⑴ 常见的数学思想有哪些
数学思想,是现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。那么常见的数学思想有哪些?
1、 符号化思想:在数学教学中,各种量的关系、量的变化以及在量与量之间进行推导和演算,都是以符号形式(包括字母、数字、图形与图表以及各种特定的符号)来表示,即运行着一套形式化的数学语言。
2、 分类思想:以比较为基础,按照事物间性质的异同,将相同性质的对象归入一类,不同性质的对象归入不同类别——这就是分类,也称划分。数学的分类思想体现对数学对象的分类及其分类标准。
3、 函数思想:函数概念深刻地反映了客观世界的运动变化与实际事物的量与量之间的依存关系。
4、 化归思想:“化归”就是转化和归结。在解决数学问题时,人们常常桐庆是将需要解决的问题,通过某种转化手段,归结为另一个相对比较容易解决的或者已经迅斗有解决程序的问题,以求得问题的解答。在小学数学中处处都体现出化归的思想,它是解决问题的一种最基本,最常用的思想方法。
5、 归纳思想:研究一般性问题时,先研究几个简单、个别的、特殊的情况,从中归纳出一般的规律和性质,这种从特殊到一般的思维方式被称为归纳思想。
6、 优化思想:“多中选优,择优而用”既是一种自然规律,又是一种好的思想方法。算法多样化是解决问题策略多样化的一种重要局昌握体现。计算长方形的周长是一题多解,求同存异,在对的方法中要选择最好的方法,弄清对的与好的,选择好的。
7、 数形结合思想:数学是研究现实世界的空间形式和数量关系的科学。数形结合的思想,就是把问题的数量关系和空间形式结合起来加以考察的思想。
关于常见的数学思想有哪些的内容就介绍到这了。
⑵ 数学思想方法有哪些
问题一:常见的数学思想有哪些? 所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且常历史地发展着的。通过数学思想的培养,数学的能力能才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。
1.函数思想:
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。
2.数形结合思想:
“数无形,少直观,形无数,难入微”,利用“数形结合”可使所要研究的问题化难为易,化繁为简。把燃乎灶代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。例如求根号((a-1)^2+(b-1)^2)+根号(a^2+(b-1)^2)+根号((a-1)^2+b^2)+根号(a^2+b^2)的最小值,就可以把它放在坐标系中,把它转化成一个点到(0,1)、(1,0)、(0,0)、(1,1)四点的距离,就可以求出它的最小值。
3.分类讨论思想:
当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论。比如解不等式|a-1|>4的时候,就要讨论a的取值情况。
4.方程思想:
当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。
5.整体思想:
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。
6.转化思想:
在于将未知的,陌生的,复杂顷手的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。三角函数,几何变换,因式分解,解析几何,微积分,乃至古代数学的尺规作等数学理论无不渗透着转化的思想。常见的转化方式有:一般 特殊转化,等价转化,复杂 简单转化,数形转化,构造转化,联想转化,类比转化等。
7.隐含条件思想:
没有明文表述出来,但是根据已有的明文表述可以推断出来的条件,或者是没有明文表述,但是该条件是一个常规或者真理。
8.类比思想:
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
9.建模思想:
为了描述一个实际现皮扮象更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
10.化归思想:
化归思想就是化未知为已知,化繁为简,化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法,配方法,整体代人法以及化动为静,由抽象到具体等转化思想
11.归纳推理思想:
由某类事物的部分对象具有某些特......>>
问题二:数学解题思想方法有哪些 数学解题思想方法有哪些
一.数学思想方法总论
高中数学一线牵,代数几何两珠连;
三个基本记心间,四种能力非等闲.
常规五法天天练,策略六项时时变,
精研数学七思想,诱思导学乐无边.
一 线:函数一条主线(贯穿教材始终)
二 珠:代数、几何珠联璧合(注重知识交汇)
三 基:方法(熟) 知识(牢) 技能(巧)
四能力:概念运算(准确)、逻辑推理(严谨)、
空间想象(丰富)、分解问题(灵活)
五 法:换元法、配方法、待定系数法、分析法、归纳法.
六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动.
七思想:函数方程最重要,分类整合常用到,
数形结合千般好,化归转化离不了;
有限自将无限描,或然终被必然表,
特殊一般多辨证,知识交汇步步高.
二.数学知识方法分论:
*** 与逻辑
*** 逻辑互表里,子交并补归全集.
对错难知开语句,是非分明即命题;
纵横交错原否逆,充分必要四关系.
