导航:首页 > 使用方法 > 系统聚类常用的基本方法

系统聚类常用的基本方法

发布时间:2023-07-24 07:29:53

㈠ 常见的几种聚类方法

作为无监督学习的一个重要方法,聚类的思想就是把属性相似的样本归到一类。对于每一个数据点,我们可以把它归到一个特定的类,同时每个类之间的所有数据点在某种程度上有着共性,比如空间位置接近等特性。多用于数据挖掘、数据分析等一些领域。

下面简单介绍一下几种比较常见的聚类算法。

K-means聚类方法大家应该都听说过,在各种机器学习书籍教程中也是无监督学习部分非常经典的例子。其核心主要为两个部分:其一是K,K在这里代表着类的数目,我们要把数据聚为多少类。其二是means,表示在每一次计算聚类中心的时候采取的是计算平均值。

我们假设样本总数为n,K-means聚类法可以简单表示为一下几个步骤:

1. 在样本中随机选取K个点,作为每一类的中心点。

2. 计算剩下 n-K 个样本点到每个聚类中心的距离(距离有很多种,假设这里采用欧式距离)。对于每一个样本点,将它归到和他距离最近的聚类中心所属的类。

3. 重新计算每个聚类中心的位置:步骤 2 中得到的结果是 n 个点都有自己所属的类,将每一个类内的所有点取平均值(这里假设是二维空间,即对 x 和 y 坐标分别取平均),计算出新的聚类中心。

4. 重复步骤 2 和 3 的操作,直到所有的聚类中心不再改变。

分析一下,算法本身的思想并不难。但是K值如何选择就见仁见智了,这里可以引入类内距离 J,每一类都会对应一个 J 值,其计算就是把类内所有点之间的距离累加起来。我们肯定希望 J 越小越好,因为小的类内间距代表这一类样本的相似程度更高(离得更近)。

如果 K 很小,则聚类可能不彻底,即隔着很远的两波点也被聚为一类,会使 J 变得很大;相反的,过大的 K 虽然会降低类内间距 J ,但有时候分得过细会对数据的泛化性造成损害,没有必要弄这么多类。因此 K 的选择应该是具体问题具体分析。

还有一个问题就是初始聚类中心的选择。不当的初始化会给算法的收敛带来更多的计算开销。试想一下,如果一开始把离得很近的 K 个点都设为聚类中心,那么算法的迭代次数会更多一些。

HAC也是一种比较经典的聚类方法,其主要思想是先把每一个样本点归为一类,再通过计算类间的距离,来对最相似或者距离最近的类进行归并,合成位一个新的类。反复循环,直到满足特定的迭代条件即可。

HAC的核心思想主要分为如下几个步骤:

1. 将每个样本点都视作一类,一共有n个类。

2. 计算所有类之间两两的类间距离(类间距离计算方式多种多样,可以取最近、最远、找重心等等,这里不做详述),然后把距离最近的两个类进行合并,组成一个新的更大的类。

3. 重复步骤 2 中的操作,直到达到特定的迭代条件(例如当前类的数目是初始时的 10% ,即 90% 的类都得到了合并;最小的类间距离大于预先设定的阈值等等),算法结束。

和K-means算法中的 K 值选取一样,HAC中如何选择迭代的终止条件也是一个比较复杂的问题,需要根据一定的经验,并且具体问题具体分析。

这种方法的核心思想是先计算出聚类中心,再把所有的样本点按照就近原则,归到离自身最近的聚类中心所对应的类。最大最小是指在所有的最小距离中选取最大的。其主要的算法步骤如下:

1. 随机选择一个点,作为第一个类的聚类中心 Z1。

2. 选择与步骤 1 中距离最远的样本点,作为第二个类的聚类中心 Z2。

3. 逐个计算每个点到所有聚类中心的距离,并把所有的最短的距离记录下来。

4. 在这些最短距离中挑选最大的值,如果这个最大值大于 ,其中 ,那么将这个最大距离所对应的另一个样本点作为新的聚类中心;否则整个算法结束。

5. 重复步骤 3 和 4 的操作,直到 4 中不再出现新的聚类中心。

6. 将所有的样本归到与他自身最近的聚类中心。

参考:

https://www.jianshu.com/p/4f032dccdcef

https://www.jianshu.com/p/bbac132b15a5

https://blog.csdn.net/u011511601/article/details/81951939

㈡ 聚类分析法

聚类分析,亦称群分析或点分析,是研究多要素事物分类问题的数量方法。其基本原理是,根据样本自身的属性,用数学方法按照某些相似性或差异性指标,定量地确定样本之间的亲疏关系,并按亲疏关系的程度对样本进行聚类(徐建华,1994)。

