导航:首页 > 使用方法 > 常用的几种插值方法

常用的几种插值方法

发布时间:2023-06-28 03:32:45

㈠ 几种GIS空间插值方法

GIS空间插值方法如下:

1、IDW

IDW是一种常用而简便的空间插值方法,它以插值点与样本点间的距离为权重进行加权平均,离插值点越近的样本点赋予的权重越大。 设平面上分布一系列离散点,已知其坐标和值为Xi,Yi, Zi (i =1,2,…,n)通过距离加权值求z点值。

IDW通过对邻近区域的每个采样点值平均运算获得内插单元。这一方法要求离散点均匀分布,并且密度程度足以满足在分析中反映局部表面变化。

2、克里金插值

克里金法(Kriging)是依据协方差函数对随机过程/随机场进行空间建模和预测(插值)的回归算法。

在特定的随机过程,例如固有平稳过程中,克里金法能够给出最优线性无偏估计(Best Linear Unbiased Prediction,BLUP),因此在地统计学中也被称为空间最优无偏估计器(spatial BLUP)。

对克里金法的研究可以追溯至二十世纪60年代,其算法原型被称为普通克里金(Ordinary Kriging, OK),常见的改进算法包括泛克里金(Universal Kriging, UK)、协同克里金(Co-Kriging, CK)和析取克里金(Disjunctive Kriging, DK);克里金法能够与其它模型组成混合算法。

3、Natural Neighbour法

原理是构建voronoi多边形,也就是泰森多边形。首先将所有的空间点构建成voronoi多边形,然后将待求点也构建一个voronoi多边形,这样就与圆多边形有很多相交的地方,根据每一块的面积按比例设置权重,这样就能够求得待求点的值了。个人感觉这种空间插值方法没有实际的意义来支持。

4、样条函数插值spline

在数学学科数值分析中,样条是一种特殊的函数,由多项式分段定义。样条的英语单词spline来源于可变形的样条工具,那是一种在造船和工程制图时用来画出光滑形状的工具。在中国大陆,早期曾经被称做“齿函数”。后来因为工程学术语中“放样”一词而得名。

在插值问题中,样条插值通常比多项式插值好用。用低阶的样条插值能产生和高阶的多项式插值类似的效果,并且可以避免被称为龙格现象的数值不稳定的出现。并且低阶的样条插值还具有“保凸”的重要性质。

5、Topo to Raster

这种方法是用于各种矢量数据的,特别是可以处理等高线数据。

6、Trend

根据已知x序列的值和y序列的值,构造线性回归直线方程,然后根据构造好的直线方程,计算x值序列对应的y值序列。TREND函数和FORECAST函数计算的结果一样,但是计算过程完全不同。

什么是插值法

插值法是函数逼近的重要方法之一, 它是求近似函数的一种方法,有着广泛的应用。

插值法有很多种,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermite插值,分段插值和样条插值等。这里只给出Lagrange插值、Newton插值 、分段线性插值和样条插值的构造过程及程序。

1.Lagrange插值

Lagrange插值是将待求的n次多项式插值函数Pn(x)改写成另一种表示方式,再利用插值条件确定其中的待定插值基函数,从而求出插值多项式。Lagrange插值是多项式插值,它成功地用构造插值基函数的方法解决了求多项式插值函数出现的病态问题。

㈢ 什么是插值算法

插值法又称“内插法”,是利用函数f (x)在某区间中插入若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
1、Lagrange插值:
Lagrange插值是n次多项式插值,其成功地用构造插值基函数的 方法解决了求n次多项式插值函数问题;
★基本思想将待求的n次多项式插值函数pn(x)改写成另一种表示方式,再利 用插值条件⑴确定其中的待定函数,从而求出插值多项式。

2、Newton插值:
Newton插值也是n次多项式插值,它提出另一种构造插值多项式的方法,与Lagrange插值相比,具有承袭性和易于变动节点的特点;
★基本思想将待求的n次插值多项式Pn(x)改写为具有承袭性的形式,然后利用插值条件⑴确定Pn(x)的待定系数,以求出所要的插值函数。

3、Hermite插值:
Hermite插值是利用未知函数f(x)在插值节点上的函数值及导数值来构造插值多项式的,其提法为:给定n+1个互异的节点x0,x1,……,xn上的函数值和导数值
求一个2n+1次多项式H2n+1(x)满足插值条件
H2n+1(xk)=yk
H'2n+1(xk)=y'k k=0,1,2,……,n ⒀
如上求出的H2n+1(x)称为2n+1次Hermite插值函数,它与被插函数
一般有更好的密合度;
★基本思想
利用Lagrange插值函数的构造方法,先设定函数形式,再利
用插值条件⒀求出插值函数.

