师没有讲到,一定要向老师问清楚。预习也为将来的自学能力打下了良好的基础.
② 听讲
很多优秀学生的 经验 都说明了一个共同点,即学生的主要功夫应下在课堂上。我们的学习过程,实际上是解决一种矛盾,即已知与未知的矛盾,通过学习把未知转化为已知,然后又有新的未知的出现,我们再来完成这个转化过程。而由未知转化为已知的过程是在课堂上,在老师的指导下完成的,因此应该是很顺利的。有很多学生就是课上认真听讲,在45分钟的时间里完成学习任务。但是,总有些人,课堂上不认真完成由未知向已知的转化,白白浪费掉45分钟,反而在课下再花时间去完成转化,此时已没有老师的指导,只有课本上的内容,显然是不会有好效果的。如此花双倍或更多的时间,去完成效果不好的学习任务,就是常说的事倍功半。只要我们把主要功夫下在课上,那么,课下的负担也就会减轻,而且学习效果也会提高,时间上也会更加充裕,这就是常说的事半功倍。所以,听讲这一步骤是极为关键的。
③复习和作业
‘伍’ 生物遗传题的解题思路和方法是什么
熟悉染色体,和dna,rna,和各种核基在分裂过程中的变化即作用,即条件。
1、基因的分离规律:A、只涉及一对相对性状; B、杂合体自交后代的性状分离比为3∶1;C测交后代性状分离比为1∶1。
2、基因的自由组合规律: A、有两对(及以上)相对性状(两对等位基因在两对同源染色体上) B、两对相对性状的杂合体自交后代的性状分离比为 9∶3∶3∶1 C 、两对相对性状的测交后代性状分离比为1∶1∶1∶1。
(5)解生物遗传大题常用方法扩展阅读:
在格雷戈尔·孟德尔之前,人们曾认为遗传是一个混合过程,但是孟德尔证实存在一种不可分割和独立的遗传单位,后来人们证实这种遗传单位就是存在于染色体上的基因——一段DNA序列。孟德尔在基因水平上揭示了有性生殖的遗传过程(称之为“分离定律”与“自由组合”定律),虽然他那时并不知道基因的真实存在形式。注意基因和DNA是完全不同的概念。