聚类分析方法,应用在地下水中,是在各种指标和质量级别标准约束条件下,通过样品的各项指标监测值综合聚类,以判别地下水质量的级别。常见的聚类分析方法有系统聚类法、模糊聚类法和灰色聚类法等。

(一)系统聚类法

系统聚类法的主要步骤有:数据标准化、相似性统计量计算和聚类。

1.数据标准化

在聚类分析中,聚类要素的选择是十分重要的,它直接影响分类结果的准确性和可靠性。在地下水质量研究中,被聚类的对象常常是多个要素构成的。不同要素的数据差异可能很大,这会对分类结果产生影响。因此当分类要素的对象确定之后,在进行聚类分析之前,首先对聚类要素进行数据标准化处理。

假设把所考虑的水质分析点(G)作为聚类对象(有m个),用i表示(i=1,2,…,m);把影响水质的主要因素作为聚类指标(有n个),用j表示(j=1,2,…,n),它们所对应的要素数据可用表4-3给出。在聚类分析中,聚类要素的数据标准化的方法较多,一般采用标准差法和极差法。

表4-3 聚类对象与要素数据

对于第j个变量进行标准化,就是将xij变换为x′ij

(1)总和标准化

区域地下水功能可持续性评价理论与方法研究

这种标准化方法所得的新数据x′ij满足

区域地下水功能可持续性评价理论与方法研究

(2)标准差标准化

区域地下水功能可持续性评价理论与方法研究

式中:

由这种标准化方法所得的新数据x′ij,各要素的平均值为0,标准差为1,即有

区域地下水功能可持续性评价理论与方法研究

(3)极差标准化

区域地下水功能可持续性评价理论与方法研究

经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在[0,1]闭区间内。

上述式中:xij为j变量实测值;xj为j变量的样本平均值;sj为样本标准差。

2.相似性统计量

系统聚类法要求给出一个能反映样品间相似程度的一个数字指标,需要找到能量度相似关系的统计量,这是系统聚类法的关键。

相似性统计量一般使用距离系数和相似系数进行计算。距离系数是把样品看成多维空间的点,用点间的距离来表示研究对象的紧密关系,距离越小,表明关系越密切。相似系数值表明样本和变量间的相似程度。

(1)距离系数

常采用欧几里得绝对距离,其中i样品与j样品距离dij

区域地下水功能可持续性评价理论与方法研究

dij越小,表示i,j样品越相似。

(2)相似系数

常见的相似系数有夹角余弦和相关系数,计算公式为

1)夹角余弦

区域地下水功能可持续性评价理论与方法研究

在式(4-20)中:-1≤cosθij≤1。

2)相关系数

区域地下水功能可持续性评价理论与方法研究

式中:dij为i样品与j样品的欧几里得距离;cosθij为i样品与j样品的相似系数;rij为i样品与j样品的相关系数;xik为i样品第k个因子的实测值或标准化值;xjk为j样品第k个因子的实测值或标准化值;

为i样品第k个因子的均值,

为j样品第k个因子的均值,

;n为样品的数目;k为因子(变量)数。

3.聚类

在选定相似性统计量之后,根据计算结果构成距离或相似性系数矩阵(n×n),然后通过一定的方法把n个样品组合成不同等级的分类单位,对类进行并类,即将最相似的样品归为一组,然后,把次相似的样品归为分类级别较高的组。聚类主要有直接聚类法、距离聚类法(最短距离聚类法、最远距离聚类法)。

(1)直接聚类法

直接聚类法,是根据距离或相似系数矩阵的结构一次并类得到结果,是一种简便的聚类方法。它首先把各个分类对象单独视为一类,然后根据距离最小或相似系数最大的原则,依次选出一对分类对象,并成新类。如果一对分类对象正好属于已归的两类,则把这两类并为一类。每一次归并,都划去该对象所在的列与列序相同的行。经过n-1次把全部分类对象归为一类,最后根据归并的先后顺序作出聚类分析谱系图。

