A. 求函数的零点的方法有哪些
函数零点有一个简易判断法:对于连续函数f(x)若有f(a)*f(b)<0(设a判断零点个数的题一般有三种方法,一种是计算f(a)*f(b),通过收缩区间来确定零点具体位置,避免区间过大同时包含几个零点;另一种是画出大概的图像;第三种是借助导函数的符号来判断函数的单调性,进而确定零点
B. 函数求零点的方法
函数零点的求法:确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;(2)求区间(a,b)的中点x1;(3)计算f(x1),若f(x1)=0,则x1就是函数的零点。
C. 怎样求函数的零点
已知y=f(x)函数的零点就是f(x)=0的根。
函数零点的求法:
1,可以利用二分法求近似解。给定精确度ξ,用二分法求函数f(x)零点近似值的步骤如下:
1 确定区间[a,b],验证f(a)·f(b)<0,给定精确度ξ.
2 求区间(a,b)的中点c.
3 计算f(c).
(1) 若f(c)=0,则c就是函数的零点;
(2) 若f(a)·f(c)<0,则令b=c;
(3) 若f(c)·f(b)<0,则令a=c.
(4) 判断是否达到精确度ξ:即若|a-b|<ξ,则得到零点近似值a(或b),否则重复2-4.
2、利用图像法求零点。①、一般步骤:令f(x)=0,解f(x)=0,找图像与X轴的交点;
②、图像法:把函数图像画出来,找两个函数图像的交点。
D. 零点的求法
函数的零点的求法
复习内容:1.知识点(1)函数零点的概念:对于函数,把使成立的实数叫做函数的零点.(2)函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根函数的图象与轴有交点函数有零点.
2.方法(1)代数法求函数零点:直接求方程的实数根;(2)几何法求函数零点:对于不能直接求解的超越方程,可以将再分别设,转化为它们的图象交点问题,即:函数与的图象有几个交点,那么方程就有几个实根,函数就有几个有零点。
1.函数在区间上的零点个数为 ( )
A.4 B.5 C.6 D.7
2.函数的零点个数为 ( )
A.0 B.1 C.2 D.3
3 .函数在区间内的零点个数是 ( )
A.0 B.1 C.2 D.3
4.若是方程式 的解,则属于区间 [答]( )
(A)(0,1). (B)(1,1.25). (C)(1.25,1.75) (D)(1.75,2)
解析:
知属于区间(1.75,2)
5.是函数f(x)=2x+ 的一个零点.若∈(1,),
∈(,+),则
(A)f()<0,f()<0 (B)f()<0,f()>0
(C)f()>0,f()<0 (D)f()>0,f()>0
6. f(x)=
(A)(-2,-1) (B) (-1,0) (C) (0,1) (D) (1,2)
7.函数的零点与的零点之差的绝对值不超过0.25, 则可以是
A. B. C. D.
8.设定义在上的函数是最小正周期为的偶函数,是的导函数,当时,;当且时 ,,则函数在上的零点个数为 ( )
A.2 B.4 C.5 D.8
9.函数的零点个数为 ( )
A.0 B.1 C.2 D.3
答案:1.C .2,B.3,B.4,D.5,B.6,C.7,A.8,B 9.D
(4)高等数学中常用的求零点方法扩展阅读