4、分段插值:
插值多项式余项公式说明插值节点越多,误差越小,函数逐近越好,但后来人们发现,事实并非如此,例如:取被插函数,在[-5,5]上的n+1个等距节点:计算出f(xk)后得到Lagrange插值多项式Ln(x),考虑[-5,5]上的一点x=5-5/n,分别取n=2,6,10,14,18计算f(x),Ln(x)及对应的误差Rn(x),得下表
从表中可知,随节点个数n的增加,误差lRn(x)l不但没减小,反而不断的增大.这个例子最早是由Runge研究,后来人们把这种节点加密但误差增大的现象称为Runge现象.出现Runge现象的原因主要是当节点n较大时,对应
的是高次插值多项式,此差得积累"淹没"了增加节点减少的精度.Runge现象否定了用高次插值公式提高逼近精度的想法,本节的分段插值就是克服Runge现象引入的一种插值方法.
分段多项式插值的定义为
定义2: a=x0<x1<…<xn=b: 取[a,b]上n+1个节点 并给定在这些节点 上的函数值f(xR)=yR R=0,1,…,n
如果函数Φ(x)满足条件
i) Φ(x)在[a,b]上连续
ii) Φ(xr)=yR,R =0,1,…,n
iii) Φ(x)zai 每个小区间[xR,xR+1]是m次多项式,
R=0,1,…,n-1则称Φ(x)为f(x)在[a,b]上的分段m次插值多项式
实用中,常用次数不超过5的底次分段插值多项式,本节只介绍分段线性插值和分段三次Hermite插值,其中分段三次Hermite插值还额外要求分段插值函数Φ(x)
在节点上与被插值函数f(x)有相同的导数值,即
★基本思想将被插值函数f〔x〕的插值节点 由小到大 排序,然后每对相邻的两个节点为端点的区间上用m 次多项式去近似f〔x〕.
例题
例1 已知f(x)=ln(x)的函数表为:
试用线性插值和抛物线插值分别计算f(3.27)的近似值并估计相应的误差。
解:线性插值需要两个节点,内插比外插好因为3.27 (3.2,3.3),故选x0=3.2,x1=3.3,由n=1的lagrange插值公式,有
所以有,为保证内插对抛物线插值,选取三个节点为x0=3.2,x1=3.3,x2=3.4,由n=2的lagrange插值公式有
故有
所以线性插值计算ln3.27的误差估计为
故抛物线插值计算ln3.27的误差估计为:
显然抛物线插值比线性插值精确;

5、样条插值:
样条插值是一种改进的分段插值。
定义 若函数在区间〖a,b〗上给定节点a=x0<x1<;…<xn=b及其函数值yj,若函数S(x)满足
⒈ S(xj)=yj,j=0,1,2,…,n;
插值法主要用于道路桥梁,机械设计,电子信息工程等 很多工科领域的优化方法。

㈣ 三种插值方法的比较

三种插值方法的比较

最近点陵顷插值

在一维空间中,最近点插值就相当于四舍五入取整。在二维图像中,像素点的坐标都是整数,该方法就是选取离目标点最近的颂汪亮点。计算方式如下:
假设原图为A[aw,ah],宽度为aw,高度为ah。目标图为B[bw,bh],宽度为bw,高度为bh。已知A[aw,ah]的宽度,高度及其中每个点的颜色值,B[bw,bh]中每个点像素值的计算方式如下:

已知Q11,Q21,Q12,Q22,计算P点的野宽值时,需要先由Q11和Q21插值得到R1,由Q12和Q22插值得到R2,再由R1和R2插值得到P。

兰索斯插值(lanczos)

一维的线性插值,是在目标点的左边和右边各取一个点做插值,这两个点的权重是由线性函数计算得到。而一维的兰索斯插值是在目标点的左边和右边各取四个点做插值,这八个点的权重是由高阶函数计算得到。




阅读全文

与常用的几种插值方法相关的资料

热点内容
校园节能减排研究方法 浏览:154
科学的跑步训练方法 浏览:319
局部用药有哪些方法 浏览:783
快速除车漆的方法 浏览:864
皇冠大灯安装方法 浏览:984
识别表格中图片的方法 浏览:782
求子方法放床上什么好 浏览:906
碌鹅如何腌制方法 浏览:318
刚买的保温杯用什么方法清洗 浏览:195
手机如何消磁最快的方法 浏览:2
提升电脑内存的最好方法 浏览:206
检查家禽呼吸频率最常用的方法 浏览:401
子弹坠连接鱼钩的方法 浏览:943
半干法脱硫硫酸钙检测方法 浏览:550
恶性肿瘤化疗有哪些方法 浏览:519
电动汽车支架安装方法 浏览:699
幼儿鼻塞不通气有哪些方法 浏览:924
犬布病诊断方法研究进展 浏览:292
ios微信聊天文件夹在哪里设置方法 浏览:586
颈椎牵引器安装方法 浏览:666