(2)距离聚类法

距离聚类法包括最短距离聚类法和最远距离聚类法。最短距离聚类法具有空间压缩性,而最远距离聚类法具有空间扩张性。这两种聚类方法关于类之间的距离计算可以用一个统一的公式表示:

区域地下水功能可持续性评价理论与方法研究

当γ=-0.5时,式(4-22)计算类之间的距离最短;当γ=0.5时,式(4-22)计算类之间的距离最远。

最短、最远距离法,是在原来的n×n距离矩阵的非对角元素中找出dpq=min(dij)或dpq=max(dij),把分类对象Gp和Gq归并为一新类Gr,然后按计算公式:

dpq=min(dpk,dqk)(k≠ p,q) (4-23)

dpq=max(dpk,dqk)(k≠ p,q) (4-24)

计算原来各类与新类之间的距离,这样就得到一个新的(n-1)阶的距离矩阵;再从新的距离矩阵中选出最小或最大的dij,把Gi和Gj归并成新类;再计算各类与新类的距离,直至各分类对象被归为一类为止。最后综合整个聚类过程,作出最短距离或最远距离聚类谱系图(图4-1)。

图4-1 地下水质量评价的聚类谱系图

(二)模糊聚类法

模糊聚类法是普通聚类方法的一种拓展,它是在聚类方法中引入模糊概念形成的。该方法评价地下水质量的主要步骤,包括数据标准化、标定和聚类3个方面(付雁鹏等,1987)。

1.数据标准化

在进行聚类过程中,由于所研究的各个变量绝对值不一样,所以直接使用原始数据进行计算就会突出绝对值大的变量,而降低绝对值小的变量作用,特别是在进行模糊聚类分析中,模糊运算要求必须将数据压缩在[0,1]之间。因此,模糊聚类计算的首要工作是解决数据标准化问题。数据标准化的方法见系统聚类分析法。

2.标定与聚类

所谓标定就是计算出被分类对象间的相似系数rij,从而确定论域集U上的模糊相似关系Rij。相似系数的求取,与系统聚类分析法相同。

聚类就是在已建立的模糊关系矩阵Rij上,给出不同的置信水平λ(λ∈[0,1])进行截取,进而得到不同的分类。

聚类方法较多,主要有基于模糊等价关系基础上的聚类与基于最大树的聚类。

(1)模糊等价关系方法

所谓模糊等价关系,是指具有自反性(rii=1)、对称性(rij=rji)与传递性(R·R⊆R)的模糊关系。

基于模糊等价关系的模糊聚类分析方法的基本思想是:由于模糊等价关系R是论域集U与自己的直积U×U上的一个模糊子集,因此可以对R进行分解,当用λ-水平对R作截集时,截得的U×U的普通子集Rλ就是U上的一个普通等价关系,也就是得到了关于U中被分类对象元素的一种。当λ由1下降到0时,所得的分类由细变粗,逐渐归并,从而形成一个动态聚类谱系图(徐建华,1994)。此类分析方法的具体步骤如下。

第一步:模糊相似关系的建立,即计算各分类对象之间相似性统计量。

第二步:将模糊相似关系R改造为模糊等价关系R′。模糊等价关系要求满足自反性、对称性与传递性。一般而言,模糊相似关系满足自反性和对称性,但不满足传递性。因此,需要采用传递闭合的性质将模糊相似关系改造为模糊等价关系。改造的方法是将相似关系R自乘,即

R2=R·R

R4=R2·R2

这样计算下去,直到:R2k=Rk·Rk=Rk,则R′=Rk便是一个模糊等价关系。

第三步:在不同的截集水平下进行聚类。

(2)最大树聚类方法

基于最大树的模糊聚类分析方法的基本思路是:最大树是一个不包含回路的连通图(图4-2);选取λ水平对树枝进行截取,砍去权重低于λ 的枝,形成几个孤立的子树,每一棵子树就是一个类的集合。此类分析方法的具体步骤如下。

图4-2 最大聚类支撑树图

第一步:计算分类对象之间的模糊相似性统计量rij,构建最大树。

以所有被分类的对象为顶点,当两点间rij不等于0时,两点间可以用树干连接,这种连接是按rij从大到小的顺序依次进行的,从而构成最大树。

第二步:由最大树进行聚类分析。

选择某一λ值作截集,将树中小于λ值的树干砍断,使相连的结点构成一类,即子树,当λ由1到0时,所得到的分类由细变粗,各结点所代表的分类对象逐渐归并,从而形成一个动态聚类谱系图。

