导航:首页 > 使用方法 > 多路复用方法常用的有三大类

多路复用方法常用的有三大类

发布时间:2023-05-15 17:32:24

Ⅰ 最常用的多路复用技术主要有哪三个

最常用的多路复用技术指的是:频分多路复用和时分多路复用两类
频分多路复用:电话带帆系统和链弊有线电视.
时分多路复用:计算蠢唤雹机通信

Ⅱ 多路复用的多路复用分类

(FDM) 频分复用按频谱划分信道,多路基带信号被调制在不同的频谱上。因此它们在频谱上不会重叠,即在频率上正交,但在时间上是重叠的,可以同时在一个信道内传输。在频分复用系统中,发送端的各路信号m1(t),m2(t),…,mn(t)经各自的低通滤波器分别对各路载波f1(t),f2(t),…,fn(t)进行调制,再由各路带通滤波器滤出相应的边带(载波电话通常采用单边带调制),相加后便形成频分多路信号。在接收端,各路的带通滤波器将各路信号分开,并分别与各路的载波f1(t),f2(t),…,fn(t)相乘,实现相干解调,便可恢复各路信号,实现频分多路通信。
为了构造大容量的频分复用设备,现代大容量载波系列的频谱是按模块结构由各种基础群组合而成。根据国际电报电话咨询委员会(CCITT)建议,基础群分为前群、基群、超群和主群。
①前群,又称3路群。它由3个话路经变频后组成。各话路变频的载频分别为12,16,20千赫。取上边带,得到频谱为12~24千赫的前群信号。
②基群,又称12路群。它由4个前群经变频后组成。各前群变频的载频分别为84,96,108,120千赫。取下边带,得到频谱为 60~108千赫的基群信号。基群也可由12个话路经一次变频后组成。
③超群,又称60路群。它由5个基群经变频后组成。各基群变频的载频分别为420,468,516,564,612千赫。取下边带,得到频谱为312~552千赫的超群信号。
④主群,又称300路群。它由5个超群经变频后组成。各超群变频的载频分别为1364,1612,1860,2108,2356千赫。取下边带,得到频谱为812~2044千赫的主群信号。3个主群可组成 900路的超主群。4个超主群可组成3600路的巨群。
频分复用的优点是信道复用率高,允许复用路数多,分路也很方便。
因此,频分复用已成为现代模拟通信中最主要的一种复用方式,在模拟式遥测、有线通信、微波接力通信和卫星通信中得到广泛应用。 若媒体能达到的位传输速率超培雹过传输数据所需的数据传输速率,则可采用时分多路复用TDM技术,也即将一条物理信道按时间分成若干个时间片轮流地分配给多个信号使用。每一时间片由复用的一个信号占用,而不像FDM那样,同一时间同时发送多路信号。这样,利用每个信号在时间上的交叉,就可以在一条物理信道上传输多个数字信号。这种交叉可以是胡中滑位一级的,也可以是由字节组成的块或更大的信息组进行交叉。如图2.12(b)中的多路复用器有8个输入,每个输入的数据速率假设为9.616ps,那么一条容量达76.8kbps的线路就可容纳8个信号源。该图描述的时分多路复用四M方案,也称同步(Synchronous)时分多路复用TDM,它的时间片是预先分配好的,而且是固定不变裤腊的,因此各种信号源的传输定时是同步的。与此相反,异步时分多路复用1DM允许动态地分配传输媒体的时间片。
时分多路复用TDM不仅仅局限于传输数字信号,也可以同时交叉传输模拟信号。另外,对于模拟信号,有时可以把时分多路复用和频分多路复用技术结合起来使用。一个传输系统,可以频分成许多条子通道,每条子通道再利用时分多路复用技术来细分。在宽带局域网络中可以使用这种混合技术。 码分多址通信原理:
码分多址(CDMA,Code-DivisionMultiple Access)通信系统中,用户传输信息所用的信号不是靠频率或时隙的不同来区分,而是用各自不同的编码序列来区分,或者说,靠信号的不同波形来区分。如果从频域或时域来观察,多个CDMA信号是互相重叠的。接收机用相关器可以在多个CDMA信号中选出其中使用预定码型的信号。其它使用不同码型的信号因为和接收机本地产生的码型不同而不能被解调。它们的存在类似于在信道中引入了噪声和干扰,通常称之为多址干扰。
在CDMA蜂窝通信系统中,用户之间的信息传输是由基站进行转发和控制的。为了实现双工通信,正向传输和反向传输各使用一个频率,即通常所谓的频分双工。无论正向传输或反向传输,除去传输业务信息外,还必须传送相应的控制信息。为了传送不同的信息,需要设置相应的信道。但是,CDMA通信系统既不分频道又不分时隙,无论传送何种信息的信道都靠采用不同的码型来区分。 类似的信道属于逻辑信道,这些逻辑信道无论从频域或者时域来看都是相互重叠的,或者说它们均占用相同的频段和时间。
更为详细的、更为系统的介绍
CDMA是码分多址(Code Division Multiple Access)技术的缩写,是近年来在数字移动通信进程中出现的一种先进的无线扩频通信技术,它能够满足市场对移动通信容量和品质的高要求,具有频谱利用率高、话音质量好、保密性强、掉话率低、电磁辐射小、容量大、覆盖广等特点,可以大量减少投资和降低运营成本。
CDMA最早由美国高通公司推出,近几年由于技术和市场等多种因素作用得以迅速发展,目前全球用户已突破5000万,我国也在北京、上海等城市开通了CDMA电话网。 空分多址空分多址(SDMA),也称为多光束频率复用。它通过标记不同方位的相同频率的天线光束来进行频率的复用。
SDMA系统可使系统容量成倍增加,使得系统在有限的频谱内可以支持更多的用户,从而成倍的提高频谱使用效率。