真非假时假非真,或真且假运算奇.
函数与数列
数列函数子母胎,等差等比自成排.
数列求和几多法?通项递推思路开;
变量分离无好坏,函数复合有内外.
同增异减定单调,区间挖隐最值来.
三角函数
三角定义比值生,弧度互化实数融;
同角三类善诱导,和差倍半巧变通.
解前若能三平衡,解后便有一脉承;
角值计算大化小,弦切相逢异化同.
方程与不等式
函数方程不等根,常使参数范围生;
一正二定三相等,均值定理最值成.
参数不定比大小,两式不同三法证;
等与不等无绝对,变量分离方有恒.
解析几何
联立方程解交点,设而不求巧判别;
韦达定理表弦长,斜率转化过中点.
选参建模求轨迹,曲线对称找距离;
动点相关归定义,动中求静助解析.
立体几何
多点共线两面交,多线共面一法巧;
空间三垂优弦大,球面两点劣弧小.
线线关系线面找,面面成角线线表;
等积转化连射影,能割善补架通桥.
排列与组合
分步则乘分类加,欲邻需捆欲隔插;
有序则排无序组,正难则反排除它.
元素重复连乘法,特元特位你先拿;
平均分组阶乘除,多元少位我当家.
二项式定理
二项乘方知多少,万里源头通项找;
展开三定项指系,组合系数杨辉角.
整除证明底变妙,二项求和特值巧;
两端对称谁最大?主峰一览众山小.
概率与统计
概率统计同根生,随机发生等可能;
互斥事件一枝秀,相互独立同时争.
样本总体抽样审,独立重复二项分;
随机变量分布列,期望方差论伪真.
问题三:小学数学里有哪些基本的数学思想方法 1、对应思想方法
对应是人们对两个 *** 因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
5、类比思想方法
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
6、转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
8、 *** 思想方法
*** 思想就是运用 *** 的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透 *** 思想。在讲述公约数和公倍数时采用了交集的思想方法。
9、数形结合思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
10、统计思想方法:
小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。
11、极限思想方法:
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
12、代换思想方法:
他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
13、可逆思想方法:
它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的......>>
问题四:一般的数学思想方法有哪些? 小学数学思想方法有哪些?
1
、对应思想方法
对应是人们对两个 *** 因素之间的联系的一种思想方法,
小学数学一般
是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)
与表示具体的数是一一对应。
2
、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,
然后按照题中的已
知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确
答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可
以使要解决的问题更形象、具体,从而丰富解题思路。
3
、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手
段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量
变化前后的情况,可以帮助学生较快地找到解题途径。
4
、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数
学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量
之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表
达大量的信息。如定律、公式、等。
5
、类比思想方法
类比思想是指依据两类数学对象的相似性,
有可能将已知的一类数学对
象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换
小学各年级课件教案习题汇总
一年级二年级三年级四年级五年级
律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比
思想不仅使数学知识容易理解,
而且使公式的记忆变得顺水推舟的自然
和简洁。
6
、转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,
而其本身的大小
是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在
计算中也常用到甲÷乙
=
甲×
1/
乙。
7
、分类思想方法
分类思想方法不是数学独有的方法,
数学的分类思想方法体现对数学对
象的分类及其分类的标准。如自然数的分类,若按能否被
2
整除分奇数
和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以
按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。
对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知
识的分类有助于学生对知识的梳理和建构。
8
、 *** 思想方法
*** 思想就是运用 *** 的概念、逻辑语言、运算、图形等来解决数学问
题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗
透 *** 思想。在讲述公约数和公倍数时采用了交集的思想方法。
9
、数形结合思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面
抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简
单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中
常常借助线段图的直观帮助分析数量关系。
10
、统计思想方法:
小学数学中的统计图表是一些基本的统计方法,
求平均数应用题是体现
出数据处理的思想方法。
11
、极限思想方法:
事物是从量变到质变的,
极限方法的实质正是通过量变的无限过程达到
质变。在讲“圆的面积和周长”时,
“化圆为方”
“化曲为直”的极限分
割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学
生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
12
、代换思想方法:
他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。
如学校买了
4
张桌子和
9
把椅子,共用去
504
元,一张桌子和
3
把椅子
的价钱正好相等,桌子......>>
问题五:数学常用思想方法有哪些 一、用字母表示数的思想
这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。
例如: 设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b)(2)甲数的2倍与乙数的5倍差:2a-5b
二、数形结合的思想
“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括.数学教材中下列内容体现了这种思想。
1、数轴上的点与实数的一一对应的关系。
2、平面上的点与有序实数对的一一对应的关系。
3、函数式与图像之间的关系。
4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。
5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。
6、“圆”这一章中,圆的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。
7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。实际上就是通过“形”来反映数据扮布情况,发展趋势等。实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。
三、转化思想 (化归思想)
在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。下列内容体现了这种思想:
1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。
2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。
3、证明四边形的内角和为360度.是把四边形转化成两个三角形的.同时探索多边形的内角和也是利用转化的思想的.