在聚类方法中,模糊聚类法比普通聚类法有较大的突破,简化了运算过程,使聚类法更易于掌握。

(三)灰色聚类法

灰色聚类是根据不同聚类指标所拥有的白化数,按几个灰类将聚类对象进行归纳,以判断该聚类对象属于哪一类。

灰色聚类应用于地下水水质评价中,是把所考虑的水质分析点作为聚类对象,用i表示(i=1,2,…,n);把影响水质的主要因素作为聚类指标,用j表示(j=1,2,…,m),把水质级别作为聚类灰数(灰类),用k表示(k=1,2,3)即一级、二级、三级3个灰类(罗定贵等,1995)。

灰色聚类的主要步骤:确定聚类白化数、确定各灰色白化函数fjk、求标定聚类权重ηjk、求聚类系数和按最大原则确定聚类对象分类。

1.确定聚类白化数

当各灰类白化数在数量上相差悬殊时,为保证各指标间的可比性与等效性,必须进行白化数的无量纲化处理。即给出第i个聚类对象中第j个聚类指标所拥有的白化数,i=1,2,…,n;j=1,2,…,m。

2.确定各灰色白化函数

建立满足各指标、级别区间为最大白化函数值(等于1),偏离此区间愈远,白化函数愈小(趋于0)的功效函数fij(x)。根据监测值Cki,可在图上(图4-3)解析出相应的白化函数值fjk(Cik),j=1,2,…,m;k=1,2,3。

3.求标定聚类权重

根据式(4-25),计算得出聚类权重ηjk的矩阵(n×m)。

区域地下水功能可持续性评价理论与方法研究

式中:ηjk为第j个指标对第k个灰类的权重;λjk为白化函数的阈值(根据标准浓度而定)。

图4-3 白化函数图

注:图4-3白化函数f(x)∈[0,1],具有下述特点:①平顶部分,表示该量的最佳程度。这部分的值为最佳值,即系数(权)为1,f(x)=max=1(峰值),x∈[x2,x3]。②白化函数是单调变化的,左边部分f(x)=L(x),单调增,x∈(x1,x2],称为白化的左支函数;右边部分f(x)=R(x),单调减,x∈[x3,x4),称为白化的右支函数。③白化函数左右支函数对称。④白化函数,为了简便,一般是直线。⑤白化函数的起点和终点,一般来说是人为凭经验确定。

4.求聚类系数

σik=∑fjk(dij)ηjk (4-26)

