Ⅰ 假设检验
(一)假设检验的基本思想
统计假设检验就是为了推断某个问题,事先做出一种假设。然后用一个实测样本数据计算出某一个适合的、已知其分布的统计量,并通过查表得出其相应的临界值。再用实测样本数据计算出来的关于统计量与其临界值进行比较,从而得出肯定(接受)原假设或否定(拒绝)原假设的结论,达到统计推断之目的,下面举例说明。
[例8-4]在某测区的海西期第二阶段中粗粒黑云母花岗岩(
解:假定这批γ照射量率数据都服从正态分布。此例中,300个数据是很大的样本,可以把它看成总体,故可用300个数据的平均数与标准差当作总体的均值与标准差,即μ=35γ,σ=8γ,80个观测数据仍看成是样本。由于样本标准差s=8.2γ与总体标准差相差甚小。因此,只需检验样本平均数
(1)假设H0
放射性勘探技术
其中:μ=35(γ),σ=8(γ),
(2)构造一个统计量u
先将样本平均数标准化,即
放射性勘探技术
式(8-21)中的统计量u服从标准正态分布,即u~N(0,1)。
(3)确定临界值
给定信度α=0.05,则由附录一查出F(u)=1-α/2=0.975所对应的uα=1.96,故有
P{-1.96<u<1.96}=1-α=0.95
即
放射性勘探技术
或
放射性勘探技术
其中33.26γ与36.74γ是临界值,而区间(33.26,36.74)是肯定域。区间以外为否定域。这就是说,样本平均数
(4)计算实测样本平均数
由于实测样本平均数
(二)差异的显着性与信度(显着性水平)
上例的统计推断性结论是在信度(显着性水平)α=0.05的条件下做出的。如果将信度α定得小一些,那么做出的统计性结论就有可能改变。比如α=0.01,由附录一可查出F(u)=1-α/2=0.995所对应的u临界值uα=2.58,故有
放射性勘探技术
或
放射性勘探技术
在这种情况下,临界值为32.7γ与37.3γ,故区间(32.7,37.3)为肯定域。而实测样本
显而易见,信度α如何选择,直接影响到差异是否显着的结论。可见,任何差异是否显着的推断都是在一定的信度(显着性水平)α下做出的。α定得越大,肯定域就小,但推断的可靠性差(即置信概率小)。反之,α定得愈小,肯定域就愈大,推断的可靠性强(置信概率大)。放射性物探工作中所要进行的统计假设检验,一般将信度α定为0.05或0.01较为恰当,此时置信概率分别为95%与99%。
(三)统计假设检验的分类
统计假设检验可分为两大类,即参数性方法与非参数性方法,就是假定总体的分布型式已知(经常假定为正态分布),只要对参数进行检验即可。非参数性方法,则不管总体的分布如何,都能应用。
参数性方法又可分为大样本与小样本推断两种。一般当n>30~50时,可称为大样本,凡属大样本一律可按正态分布处理。
(四)分布型式的检验
放射性物探工作中经常要统计各种底数。进行底数统计之前,就要对观测数据进行分布型式的检验,以确定观测数据服从何种概率分布,并采用相应的底数与标准差的计算方法。当然根据频率分布直方图的形状也大致可以看出其分布型式,但这是不严格的,需要进行检验。检验的方法很多,下面介绍几种方法:
1.偏度、峰度检验法
这是一种检验概率分布是否属于正态分布的参数性方法,要求有大样本(n>100)。此种检验方法中要用的两个统计量CS(偏度)与CE(峰度),其计算公式已在本项目学习任务一中给出。
当总体服从正态分布时,若样本为大样本(n>100),则统计量CS、CE近似服从正态分布,即CS~N(0,6/n),CE~N(0,24/n)。
现以本项目学习任务一某花岗岩体的228个γ测量数据为例,说明如何用偏度系数和峰度系数法检验分布型式的方法。
[例8-5]用偏度系数和峰度系数法检验表8-1中某地区γ普查数据是否服从正态分布,给定信度α=0.05。
(1)假设H0
该地区γ照射量率数据服从正态分布。又因样本容量n=228,为大样本,故
CS~N(0,6/228),CE~N(0,24/228)
将这两个参数标准化,有
放射性勘探技术
经过标准化变换以后,公式(8-22)和公式(8-23)都服从标准正态分布N(0,1)。