四、分类思想
有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
问题六:数学常用的数学思想方法有哪些 一、常用的数学思想(数学中的四大思想)
1.函数与方程的思想
用变量和函数来思考问题的方法就是函数思想,函数思想是函数概念、图象和性质等知识更高层次的提炼和概括,是在知识和方法反复学习中抽象出的带有观念的指导方法.
深刻理解函数的图象和性质是应用函数思想解题的基础,运用方程思想解题可归纳为三个步骤:①将所面临的问题转化为方程问题;②解这个方程或讨论这个方程,得出相关的结论;③将所得出的结论再返回到原问题中去.
2.数形结合思想
在中学数学里,我们不可能把“数”和“形”完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数”和“形 ”在一定条件下可以相互转化、相互渗透.
3.分类讨论思想
在数学中,我们常常需要根据研究对象性质的差异.分各种不同情况予以考察,这是一种重要数学思想方法和重要的解题策略 ,引起分类讨论的因素较多,归纳起来主要有以下几个方面:(1)由数学概念、性质、定理、公式的限制条件引起的讨论;(2)由数学变形所需要的限制条件所引起的分类讨论;(3)由于图形的不确定性引起的讨论;(4)由于题目含有字母而引起的讨论.
分类讨论的解题步骤一般是:(1)确定讨论的对象以及被讨论对象的全体;(2)合理分类,统一标准,做到既无遗漏又无重复 ;(3)逐步讨论,分级进行;(4)归纳总结作出整个题目的结论.
4.等价转化思想
等价转化是指同一命题的等价形式.可以通过变量问题的条件和结论,或通过适当的代换转化问题的形式,或利用互为逆否命题的等价关系来实现.
常用的转化策略有:已知与未知的转化;正向与反向的转化;数与形的转化;一般于特殊的转化;复杂与简单的转化.
⑶ 小学数学思想方法有哪几种
小学数学常用16种思想方法:
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较,题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法、用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
8、集合思想方法集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。
9、数形结合思想方法数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
10、统计思想方法:小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。
11、极限思想方法:事物是从量变到质变的,事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长时,化圆为方”“化在讲圆的面积和周长”时“化圆为方化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛的极限分割思盾转化中萌发了无限逼近的极限思想。
12、代换思想方法:他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
13、可逆思想方法:它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
14、化归思维方法:把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。
15、变中抓不变的思想方法:在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?
16、数学模型思想方法:数学模型思想方法:所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
17、整体思想方法:整体思想方法:对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法
⑷ 数学思想方法有哪几种
数学思想方法有8种,分别如下:
一、解答数学题的转化思维,是指在解决问题的过程链野中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、更清晰。
二、逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。
三、逻辑思维,是人们在认识过程中借助于概念、判断裤唤帆、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。
四、创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,提得出与众不胡雹同的解决方案。可分为差异性、探索式、优化式及否定性四种。