式中:σik为第i个聚类对象属于第k个灰类的系数,i=1,2,…,n;k=1,2,3。

5.按最大原则确定聚类对象分类

由σik构造聚类向量矩阵,行向量最大者,确定k样品属于j级对应的级别。

用灰色聚类方法进行地下水水质评价,能最大限度地避免因人为因素而造成的“失真、失效”现象。

聚类方法计算相对复杂,但是计算结果与地下水质量标准级别对应性明显,能够较全面反映地下水质量状况,也是较高层次定量研究地下水质量的重要方法。

㈢ SPSS聚类分析 系统聚类分析

SPSS聚类分析:系统聚类分析
一、概念:(分析-分类-系统聚类)
系统聚类法常称为层次聚类法、分层聚类法,也是聚类分析中使用广泛的一种方法。它有两种类型,一是对研究对象本身进行分类,称为Q型聚类;另一是对研究对象的观察指标进行分类,称为R型聚类。同时根据聚类过程不同,又分为分解法和凝聚法。
二、聚类方法(分析-分类-系统聚类-方法)
1、聚类方法。可用的选项有组间联接、组内联接、最近邻元素、最远邻元素、质心聚类法、中位数聚类法和Ward法。◎Between-groupslinkage:组间平均距离法。系统默认选项。合并两类的结果使所有的两类的平均距离最小。◎Within-groups linkage:组内平均距离法。当两类合并为一类后,合并后的类中的所有项之间的平均距离最小。◎Nearestneighbor:最近距离法。采用两类间最近点间的距离代表两 类间的距离。◎Furthest Neighbor:最远距离法。用两类之间最远点的距离代表两类之间的距离。◎Centroidclustering:重心法。定义类与类之间的距离为两类中各 样品的重心之间的距离。◎Medianclustering:中位数法。定义类与类之间的距离为两类中各 样品的中位数之间的距离。◎Ward’s method:最小离差平方和法。聚类中使类内各样品的离差平方和最小,类间的离差平方和尽可能大。
2、度量。允许您指定聚类中使用的距离或相似性测量。选择数据类型以及合适的距离或相似性测量:◎Euclideandistance:欧氏距离。◎SquaredEuclideandistance:欧氏距离平方。两项之间的距离是每个变量值之差的平方和。系统默认项。◎Cosline:余弦相似性测度,计算两个向量间夹角的余弦。◎Pearsonconelation:皮尔逊相关系数。它是线性关系的测度,范围是-1~+1。◎Chebychev:切比雪夫距离。◎Block:曼哈顿(Manhattan)距离,两项之间的距离是每个变量值之差的绝对值总和。◎Minkowski:闵科夫斯基距离。◎Customized:自定义距离。
2.1、区间。可用的选项有Euclidean距离、平方Euclidean距离、余弦、Pearson相关性、Chebychev、块、Minkowski及定制。
2.2、计数。可用的选项有卡方测量和phi平方测量。
2.3、二分类。可用的选项有Euclidean距离、平方Euclidean距离、尺度差分、模式差分、方差、离差、形状、简单匹配、Phi 4点相关性、lambda、Anderberg的D、骰子、Hamann、Jaccard、Kulczynski 1、Kulczynski 2、Lance和Williams、Ochiai、Rogers和Tanimoto、Russel和Rao、Sokal和Sneath 1、Sokal和Sneath 2、Sokal和Sneath3、Sokal和Sneath 4、Sokal和Sneath 5、Yule的Y以及Yule的Q。
3、转换值。允许您在计算近似值之前为个案或值进行数据值标准化(对二分类数据不可用)。可用的标准化方法有z得分、范围1至1、范围0至1、1的最大量级、1的均值和使标准差为1。
4、转换度量。允许您转换距离测量所生成的值。在计算了距离测量之后应用这些转换。可用的选项有绝对值、更改符号和重新调整到0–1范围。
三、统计量(分析-分类-系统聚类-统计量)
1、合并进程表。显示在每个阶段合并的个案或聚类、所合并的个案或聚类之间的距离以及个案(或变量)与聚类相联结时所在的最后一个聚类级别。
2、相似性矩阵。给出各项之间的距离或相似性。
3、聚类成员。显示在合并聚类的一个或多个阶段中,每个个案被分配所属的聚类。可用的选项有单个解和一定范围的解。

㈣ 有哪些常用的聚类算法

【聚类】聚类分析是直接比较各对象之间的性质,根据在对象属性中发现的描述对象及其关系的信息,将数据对象分组。其目标是,组内的对象相互之间是相似的(相关的),而不同组中的对象是不同的(不相关的)。组内的相似性(同质性)越大,组间差别越大,聚类就越好。

聚类的目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,是无监督学习过程。在无监督学习中,训练样本标记信息是未知的。聚类试图将数据集中的样本划分为若干个通常不相交的子集,每个子集称为一个“簇”,每个簇可能对应于一些潜在的类别,这些类别概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇所对应的概念语义需要由使用者来把握和命名。

㈤ 有哪些常用的聚类算法

聚类分析计算方法主要有如下几种:
1. 划分法(partitioning methods)
给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。而且这K个分组满足下列条件:(1) 每一个分组至少包含一个数据纪录;(2)每一个数据纪录属于且仅属于一个分组(注意:这个要求在某些模糊聚类算法中可以放宽);对于给定的K,算法首先给出一个初始的分组方法,以后通过反复迭代的方法改变分组,使得每一次改进之后的分组方案都较前一次好,而所谓好的标准就是:同一分组中的记录越近越好,而不同分组中的纪录越远越好。使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法;
2. 层次法(hierarchical methods)
这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。例如在“自底向上”方案中,初始时每一个数据纪录都组成一个单独的组,在接下来的迭代中,它把那些相互邻近的组合并成一个组,直到所有的记录组成一个分组或者某个条件满足为止。代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等;
3. 基于密度的方法(density-based methods)
基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。这个方法的指导思想就是,只要一个区域中的点的密度大过某个阀值,就把它加到与之相近的聚类中去。代表算法有:DBSCAN算法、OPTICS算法、DENCLUE算法等;
4. 基于网格的方法(grid-based methods)
这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。这么处理的一个突出的优点就是处理速度很快,通常这是与目标数据库中记录的个数无关的,它只与把数据空间分为多少个单元有关。代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法;
5. 基于模型的方法(model-based methods)
基于模型的方法给每一个聚类假定一个模型,然后去寻找能个很好的满足这个模型的数据集。这样一个模型可能是数据点在空间中的密度分布函数或者其它。它的一个潜在的假定就是:目标数据集是由一系列的概率分布所决定的。通常有两种尝试方向:统计的方案和神经网络的方案。