什么是多路复用有几种常用的多路复用技术

数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往超过传输单一信号的需求,为了有效地利用通信线路,希望一个敬敬信道同时传输多路信号,这就是所谓的多路复用隐稿盯技术(MultiplexiI1g)。采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大大节省电缆的安装和维护费用。频分灶和多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Di-vision MultiplexiIIg)是两种最常用的多路复用技术。

Ⅳ 信道复用方式有哪几种

频分复用
1频分复用
频分复用(FDM,Frequency Division Multiplexing)就是将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输1路信号。频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰(条件之一)。频分复用技术的特点是所有子信道传输的信号以并行的方式工作,每一路信号传输时可不考虑传输时延,因而频分复用技术取得了非常广泛的应用。频分复用技术除传统意义上的频分复用(FDM)外,还有一种是正交频分复用(OFDM)。
1.1传统的频分复用
传统的频分复用典型的应用莫过于广电HFC网络电视信号的传输了,不管是模拟电视信号还是数字电视信号都是如此,因为对于数字电视信号而言,尽管在每一个频道(8 MHz)以内是时分复用传输的,但各个频道之间仍然是以频分复用的方式传输的。
1.2正交频分复用
OFDM(Orthogonal Frequency Division Multiplexing)实际是一种多载波数字调制技术。OFDM全部载波频率有相等的频率间隔,它们是一个基本振荡频率的整数倍,正交指各个载波的信号频谱是正交的。
OFDM系统比FDM系统要求的带宽要小得多。由于OFDM使用无干扰正交载波技术,单个载波间无需保护频带,这样使得可用频谱的使用效率更高。另外,OFDM技术可动态分配在子信道中的数据,为获得最大的数据吞吐量,多载波调制器可以智能地分配更多的数据到噪声小的子信道上。目前OFDM技术已被广泛应用于广播式的音频和视频领域以及民用通信系统中,主要的应用包括:非对称的数字用户环线(ADSL)、数字视频广播(DVB)、高清晰度电视(HDTV)、无线局域网(WLAN)和第4代(4G)移动通信系统等。
时分复用
2时分复用
时分复用(TDM,Time Division Multiplexing)就是将提供给整个信道传输信息的时间划分成若干时间片(简称时隙),并将这些时隙分配给每一个信号源使用,每一路信号在自己的时隙内独占信道进行数据传输。时分复用技术的特点是时隙事先规划分配好且固定不变,所以有时也叫同步时分复用。其优点是时隙分配固定,便于调节控制,适于数字信息的传输;缺点是当某信号源没有数据传输时,它所对应的信道会出现空闲,而其他繁忙的信道无法占用这个空闲的信道,因此会降低线路的利用率。时分复用技术与频分复用技术一样,有着非常广泛的应用,电话就是其中最经典的例子,此外时分复用技术在广电也同样取得了广泛地应用,如SDH,ATM,IP和HFC网络中CM与CMTS的通信都是利用了时分复用的技术。
波分复用
3波分复用