五、类比思维是指根据事物之间某些相似性质,将陌生的、不熟悉的问题与熟悉问题或其他事物进行比较,发现知识的共性,找到其本质,从而解决问题的思维方法。
六、对应思维是在数量关系之间(包括量差、量倍、量率)建立一种直接联系的思维方法。比较常见的是一般对应(如两个量或多个量的和差倍之间的对应关系)和量率对应。
七、形象思维,主要是指人们在认识世界的过程中,对事物表象进行取舍时形成的,是指用直观形象的表象,解决问题的思维方法。想象是形象思维的高级形式也是其一种基本方法。
八、系统思维也叫整体思维,系统思维法是指在解题时对具体题目所涉及到的知识点有一个系统的认识,即拿到题目先分析、判断属于什么知识点,然后回忆这类问题分为哪几种类型,以及对应的解决方法。
⑸ 数学四大思想八大方法是什么
数学四大思想:数形结合思想,转化思想,分类讨论思想,整体思想。八大数学方法:配方法,因式分解法,待定系数法,换元法,构造法,等积法,反证法,判别式法。
以上是学习中常用的思想方法。这些都是学习数学的过程中,经常运用的。不同学习阶段,数学思想方法的运用也不同,侧重点各有差异。思想方法分类也不尽相同。
方法概述
函数的思想,就是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决的数学思想。
方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的数学思想。
⑹ 数学思想方法有哪几种
数学思想方法有以下5种:
一、方程思想
当一个问题可能与某个等式建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。
二、分类讨论思想
当一个问题因为某种量或图形的情况不同而有可能引起问题的结果不同时,需要对这个量或图形的各种情况进行分类讨论。比如解不等式|a-1|>4的时候,就要分类讨论a的取值情况。
三、隐含条件思想
没有明文表述出来,但是根据已有的明文表述可以推断出来的条件,或者是没有明文表述,但是该条件是一个常规或者真理。例如一个等腰三角形,一条过顶点的线段垂直于底边,那么这条线段所在的直线也平分底边和顶角。
四、类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
五、极限思想
极限思想是微积分的基本思想,数学分析中的一系列重要概念,如函数的连续性、导数以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科”。
⑺ 常用的数学思想方法有哪些 常用的数学思想方法有什么
1、数学常用的数学思想方法主要有:用字母表示数的思想,数形结合的思想,转化思想(化归思想),分类思想,类比思想,函数的思灶燃烂想,方程的思想,无逼近思想等等。
2、用字母表示数的思想:这是基本的数学思想之一.在代数第一册第二章“代数初步知识”中,主要体现了这种思想。
3、数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
4、转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一段含种最基本的思想,它是数学基本思想方法之一。
5、分类思想:有理数的分类、整式隐漏的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
6、类比:类比推理在人们认识和改造客观世界的活动中具有重要意义.它能触类旁通,启发思考,不仅是解决日常生活中大量问题的基础,而且是进行科学研究和发明创造的有力工具.
7、函数的思想:辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。
8、方程:是初中代数的主要内容.初中阶段主要学习了几类方程和方程组的解法,在初中阶段就要形成方程的思想.所谓方程的思想,就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。
⑻ 数学中常用的思想方法有几种
一、常用的数学思想(数学中的四大思想)
1.函数与方程的思想
用变量和函数来思考问题的方法就是函数思想,函数思想是函数概念、图象和性质等知识更高层次的提炼和概括,是在知识和方法反复学习中抽象出的带有观念的指导方法。
深刻理解函数的图象和性质是应用函数思想解题的基础,运用方程思想解题可归纳为三个步骤:①将所面临的问题转化为方程问题;②解这个方程或讨论这个方程,得出相关的结论;③将所得出的结论再返回到原问题中去。
2.数形结合思想
在中学数学里,我们不可能把“数”和“形”完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数”和“形 ”在一定条件下可以相互转化、相互渗透。
3.分类讨论思想
在数学中,我们常常需要根据研究对象性质的差异。分各种不同情况亏雹予以考察,这是一种重要数学思想方法和重要的解题策略 ,引起分类讨论的因素较多,归纳起来主要有以下几个方面:(1)由数学概念、性质、定理、公式的限制条件引起的讨论;(2)由数学变形所需要的限制条件所引起的分类讨论;(3)由于图形的不确定性引起的讨论;(4)由于题目含有字母而引起的讨论。