㈥ 聚类算法有哪些

聚类算法有:划分法、层次法、密度算法、图论聚类法、网格算法、模型算法。

1、划分法

划分法(partitioning methods),给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法。

2、层次法

层次法(hierarchical methods),这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等。

3、密度算法

基于密度的方法(density-based methods),基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。代表算法有:DBSCAN算法、OPTICS算法、DENCLUE算法等。

4、图论聚类法

图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。因此,每一个最小处理单元数据之间都会有一个度量表达,这就确保了数据的局部特性比较易于处理。图论聚类法是以样本数据的局域连接特征作为聚类的主要信息源,因而其主要优点是易于处理局部数据的特性。

5、网格算法

基于网格的方法(grid-based methods),这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法。

6、模型算法

基于模型的方法(model-based methods),基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。通常有两种尝试方向:统计的方案和神经网络的方案。

(6)系统聚类常用的基本方法扩展阅读:

聚类分析起源于分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又将多元分析的技术引入到数值分类学形成了聚类分析。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。

在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。

㈦ 聚类方法选择

聚类结果的好坏取决于该聚类方法采用的相似性比较方法,选择的聚类方法应能再现内在的分类组,且对一个数据组内的错误或异常值比较敏感。

系统聚类的相似性(类与类之间的距离)比较方法有许多种,例如最长距离法(两类之间的距离用两类间最远样本的距离来表示,它是空间扩张的)、最短距离法(两类之间的距离以两类间的最近样本的距离来表示,它是空间压缩的)、重心距离法(两类间的距离以重心之间的距离表示,具有非单调性)、类平均法(两类间的距离以各类元素两两之间的平均平方距离来表示,具有空间保持及单调性)和离差平方和法(两类之间的平方距离用两类归类后所增加的离差平方和表示,聚类过程中使类内各指标的方差最小,类间的方差尽可能大,也具有单调性)等。

据研究,类平均法和离差平方和法能充分利用个样本的信息,是类型合并和区划中较好的方法,因而作为分区的主要方法。通过比较分析,本研究中采用离差平方和法。

㈧ 系统聚类分析方法 是什么

二、系统聚类分析法
系统聚类分析法就是利用一定的数学方法将样品或变量(所分析的项目)归并为若干不同的类别(以分类树形图表示),使得每一类别内的所有个体之间具有较密切的关系,而各类别之间的相互关系相对地比较疏远。系统聚类分析最后得到一个反映个体间亲疏关系的自然谱系,它比较客观地描述了分类对象的各个体之间的差异和联系。根据分类目的不同,系统聚类分析可分为两类:一类是对变量分类,称为R型分析;另一类是对样品分类,称为Q型分析。系统聚类分析法基本步骤如下(许志友,1988)。

阅读全文

与系统聚类常用的基本方法相关的资料

热点内容
西装行李箱的正确安装方法 浏览:485
自制抽绳收纳方法视频 浏览:951
在水里写字的正确方法 浏览:180
浙江省的作文技巧和方法 浏览:541
压枪方法是手指压在哪里 浏览:927
拇指跖疣最简单的自愈方法 浏览:155
九阳豆浆机制作豆浆方法视频教程 浏览:261
一岁轮状病毒怎么治疗最好的方法 浏览:813
核桃保养油的使用方法 浏览:978
用筷子做小鸭子的简单方法 浏览:155
自动挡离合器加油的正确方法 浏览:125
学数学的基本方法和技巧初中课件 浏览:424
麻将席去螨虫的最简单方法 浏览:929
如何做到退热的方法 浏览:698
上海核桃粉芝麻的食用方法 浏览:555
如何判断直男最好方法 浏览:973
苹果7手机权限在哪里设置方法 浏览:598
心理分析方法的咨询目标 浏览:531
如何治好胃病方法 浏览:591
罗汉百合种植方法 浏览:329