光通信是由光来运载信号进行传输的方式。在光通信领域,人们习惯按波长而不是按频率来命名。因此,所谓的波分复用(WDM,Wavelength Division Multiplexing)其本质上也是频分复用而已。WDM是在1根光纤上承载多个波长(信道)系统,将1根光纤转换为多条“虚拟”纤,当然每条虚拟纤独立工作在不同波长上,这样极大地提高了光纤的传输容量。由于WDM系统技术的经济性与有效性,使之成为当前光纤通信网络扩容的主要手段。波分复用技术作为一种系统概念,通常有3种复用方式,即1 310 nm和1 550 nm波长的波分复用、粗波分复用(CWDM,Coarse Wavelength Division Multiplexing)和密集波分复用(DWDM,Dense Wavelength Division Multiplexing)。
(1)1 310 nm和1 550 nm波长的波分复用
这种复用技术在20世纪70年代初时仅用两个波长:1 310 nm窗口一个波长,1 550 nm窗口一个波长,利用WDM技术实现单纤双窗口传输,这是最初的波分复用的使用情况。
(2)粗波分复用
继在骨干网及长途网络中应用后,波分复用技术也开始在城域网中得到使用,主要指的是粗波分复用技术。CWDM使用1 200~1 700 nm的宽窗口,目前主要应用波长在1 550 nm的系统中,当然1 310 nm波长的波分复用器也在研制之中。粗波分复用(大波长间隔)器相邻信道的间距一般≥20 nm,它的波长数目一般为4波或8波,最多16波。当复用的信道数为16或者更少时,由于CWDM系统采用的DFB激光器不需要冷却,在成本、功耗要求和设备尺寸方面,CWDM系统比DWDM系统更有优势,CWDM越来越广泛地被业界所接受。CWDM无需选择成本昂贵的密集波分解复用器和“光放”EDFA,只需采用便宜的多通道激光收发器作为中继,因而成本大大下降。如今,不少厂家已经能够提供具有2~8个波长的商用CWDM系统,它适合在地理范围不是特别大、数据业务发展不是非常快的城市使用。
(3)密集波分复用
密集波分复用技术(DWDM)可以承载8~160个波长,而且随着DWDM技术的不断发展,其分波波数的上限值仍在不断地增长,间隔一般≤1.6 nm,主要应用于长距离传输系统。在所有的DWDM系统中都需要色散补偿技术(克服多波长系统中的非线性失真——四波混频现象)。在16波DWDM系统中,一般采用常规色散补偿光纤来进行补偿,而在40波DWDM系统中,必须采用色散斜率补偿光纤补偿。DWDM能够在同一根光纤中把不同的波长同时进行组合和传输,为了保证有效传输,一根光纤转换为多根虚拟光纤。目前,采用DWDM技术,单根光纤可以传输的数据流量高达400 Gbit/s,随着厂商在每根光纤中加入更多信道,每秒太位的传输速度指日可待。
码分复用
4码分复用
码分复用(CDM,Code Division Multiplexing)是靠不同的编码来区分各路原始信号的一种复用方式,主要和各种多址技术结合产生了各种接入技术,包括无线和有线接入。例如在多址蜂窝系统中是以信道来区分通信对象的,一个信道只容纳1个用户进行通话,许多同时通话的用户,互相以信道来区分,这就是多址。移动通信系统是一个多信道同时工作的系统,具有广播和大面积覆盖的特点。在移动通信环境的电波覆盖区内,建立用户之间的无线信道连接,是无线多址接入方式,属于多址接入技术。联通CDMA(Code Division Multiple Access)就是码分复用的一种方式,称为码分多址,此外还有频分多址(FDMA)、时分多址(TDMA)和同步码分多址(SCDMA)。
(1)FDMA
FDMA频分多址采用调频的多址技术,业务信道在不同的频段分配给不同的用户。FDMA适合大量连续非突发性数据的接入,单纯采用FDMA作为多址接入方式已经很少见。目前中国联通、中国移动所使用的GSM移动电话网就是采用FDMA和TDMA两种方式的结合。
(2)TDMA时分多址
TDMA时分多址采用了时分的多址技术,将业务信道在不同的时间段分配给不同的用户。TDMA的优点是频谱利用率高,适合支持多个突发性或低速率数据用户的接入。除中国联通、中国移动所使用的GSM移动电话网采用FDMA和TDMA两种方式的结合外,广电HFC网中的CM与CMTS的通信中也采用了时分多址的接入方式(基于DOCSIS1.0或1.1和Eruo DOCSIS1.0或1.1)。
