① 单接晶体管如何正确测量
器件测量
如图3所示,测量用的场效应管多晶硅栅极宽度为4微米(与沟道长度对应),金属栅极宽度也为4微米,沟道宽度为20微米。有两种测量阈值的方法:第一种方法是将一个栅极设置为固定的高电压偏置,然后调节另一个栅极电压;第二种方法是调节第二栅极的电压使得它与被测试栅极上的电压维持在一个固定的电压差值。由于我们测试中使用的HP4156测试仪电压限制为100V,因此我们使用的是第一种方法。因此,如图4所示,为了测量多晶硅栅区的电压阈值,就将金属栅极连接到+100V,然后在保持源极电压为100mV的情况下,调节多晶硅栅极电压,直到100V。阈值电压可按照标准的方法从最陡的线与1:V曲线的投影确定。这样做的优点是非常简单,并且仅要求两个场阈值都低于电源电压。但这样做的一个缺点是金属场效应管起到限流的作用,只有在金属场效应管设定的限制以内才能获得正常的晶体管特性。交换多晶硅和金属栅极,将多晶硅栅极连接到100V,然后调节金属栅极电压,直到100V。由于多晶硅栅极与输出耦合在一起,因此可在更宽的电流范围内获得正常的晶体管特性。
测量结果
在Vd=0.1V和Vg2=100V,Vg1从0调节至100V时的典型晶体管参数示于图5,其中(a)NMOS、g1=多晶硅栅极;(b)NMOS、g1=金属栅极;(c)PMOS、g1=多晶硅栅极;(d)PMOS、g1=金属栅极。每种情况下,g2对应的都是另外一个栅极,对于PMOS器件,极性是反的。金属区的阈值为95V,而多晶硅的阈值为22V(N)和-20V(P)。
分析
尽管阈值电压可相对容易地确定,但沟道转移特性或每个晶体管的增益则必须进行更为仔细的计算才能得到。利用双晶体管的经典MOSFET方程,结合低漏极电压条件,并假设体效应和漏极电压影响很小(虽然对于场效应管的体效应可能并不可忽略。),则复合漏极电流与栅极电压的关系可表示为:
ld={ _{1} _{2} C_{OX1} C_{OX2}(V_{g1}-V_{t1})(V_{g2}-V_{t2})({W_{1}}\over{L_{1}})({W_{2}}\over{L_{2}})}\over{ _{1} C_{OX1}(V_{g1}-V_{t1})({W_{1}}\over{L_{1}})+ _{2} C_{OX2}(V_{g2}-V_{V_{t2}})({W_{2}}\over{L_{2}})} V_{d}
可以利用逐次逼近的迭代法解这一方程得到转移特性。由于沟道宽度是一个常数(在一阶意义下),可从分子和分母同时消去,而沟道长度则采用图中最初给出的数据(L多晶硅=4微米和L金属=8微米)。阈值如前所述得出,但经过迭代可得到更好的一组阈值。我们假设氧化层厚度也是可从工艺信息中获得的。不同的转移特性项允许从栅极偏置电压中求出不同的递降效应,
_{X}={ _{0}}\over{1+ (V_{gx}-V_{tx})}
其中,取0为针对特定技术的常数,x表示多晶硅或金属栅极。更好的解决方案是通过使一个栅极偏置在比另一个栅极高固定电压值的更高电压上进行测量,然而再交换两相栅极进行测量。但如果测量工具限制测量电压为100V,正如我们的情况一样,就无法做到这一点,但利用容许电压范围更宽的测试仪器,则可以相对容易地解出晶体管增益。对于所评估的0.35微米COMS技术,测试仪器所需要的额外电压范围也仅有20V左右。
② 怎么进行晶体管直流参数的测试
一、测试目的:
1.熟悉晶体二极管、三极管的主要参数。
2.学习使用万用表判断三级管极性和管脚的方法。
二、测试仪器
XJ-4810型晶体管特性图示仪、万用表。
三、测试步骤
1、稳压二极管特性曲线测量
2、三极管的判断
利用万用表先判断三极管的导电类型和管脚(NPN型或PNP型,管脚e、b、c);
三极管是由两个PN结(发射结、集电结)组成的器件,一般具有3个引脚(某些型号三极管(例如3DG56型)具有四只引脚,其中一个脚接管壳,供接地屏蔽用)。使用万用表可以判别三极管的极性(NPN或PNP型)、管脚(e、b、c)和估计三极管的性能好坏。
(1)区分三极管的基极b:
测量方法:用万用表的红、黑表笔分别接触三极管的任意两个管脚,测量一次后,如果电阻值无穷大(指针表的表针不动;数字表只显示“1”),则将红、黑表笔交换,再测这两个管脚一次。如果两次测得的电阻值都是无穷大,说明被测的两个管脚是集电极c和发射极e,剩下的一个则是基极b。如果在两次测量中,有一次的阻值不是无穷大,则换一个管脚再测,直到找出正、反向电阻都大的两个管脚为止。(如果在三个管脚中找不出正、反向电阻都大的两个管脚,说明三极管已经损坏,至少有一个PN结已经击穿短路。)
(2)区分三极管的极性(NPN、PNP):
测出三极管的基极b后,通过再次测量来区分三极管是NPN型还是PNP型。将万用表的正表笔(指针表的黑表笔;数字表的红表笔)接触已知的基极,用另一支表笔分别接触另外两个管脚,如果另外两个管脚都导通,说明被测管是NPN型,否则是PNP型。
(3)区分发射极和集电极:
三极管的发射结、集电结对称于基极,所以仅仅通过测量“PN结单向导电性”难以区分出哪一个是发射极,哪一个是集电极。但发射结和集电结的结构有所不同。制造三极管时,发射区面积(体积)做得小,掺杂浓度高,便于发射载流子;而集电区面积大,掺杂浓度低,便于收集载流子,所以c、e正确连接电源时,三极管具有较大的电流放大的能力,用万用表Ω档测量,c、e之间的电阻小;当c、e与电源连接反了时,电流放大能力很差,c、e之间的电阻很大。
使用数字万用表来区分集电极和发射极十分方便。仍然需要先测出被测管的极性和基极。
然后将数字表旋钮对准HFE档,将被测管按假定的e、c插入数字表的“三极管测量插座”中,其中基极和三极管的极性(NPN或PNP)必须正确,观察并记录数字显示的被测管HFE值;交换假定的c、e之后再测一次。两次测量中数值大的一次为正确插入。由此判断出被测管的e和c。
③ 晶体管如何测放大倍数
利用万用表来测量。
1、如果是PNP晶体管,那么将晶体管的集电极(c)和基极(b)放在万用表两端测量即可。
2、如果是NPN晶体管,那么将晶体管的发射极(e)和基极(b)放在万用表两端测量即可。
当然,放大倍数分为交流放大倍数和直流放大倍数,在测量的时候一定要注意将万用表调到相应的直流档或交流档。
根据晶体管工作状态的不同,电流放大系数又分为直流电流放大系数和交流电流放大系数。
1.直流电流放大系数 直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。
2.交流电流放大系数 交流电流放大系数也称动态电流放大系数或交流放大倍数,是指在交流状态下,晶体管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。
hFE或β既有区别又关系密切,两个参数值在低频时较接近,在高频时有一些差异。