(2)计算标准化后的概率区间
在α=0.05下,查得F(u)=1-α/2=0.975所对应的uα=1.96,故有
放射性勘探技术
即
P{-0.32<CS<0.32}=0.95
故CS的临界值为-0.32和0.32,即区间(-0.32,0.32)为肯定域,其外为否定域。
同样对于CE,有
放射性勘探技术
即
P{-0.64<CE<0.64}
故CE的临界值为-0.64和0.64,即区间(-0.64,0.64)为肯定域,其外为否定域。
(3)计算样本的CS和CE
根据实测数据可用列表法求取偏度系数CS和峰度系数CE,见表8-5。
表8-5 某地区放射性测量γ射线照射量率(γ)偏度系数和峰度系数计算表
续表
根据表8-5计算CS和CE,步骤如下:
放射性勘探技术
三阶中心矩(M3)和四阶中心矩M4计算如下:
放射性勘探技术
于是
放射性勘探技术
(4)比较
将由实测样本计算的CS和CE与其临界值进行比较,可见样本的CS=0.0903和CE=-0.5921都落在肯定域内,故肯定原假设,认为该地区的γ射线照射量率符合正态分布。
2.正态概率格纸检验法
显然上述检验方法比较麻烦,计算工作量较大,而且要求是大样本。在本项目学习任务二曾指出,在正态概率格纸上做出的正态分布的累积概率曲线为一条直线。因此便可根据画在正态概率格纸上的实测样本数据的诸(xi,Fi)点是否基本在一条直线上,来检验该批数据是否符合正态分布。其中xi为实测样本分组数据的组上限,Fi为其累积频率。这种检验方法称为正态概率格纸检验法。
下面仍然以某地区花岗岩228个γ照射量率数据为例,说明其检验方法。
[例8-6]使用表8-1的数据,用正态概率纸法检验某地区γ普查数据是否符合正态分布。
解:以表8-1中的累积频率为纵坐标,将数据分组值(组上限)为横坐标,在正态概率格纸上打点,即A(21.5,1.32)、B(25.5,7.46)、C(29.5,20.64)、D(33.5,41.23)、E(37.5,64.64)、F(41.5,82.64)、G(45.5,94.74)、H(49.5,98.25);然后用直尺画一条直线,尽可能将各点联结起来,如图8-9所示,其做法与用累积频率展直线法求正常值的做法相同。
由图8-9可见,这些点基本落在一条直线上,因此该批数据服从正态分布,这与用偏度、峰度检验法得出的结论相同。由图8-9还可见到,有些点与直线有些偏差,这是允许的,但是偏差不能太大。偏差太大,则不一定属于正态分布。一般说来,中间的点(即靠近累积频率为50%横线附近的点)偏差不能太大,两端的点偏差可以适当大一点。究竟偏离多远可认为是允许的,需绘制一定信度α下的临界曲线,见图5-5所示,以此作为衡量的标准。临界值曲线的画法请参阅有关书籍。
3.χ2检验法
χ2检验不但可以检验正态分布,还可以检验泊松分布、二项分布、负二项分布、指数分布等的分布型式。
(1)理论原理
这是在总体x为未知时,根据它的n个观测值x1,x2,…,xn来检验关于总体分布的假设
H0:总体x的分布函数为F(x)(8-24)
的一种方法。
注意,若总体分布为离散型,则假设式(8-24)相当于
H0:总体x的分布律为P{x=ti}=pi(i=1,2,…)(8-25)
若总体分布函数为连续型,则假设式(8-24)相当于
H0:总体x的概率密度为f(x)(8-26)
式(8-24)~式(8-26)是χ2检验的理论模型表达式。
在用下述χ2检验法检验假设H0时,要求在假设H0下F(x)的分布型式及其参数都是已知的。但实际上参数往往是未知的,这时,需要先用极大似然法估计参数,然后做检验。
χ2检验法的基本思想是:把随机实验结果的全体S分为k个互不相容事件A1,A2,…,Ak(A1∪A2∪…∪Ak=S,AiAj=ϕ,i≠j;i,j=1,2,…,k)。于是,在假设H0下,我们可以计算理论频率pi=P(Ai)(i=1,2,…,k)。显然,在n次试验中,事件Ai出现的频率
放射性勘探技术