(3)CDMA码分多址
CDMA是采用数字技术的分支——扩频通信技术发展起来的一种崭新而成熟的无线通信技术,它是在FDM和TDM的基础上发展起来的。FDM的特点是信道不独占,而时间资源共享,每一子信道使用的频带互不重叠;TDM的特点是独占时隙,而信道资源共享,每一个子信道使用的时隙不重叠;CDMA的特点是所有子信道在同一时间可以使用整个信道进行数据传输,它在信道与时间资源上均为共享,因此,信道的效率高,系统的容量大。CDMA的技术原理是基于扩频技术,即将需传送的具有一定信号带宽的信息数据用一个带宽远大于信号带宽的高速伪随机码(PN)进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去;接收端使用完全相同的伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信。CDMA码分多址技术完全适合现代移动通信网所要求的大容量、高质量、综合业务、软切换等,正受到越来越多的运营商和用户的青睐。
(4)同步码分多址技术
同步码分多址(SCDMA,Synchrnous Code Division Multiplexing Access)指伪随机码之间是同步正交的,既可以无线接入也可以有线接入,应用较广泛。广电HFC网中的CM与CMTS的通信中就用到该项技术,例如美国泰立洋公司(Terayon)和北京凯视通电缆电视宽带接入,结合ATDM(高级时分多址)和SCDMA上行信道通信(基于DOCSIS2.0或Eruo DOCSIS2.0)。
中国第3代移动通信系统也采用同步码分多址技术,它意味着代表所有用户的伪随机码在到达基站时是同步的,由于伪随机码之间的同步正交性,可以有效地消除码间干扰,系统容量方面将得到极大的改善,它的系统容量是其他第3代移动通信标准的4~5倍。
空分复用
5空分复用
空分复用(SDM,Space Division Multiplexing)即多对电线或光纤共用1条缆的复用方式。比如5类线就是4对双绞线共用1条缆,还有市话电缆(几十对)也是如此。能够实现空分复用的前提条件是光纤或电线的直径很小,可以将多条光纤或多对电线做在一条缆内,既节省外护套的材料又便于使用。
统计复用
6统计复用
统计复用(SDM,Statistical Division Multiplexing)有时也称为标记复用、统计时分多路复用或智能时分多路复用,实际上就是所谓的带宽动态分配。统计复用从本质上讲是异步时分复用,它能动态地将时隙按需分配,而不采用时分复用使用的固定时隙分配的形式,根据信号源是否需要发送数据信号和信号本身对带宽的需求情况来分配时隙,主要应用场合有数字电视节目复用器和分组交换网等,下面就以这两种主要应用分别叙述。
6.1数字电视节目复用器
数字电视节目复用器主要完成对MPEG-2传输流(TS)的再复用功能,形成多节目传送流(MPTS),用于数字电视节目的传输任务。所谓统计复用是指被复用的各个节目传送的码率不是恒定的,各个节目之间实行按图像复杂程度分配码率的原则。因为每个频道(标准或增补)能传多个节目,各个节目在同一时刻图像复杂程度不一样(一样的概率很小),所以我们可以在同一频道内各个节目之间按图像复杂程度分配码率,实现统计复用。
实现统计复用的关键因素:一是如何对图像序列随时进行复杂程度评估,有主观评估和客观评估两种方法;二是如何适时地进行视频业务的带宽动态分配。使用统计复用技术可以提高压缩效率,改进图像质量,便于在1个频道中传输多套节目,节约传输成本。
6.2分组交换网