分类讨论的解题步骤一般是销雀帆:(1)确定讨论的对象以及被讨论对象的全体;(2)合理分类,统一标准,做到既无遗漏又无重复 ;(3)逐步讨论,分级进行;(4)归纳总结作出整个题目的结论。
4.等价转化思想
等价转化是指同一命题的等价形式.可以通过变量问题的条件和结论,或通过适当的代换转化问题的岁伍形式,或利用互为逆否命题的等价关系来实现。
常用的转化策略有:已知与未知的转化;正向与反向的转化;数与形的转化;一般于特殊的转化;复杂与简单的转化。
⑼ 常见的数学思想有哪些
1、符号化思想
在数学教学中,各种量的关系、量的变化以及在量与量之间进行推导和演算,都是以符号形式(包括字母、数字、图形与图表以及各种特定的符号)来表示,即运行着一套形式化的数学语言。
2、分类思想
以比较为余拍基础,按照事物间性质的异同,将相同性质的对象归入一类,不同性质的对象归入不同类别——这就是分类,也称划分。数学的分类思想体现对数学对象的分类及其分类标准。
3、函数思想
函数概念深刻地反映了客观世界的运动变化与实际事物的量与量之间的依存关系。
它告诉人们一切事物都在不断地变化着,而且相互联系、相互制约,从而了解事物的变化趋势及其运动规律。对于函数,《标准》提出了学生各个学段的要求,结合实验教材,小学中年级的要求是“探索具体问题中的数量关系和变化规律”“通过简单实例,了解常量和变量的意义”。
4、化归思想
“化归”就是转化和归结。在解决数学问题时,人们常常是将需要解决的问题,通过某种转化手段,归结为另一个相对比较容易解决的或者已经有解决程序的问题,以求得问题的解答。在小学数学中处处都体现出化归的思想,它是解决问题的一种最基本,最常用的思想方法。
5、归纳思想
研究一般性问题时薯猜,先研究几个简单、个别的、特殊的情况,从中归纳出一般的规律和性质,这种从特殊到一般的思维方式被称为归纳思想。
归纳法分为不完全归纳法和完全归纳法两种。小学阶段学生接触较多是不完全归纳法。教学四年级上册运算律(以加法交换律和加法结合律为例),就采用了不完全归纳法展开了教学。
6、优化思想
“多中选优,择优而用”既是一种自然规律,又是一种好的思想方法。算法多样化是解决问题策略多样化的一种重要体现。计算长方形的周长是一题多解,求同存异,在对的方法中要选择最好的方法,弄清对的与好的,选择好的。
在教学中渗透优化的策略和方法,及时引导学生对各种方法进行评价与反思,通过对各种不同方法的辨析、比较,帮助学生认识不同方法的特点与优势,达到“去伪存真、去粗存精”的目的,培养学生“多中选优,择优而用”的优化意识,构建数学知识,实现对知识的优化和系统化。
7、数形结合思想
数学是研究现实世界的空间形式和数量关系的科学。数形结合的思想,就数毁型是把问题的数量关系和空间形式结合起来加以考察的思想。
⑽ 浅谈几种常见的数学思想方法
摘要:数学思想方法以数学知识为载体,蕴涵于知识之中,是数学的精髓。文章主要介绍四种常见的数学思想方法:函数与方程思想、分类与整合的思想、数形结合的思想、化归与转化的思想。在教学过程中渗透数学思想方法,能提高教学效果,提高学生数学素养。
1对数学思想方法的认识
在数学教学和数学教育领域,数学知识、数学方法、数学思想是数学知识体系的三个层次,它们相互联系,共同发展。数学知识是数学思想方法解决问题所依附的材料;数学方法是解决问题的手段和途径,是数学思想发展的前提;数学思想是对数学对象的本质认识,是从某些具体的数学内容(概念、命题、定理)和数学认识过程中提炼出来的基本观点和想法,是数学方法的灵魂,是解决问题的指导思想,对数学活动具有指导意义。数学思想和数学方法是紧密联系的,数学思想方法通常从“数学思想”和“数学方法”两个角度进行阐述。
数学中常用的数学思想方法,概括起来可以分为两类。一类是科学思想在数学中的应用,如分析与综合、分类讨论、类比、化归、归纳与演绎思想等;另一类是数学学科特有的思想方法,如集合与对应、数学建模、数形结合、函数与方程、极限、概率统计的思想方法等。
2教学中主要的数学思想方法
数学思想方法的学习和领悟能帮助学生构建知识体系,使学生所学的知识不再是零散的知识点,能提高学生数学思维能力,提高学习效果。因此,在教学过程中必须重视数学思想方法的教学。
数学思想方法以数学知识为载体,蕴涵于知识之中,是数学的精髓,它支撑和统率着数学知识。教师在讲授概念、性质、定理的过程中应不断渗透与之相关的数学思想方法,让学生在掌握知识的`同时,又能领悟到数学思想,从而提升学生思维能力。在教学过程中,要引导学生主动参与结论的探索、发现及推导过程,搞清知识点间的联系及其因果关系,让学生亲身体验蕴含在知识中的数学思想和方法。
2.1 分类与整合的思想分类是通过比较数学对象本质属性的相同点和差异点,然后根据某一种属性将数学对象区分为不同种类的思想方法。分类讨论既是是一个重要的数学方法,又一个重要的数学思想,在解题时,它能避免思维的片面性,保证不遗不漏。