作为检验理论(即假设H0)与实际符合的尺度。并证明了如下的定理:若n充分大(n≥50),则不论总体属于什么分布,统计量式(8-27)总是近似地服从自由度为k-r-1的χ2分布。其中,r是被估计参数的个数。
于是,若在假设H0下算得皮尔逊统计量的值,即式(8-27),有
放射性勘探技术
则在显着性水平α下拒绝H0;若式(8-28)中不等号反向,就接受H0。
χ2检验的具体步骤是:
把实轴分为k个互不相容的区间[αi,αi+1](i=1,2,…,k),其中αi,αi+1可分别取-∞,+∞。区间的划分方法视具体情况而定。
其次,计算概率
pi=F(αi+1)-F(αi)=P{αi<x≤αi+1}(8-29)
此处,F(x)由式(8-29)确定。然后算出pi与样本容量n的乘积npi称为理论频数。
同时,计算样本观察值x1,x2,…,xn在区间(αi,αi+1]中的个数
然后,将
χ2检验法是在n无限增大时推导出来的,所以在使用时必须注意n要足够大,以及npi不太小这两个条件。根据经验,要求样本容量n不小于50,当n刚刚大于50附近时,npi最好在5以上,在n大于100时npi最好取10以上,否则应当适当的合并区间(或Ai),使npi满足这个要求。特别是在边部小概率事件下要进行适当地并组,这样可以有效的压低边部“干扰”,突出数据中部的“有用信号”。
下面通过实例来说明检验的过程。
(2)应用实例
[例8-7]试用χ2检验的办法检验某地区闪长岩钍含量是否服从对数正态分布(取α=0.05)。原始数据单位为10-6,取常用对数以后的统计结果见表8-6。
表8-6 某地区闪长岩钍含量对数值统计表
解:为方便起见,根据表8-6所整理的结果来做检验。因参数都是未知的,故应用极大似然估计法估计μ、
放射性勘探技术
注意:这里的
估计
放射性勘探技术
注意,公式中的n=110,为样品容量;k为分组数,表示并组后的组数。这里对第1~3和13~15组进行了并组,故k=11。对于分组时两头的小组实行并组是为了有效地减小偶然误差。
所以,我们要检验的假设为
H0:x~N(0.7509,0.24842)
为便于计算npi,应先做变换u=(x-0.7509)/0.2484。化x为标准正态变量u,与正态分布概率纸检验法一样,查出各个u之下的累积频率,算出区间频率、频数,这些都是理论值。如表8-7所示。
表8-7 某区闪长岩钍含量对数正态分布χ2检验表
标准正态分布表中查出的是累积频率F(u);每一个区间频率为该区间累积频率与上一个区间累计频率之差;n=110,为样品容量,而非分组组数,故npi表示理论频数;
由于并组后组数k=11,估计了两个参数(
放射性勘探技术
故在水平α=0.05下接受H0,认为该地区岩石钍含量符合对数正态分布,并且钍含量对数
通过上例可见,用χ2检验法(或其他检验方法)得到的结果往往较概率纸精确。特别是,有的检验法(如χ2检验法)能控制犯第一类错误的概率α,这是概率纸所做不到的。但概率纸使用方便,无须太多的计算,因此,概率纸常用来初步估计总体的分布类型及参数的一次近似之用。然后用χ2检验法(或距离计算法、偏度系数和峰度系数检验法等)进一步做精确的检验。
(五)平均数的对比(U检验和t检验)
由本项目学习任务二正态分布的介绍,可知正态分布有两个重要参数,一个是均值μ,另一个是标准差σ。当μ与σ确定后,正态分布N(μ,σ)就完全确定了;且在一般情况下,标准差σ比较稳定。要检验两个正态分布是否相同,或者说,两个正态分布的样本是否属于同一总体,只要对均值μ做检验,这就是平均数对比的实质。放射性物探工作中要经常遇到某些元素的含量,放射性γ照射量率等的对比问题,仪器的“三性”检查工作中也要碰到类似的问题。
设从两个正态总体N(μ1,
1.大样本平均数的对比——U检验
当两个样本为大样本,即n1>30,n2>30时,由本任务可知,两样本的平均数
U检验的步骤如下:
(1)假设H0
μ1=μ2,于是
放射性勘探技术
将
放射性勘探技术
那么新变量U服从标准正态分布,即U~N(0,1),U就是检验中要用的统计量,可查F(u)表(见附录一),故称为U检验。
(2)确定临界值