分组交换网是继电路交换网和报文交换网之后的一种新型交换网络,它主要用于数据通信,如X.25,帧中继,DPT,SDH,GE和ATM都是分组交换的例子。分组交换是一种存储转发的交换方式,它将用户的报文划分成一定长度的分组(可以定长和不定长),以分组为存储转发。因此,它比电路交换的利用率高,比报文交换的时延小,具有实时通信的能力。分组交换利用统计时分复用原理,将1条数据链路复用成多个逻辑信道,最终构成1条主叫、被叫用户之间的信息传送通路,称之为虚电路(即VC,两个用户终端设备在开始互相发送和接收数据之前需要通过网络建立逻辑上的连接),实现数据的分组传送。分组交换网中有的支持统计复用,有的不支持统计复用,例如SDH就不支持统计复用,其带宽是固定不变的,支持统计复用技术的主要有帧中继、ATM和IP,下面作分别介绍。
(1)帧中继
帧中继是在X.25分组交换技术基础上发展起来的一种快速分组交换传输技术,用户信息以帧(可变长)为单位进行传输,并对用户信息流进行统计复用。
(2)ATM
ATM支持面向连接(非物理的逻辑连接)的业务,具有很大的灵活性,可按照多媒体业务实际需要动态分配通信资源,对于特定业务,传送速率随信息到达的速率而变化,因此,ATM具有统计复用的能力,能够适应任何类型的业务。
(3)DPT
DPT(Dynamic Packet Transport)是Sisco公司独创的新一代优化动态分组的传输技术,吸收了SDH的优点而克服其缺点,将IP路由技术对宽带的高效利用以及丰富的业务融合能力,和光纤环路的高带宽及可靠的自愈功能紧密结合,由于所有节点都具有公平机制且支持带宽统计复用,可成倍提高网络可用带宽。
(4)吉位以太网
GE(Gigabit Ethernet)是以太网技术的延伸,是第3代以太网,它主要处理数据业务,是目前广电宽带城域骨干网采用的主流技术。以太网交换机端口(RJ45)所带的用户信道使用率通常是不相同的,经常会出现有的信道很忙,有的信道处于空闲状态,即便是以太网交换机所有的端口都处于通信状态下,还会涉及到带宽的不同需求问题,而数据交换的特性在于突发性,只有通过统计复用,即带宽动态分配才能降低忙闲不一的现象,从而最大限度地利用网络带宽。
字节间插复用
7字节间插复用
在SDH(Synchronous Digital Hierarchy)中复用是指将低阶通道层信号适配进高阶通道,或将多个高阶通道层信号适配进复用段的过程。我们知道SDH复用有标准化的复用结构,但每个国家或地区仅有一种复用路线图,由硬件和软件结合来实现,灵活方便。而字节间插复用(BIDM,Byte Intertexture Division Multiplexing)是SDH中低级别的同步传送模块(STM, Synchronous Transport Mole)向高级别同步传送模块复用的一种方式,高级别的STM是低级别STM的4倍。如图1所示的4个STM-1字节间插复用进STM-4的示意图,当然4个STM-4字节间插复用进STM-16也一样,其余等级的同步传送模块以此类推。这里的字节间插是指有规律地分别从4个STM-1中抽出1个字节放进STM-4中。进行字节间插复用,一是体现了SDH同步复用的设计思想;二是由AU-PTR(管理单元指针)的值,再通过字节间插的规律性,就可以定位低速信号在高速信号中的位置,使低速信号可以方便地分出或插入高速信号,这也是SDH与PDH相比较的优势之一,由于PDH低速信号在高速信号中位置的无规律性,从而高速信号插/分低速信号要一级一级进行复用/解复用,因为复用/解复用会增加信号的损伤,不利于大容量传输。
极化波复用
8极化波复用
极化波复用(Polarization Wavelength Division Multiplexing)是卫星系统中采用的复用技术,即一个馈源能同时接收两种极化方式的波束,如垂直极化和水平极化,左旋圆极化和右旋圆极化。卫星系统中通常采用两种办法来实现频率复用:一种是同一频带采用不同极化,如垂直极化和水平极化,左旋圆极化和右旋圆极化等;另一种是不同波束内重复使用同一频带,此办法广泛使用于多波束系统中。