整合就是考虑数学问题时把注意力和重点放在问题的整体结构上,通过对其全面深刻的观察和分析,从整体上认识问题的实质,把中间相互紧密联系着的量作为整体来处理的思想方法。
解题时,我们常常遇到这种情况,解到某一步时,被研究的问题包含了多种情况,我们不能再按照统一标准进行下去,这就需要把条件所给出的总区域划分成若干个子区域,然后分别在各个子区域内进行解题,当分类解决完这个问题后,再把它们整合在一起,这就是分类与整合的思想。有分有合,先分后合,不仅是分类与整合的思想解决问题的主要过程,也是这种思想方法的本质属性。
这就需要我们在学习中认识到以下几点:什么样的问题需要分类研究;为什么要分类;如何分类;分类后如何研究与最后如何整合等。例如:等比数列的求和公式就分为q=1和q≠1两种情况;对数函数的单调性就分为a>1,0 2.2 数形结合的思想数学研究的对象是数量关系和空间形式,即“数”与“形”两个方面。“数”与“形”之间不是孤立存在的,而是有着密切的联系。数量关系的研究可以转化为图形性质的研究,反之,图形性质的研究可以转化为数量关系的研究,这种解决数学问题过程中“数”与“形”相互转化的思维策略,即是数形结合的思想。
数形结合的思想,既是一个重要的数学思想,也是一种常用的数学方法,为解决问题提供了方便,是解决问题的一个捷径。数形结合思想一方面,能使数量关系的抽象概念和解析式通过图形变得直观形象;另一方面,能使一些图形的属性通过对数量关系的研究,更精准、更深刻地得出图形的性质。这种“数”与“形”的相互转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可大大拓宽我们的解题思路。华罗庚先生曾作过精辟的论述:“数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数时难人微,数形结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系切莫离”。它的运用,往往展现出“柳暗花明又一村”般的数形和谐完美结合的境地。
数形结合在数学解题时应用也比较广泛。例如:不连续函数讨论增减性问题,函数求最值问题;根的分布问题及数形结合在不等式中、在数列中、在解析几何中的应用等。这些都是数形结合的思想方法的体现。
2.3 化归与转化的思想化归与转化的思想就是将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,化归为在已知知识范围内已经解决或容易解决的问题的思想方法。化归与转化思想的实质是揭示联系,实现转化。
化归与转化的思想是解决数学问题的根本思想,大部分数学问题的解决都是通过转化实现的。从某种意义上讲,解决数学问题就是从未知向已知转化的过程,解题的过程实际上就是一步步转化的过程。要想熟练运用化归与转化思想,就要积极主动地去挖掘问题之间的联系,要有丰富的联想、机敏细微的观察,要熟练、扎实地掌握基础知识、基本技能和基本方法。在学习中我们要对公式、定理、法则有深刻理解,并对典型例题和习题进行总结和提炼。人们常说:“抓基础,重转化”是学好数学的金钥匙,学习中一定要用好这把金钥匙。运用化归与转化思想的例子比比皆是,如:未知向已知的转化,复杂问题向简单问题的转化,新知识向旧知识的转化,数与形的转化,空间向平面的转化,命题之间的转化,高维向低维的转化,多元向一元的转化,函数与方程的转化等都是转化思想的体现。
2.4 函数与方程的思想函数的思想是用运动、变化的观点,分析研究具体问题中的数量关系,通过函数形式把这种数量关系刻划出来并加以研究,从而解决问题的方法。
方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的解题思路和策略。
函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,,是对知识在更高层次上的抽象、概括与提炼,是研究变量与函数之间的内在联系,并从函数与方程各部分的内在联系出发来考虑问题,研究问题和解决问题的数学思想。
着名数学家克莱因说:“一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考”。一个学生仅仅学习了函数的知识,他在解决问题时往往是被动的,而建立了函数思想,才能主动地去思考一些问题。
在解题时,要学会思考这些问题:①是不是需要把字母看作变量?②是不是需要把代数式看作函数?如果是函数它具有哪些性质?③是不是需要构造一个函数,把表面上不是函数的问题化归为函数问题?④能否把一个等式转化为一个方程?等等。我们常见的运用函数思想的例子有:数列问题借助于函数思想,用函数方法来解决;遇到变量时构造函数关系式来解题;有关的最大、最值问题,可利用函数观点加以分析;实际应用问题,转化成数学语言,建立数学模型和函数关系式,应用函数相关性质来解决等。
参考文献:
[1]钱佩玲.数学思想方法与中学数学(第2版).北京师范大学出版社,2008.
[2]张顺燕.数学的思想、方法和应用.北京大学出版社,2009.