若选定信度α=0.05,则从F(u)反查u值表中根据F(u)=1-
(3)比较
计算实测样本的U值,与临界值uα进行比较。若|U|>uα,则否定原假设;若|U|<uα,就肯定原假设。
为了计算实测样本的U值,必须知道总体的标准差σ。若σ已知,则无论大、小样本都可用U检验进行假设检验。若σ未知,则要用两样本标准差s1、s2的加权平均值来估计总体标准差σ,即用
放射性勘探技术
代替σ,于是
放射性勘探技术
式(8-31)就是计算的U值,下面举例说明。
[例8-8]在某一斑状黑云母花岗岩地段进行放射性γ照射量率测量。测得169个数据(n1),平均照射量率
解:经过分布型式检验,两样本γ照射量率数据均服从正态分布,两样本标准差又近似相等,且都是大样本。显然可用U检验对两地段的平均数进行对比。将数据代入公式(8-31),可算出实测样本U值,即
放射性勘探技术
取信度α=0.05,查附录一,得U的临界值uα=1.96。而实测样本U=9.034>uα=1.96,故否定原假设H0,认为斑状黑云母花岗岩地段与其相邻地段不是同一总体,或者说,不是属于同一岩性。后经地质调查证实岩性为细粒二云母花岗岩,这两种花岗岩的结构不同,成分不同,侵入时代也不相同。
2.小样本平均数的对比——t检验
当两个样本中,只要有一个为小样本时,即n1与n2中有一个小于30,用样本方差s2去估计总体方差时,要用无偏估计量,即
放射性勘探技术
在这种情况下得不出新变量u服从标准正态分布的结论。因此也就不能用上述U检验的方法进行检验。用两个样本方差
放射性勘探技术
来代替σ,这时要构造一个新的统计量t。t不像两个大样本的情况下要服从标准正态分布,而服从自由度f=n1+n2-2的t分布,或称学生(Student)分布。
当给定了信度α,如α=0.05,且自由度f=n1+n2-2为已知时,可在t分布临界值tα表中(见附录三)查出临界值tα。其否定域为|t|≥tα。
[例8-9]在同一地点、相同条件下用两台γ能谱仪进行测量。第一台仪器测量10次,测得铀含量(10-6)x1分别为3.5、3.2、3.0、3.1、3.2、3.3、3.3、3.2、3.1、3.2,平均铀含量
解:因为
1)假设H0,两台仪器读数的均值相等,即
μ1=μ2
2)计算实测样本统计量t:
放射性勘探技术
3)比较:
若取信度α=0.05,查t分布表(见附录三),其自由度f=n1+n2-2=20时,查得t的临界值tα/2=2.08。因为|t|=2.285>tα/2=2.08,所以否定原假设H0,μ1≠μ2,认为两台仪器读数的平均值差异显着,故两台仪器的一致性不好。
(六)方差对比——F检验
在平均数对比中,检验两个总体均值是否相同(无论大样本或小样本)之前,都应先假定被检验的两个总体服从正态分布,且方差相等。如果不能肯定方差基本相等则需先进行方差检验。只有当方差无显着性差异后,方可进行平均数的对比;否则,就不必进行平均数对比了,因为方差差异显着,已可认为两者不是同一总体了。
假设从两个正态总体N(μ1,
放射性勘探技术
通过对比两样本方差
放射性勘探技术
统计量F服从第一自由度f1=n1-1、第二自由度f2=n2-1的F分布。当给定信度α后。且第一自由度f1与第二自由度f2为已知时,可从F分布临界值表中(见附录四)查出临界值Fα。本来当信度为α时,F检验的否定域为左右两边各取面积为α/2的两部分(图8-10)。但为了制表省略起见,F分布临界值表中,往往只给出F>l的右边临界值。因此,当给定了信度α,并已知第一自由度f1与第二自由度f2的情况下,查附录四时实际得出的是Fα/2值,这样在计算样本方差比F值时,就要使得F永远大于1。为此总是把两方差
图8-10 F分布概率密度曲线图
[例8-10]用例8-9中两台仪器在同一地点观测的数据为准,用F检验的办法检验这两台能谱仪的方差有无显着差异。已知α=0.10。
解:设
1)假设H0:
2)计算方差比:
第一台仪器10次测量和第二台仪器12次测量的均方差分别是s1=0.137×10-6和s2=0.162×10-6,直接代入公式(8-33)中,得
放射性勘探技术