Ⅳ IO多路复用的三种机制Select,Poll,Epoll

select、poll 和 epoll 都是 Linux API 提供的 IO 复用方式。

相信大家都了解了Unix五种IO模型,不了解的可以 => 查看这里

[1] blocking IO - 阻塞IO
[2] nonblocking IO - 非阻塞IO
[3] IO multiplexing - IO多路复用
[4] signal driven IO - 信号驱动IO
[5] asynchronous IO - 异步IO

其中前面4种IO都可以归类为synchronous IO - 同步IO,而select、poll、epoll本质上也都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的。

与多进程和多线程技术相比,I/O多路复用技术的最大优势是系统开销小,系统不必创建进程/线程,也不必维护这些进程/线程,从而大大减小了系统的开销。

在介绍select、poll、epoll之前,首先介绍一下Linux操作系统中 基础的概念

我们先分析一下select函数

int select(int maxfdp1,fd_set *readset,fd_set *writeset,fd_set *exceptset,const struct timeval *timeout);

【参数说明】
int maxfdp1 指定待测试的文件描述字个数,它的值是待测试的最大描述字加1。
fd_set *readset , fd_set *writeset , fd_set *exceptset
fd_set 可以理解为一个集合,这个集合中存放的是文件描述符(file descriptor),即文件句柄。中间的三个参数指定我们要让内核测试读、写和异茄携常条件的文件描述符集合。如果对某一个的条件不感兴趣,就可以把它设为空指针。
const struct timeval *timeout timeout 告知内核等待所指定文件描述符集合中的任何一个就绪可花多少时间。其timeval结构用于指定这段时间的秒数和微秒数。

【返回值】
int 若有就绪描述符返回其数目,若超时则为0,若出错则为-1

select()的机制中提供一种 fd_set 的数据结构,实际上是一个long类型的数组,每一个数组元素都能与一打开的文件句柄(不管是Socket句柄,还是其他文件或命名管道或设备句柄)建立联系,建颤裤伏立联系的工作由程序员完成,当调用select()时,由内核根据IO状态修改fd_set的内容,由此来通知执行了select()的进程哪一Socket或文件可读。

从纯前流程上来看,使用select函数进行IO请求和同步阻塞模型没有太大的区别,甚至还多了添加监视socket,以及调用select函数的额外操作,效率更差。但是,使用select以后最大的优势是用户可以在一个线程内同时处理多个socket的IO请求。用户可以注册多个socket,然后不断地调用select读取被激活的socket,即可达到在同一个线程内同时处理多个IO请求的目的。而在同步阻塞模型中,必须通过多线程的方式才能达到这个目的。

poll的机制与select类似,与select在本质上没有多大差别,管理多个描述符也是进行轮询,根据描述符的状态进行处理,但是poll没有最大文件描述符数量的限制。也就是说,poll只解决了上面的问题3,并没有解决问题1,2的性能开销问题。

下面是pll的函数原型:

poll改变了文件描述符集合的描述方式,使用了 pollfd 结构而不是select的 fd_set 结构,使得poll支持的文件描述符集合限制远大于select的1024

【参数说明】

struct pollfd *fds fds 是一个 struct pollfd 类型的数组,用于存放需要检测其状态的socket描述符,并且调用poll函数之后 fds 数组不会被清空;一个 pollfd 结构体表示一个被监视的文件描述符,通过传递 fds 指示 poll() 监视多个文件描述符。其中,结构体的 events 域是监视该文件描述符的事件掩码,由用户来设置这个域,结构体的 revents 域是文件描述符的操作结果事件掩码,内核在调用返回时设置这个域

nfds_t nfds 记录数组 fds 中描述符的总数量

【返回值】
int 函数返回fds集合中就绪的读、写,或出错的描述符数量,返回0表示超时,返回-1表示出错;

epoll在Linux2.6内核正式提出,是基于事件驱动的I/O方式,相对于select来说,epoll没有描述符个数限制,使用一个文件描述符管理多个描述符,将用户关心的文件描述符的事件存放到内核的一个事件表中,这样在用户空间和内核空间的只需一次。

Linux中提供的epoll相关函数如下:

1. epoll_create 函数创建一个epoll句柄,参数 size 表明内核要监听的描述符数量。调用成功时返回一个epoll句柄描述符,失败时返回-1。

2. epoll_ctl 函数注册要监听的事件类型。四个参数解释如下:

epoll_event 结构体定义如下:

3. epoll_wait 函数等待事件的就绪,成功时返回就绪的事件数目,调用失败时返回 -1,等待超时返回 0。

epoll是Linux内核为处理大批量文件描述符而作了改进的poll,是Linux下多路复用IO接口select/poll的增强版本,它能显着提高程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率。原因就是获取事件的时候,它无须遍历整个被侦听的描述符集,只要遍历那些被内核IO事件异步唤醒而加入Ready队列的描述符集合就行了。

epoll除了提供select/poll那种IO事件的水平触发(Level Triggered)外,还提供了边缘触发(Edge Triggered),这就使得用户空间程序有可能缓存IO状态,减少epoll_wait/epoll_pwait的调用,提高应用程序效率。

LT和ET原本应该是用于脉冲信号的,可能用它来解释更加形象。Level和Edge指的就是触发点,Level为只要处于水平,那么就一直触发,而Edge则为上升沿和下降沿的时候触发。比如:0->1 就是Edge,1->1 就是Level。

ET模式很大程度上减少了epoll事件的触发次数,因此效率比LT模式下高。

一张图总结一下select,poll,epoll的区别:

epoll是Linux目前大规模网络并发程序开发的首选模型。在绝大多数情况下性能远超select和poll。目前流行的高性能web服务器Nginx正式依赖于epoll提供的高效网络套接字轮询服务。但是,在并发连接不高的情况下,多线程+阻塞I/O方式可能性能更好。

既然select,poll,epoll都是I/O多路复用的具体的实现,之所以现在同时存在,其实他们也是不同历史时期的产物

Ⅵ 常用的多路复用技术有哪些各有什么特点

有时分复用、频分复用、波分复用和码分复用,关于特点- -没研究

Ⅶ 什么是多路复用常用的多路复用技术是哪几种

多路复用-指在同一传输介质上同时传输多个不同信号源发出的信号,并且信号之间枣薯互不影响.目的是提高介质的利用率.
多路复用分频分多路复用(把多个信号调制在不同的载波频率上,从而在同一介质上实桥举现同时传送多路信号,即将信道的可用频带按频率分割多路凳消者信号的方法划分为若干互不交叠的频段,每路信号占据其中一个频段,从而形成许多个子信道;在接收端用适当的滤波器将多路信号分开,分别进行解调和终端处理的技术)和时分多路复用(将多路信号按一定的时间间隔相间传送以在一条传输线上实现“同时”传送多路信号的技术).

阅读全文

与多路复用方法常用的有三大类相关的资料

热点内容
药典4氯离子的鉴别方法 浏览:706
胆汁的功效与作用及食用方法 浏览:735
如何写好作文的方法技巧 浏览:563
孩子系鞋带方法最简单 浏览:528
如何使用一种教育科学研究方法 浏览:11
家用电功率计算方法 浏览:194
小米自拍杆如何设置方法 浏览:528
光面环规使用方法 浏览:826
多选题常用的预算编制方法有哪些 浏览:983
计算方法教 浏览:767
治疗口腔溃疡小方法 浏览:45
如何排肺痰咳嗽方法视频 浏览:301
开环岛的正确方法和步骤 浏览:525
评断女性排卵的检测方法 浏览:689
铝扣板吊顶接线方法视频教程 浏览:861
发膜的功效和使用方法 浏览:440
新年贺卡用最简单的方法做怎么做 浏览:256
颈椎骨质增生的症状及治疗方法 浏览:823
多插座漏电检测方法 浏览:920
不射症治疗方法 浏览:175