3)确定临界值Fα:
已知α=0.10,第一自由度f1=10-1=9,第二自由度f2=12-1=11,查附录四,得Fα/2=F(0.05)=2.27。
4)比较:
由于两个样本的方差比F=1.398<Fα=2.27,落在肯定域内,故肯定原假设H0:
Ⅱ 假设检验的三种类型
假设检验分为三种类型:左边检验、右边检验、双边检验。
基本方法:
显着性检燃清验有时,根据一定的理论或经验,认为某一假设h0成立,例如,通常有理由认为特定的一群人的身高服从正态分布。当收集了一定数据后,可以评价实际数据与理论假设h0之间的偏离,如果偏离达到了“显着”的程度就拒绝h0,这样的检验方法称为显着性检验。
偏离达到显着的程度通常是指定一个很小的正皮游前数α(如0.05,0.01),使当h0正确时,它被拒绝的概率不超过α,称α为显着性水平。这种假设检验问题的特点是不考虑备择假设,考虑实验数据与理论之间拟合的程度如何,故此时又称为拟合优度检验。拟合优度检验是一类重要的显着性检验。
Ⅲ 检验假设的方法
常用的假设检验的方法有以下四种: (1)Z检验。Z检验常用于总体正态分布、方差已知或独立大样本的平均数的显着性和差异的显着性检验,非正态分布的皮尔森积差相关系数和二列相关系数的显着性检验以及两个相关系数分别由两组被试得到的相关系数差异性检验等情况。 (2)t检验。t检验常用于总体正态分布、总体方差未知或独立小样本的平均数的显着性检验,平均数差异显着性检验,相关系数由同一组被试取得的相关系数差异显着性检验,非正态分布的皮尔森相关系数的显着性检验等情况。
Ⅳ 假设检验的基本步骤是什么
什么是假设检验:假设检验(Hypothesis Testing)是数理统计学中根据一定假设条件由样本推断总体的一种方法。具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显着性水平进行检验,作出拒绝或接受假设H0的判断。常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。
假设检验的基本步骤如下:
1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。
H0:样本与总体或样本与样本间的差异是由抽样误差引起的;
H1:样本与总体或样本与样本间存在本质差异;
预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。
2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。
3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显着,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水准显着,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。
教学中的做法:
1.根据实际情况提出原假设和备择假设;
2.根据假设的特征,选择合适的检验统计量;
3.根据样本观察值,计算检验统计量的观察值(obs);
4.选择许容显着性水平,并根据相应的统计量的统计分布表查出相应的临界值(ctrit);
5.根据检验统计量观察值的位置决定原假设取舍。
Ⅳ 总体平均数的假设检验方法通常有
总体平均数的假设检验方法通常有:描述统计和推断统计。
前者能够应用在所有数据集合,包括样本和总体,而后者则是从样本出发推断总体性质。用样本的均值来估计总体的均值,必须进行样本均值的T检验。
均值的假设检验携启包括三种类型:单样本T检验,这是用样本的均值与某个常数进行比较,该常数是假设的总体均值;独立样本T检验,这是用两个样本的均值之差的大迟亏小来检验对应的两个总体的均值是否相等的方法;配对样本T检验,这是用配对样本的两次测量结果差异的大小来检验两个总体的差异是否显着的方法。
原假设就是假设变量之间没有差异或不相关,备择假设是与原假设相反的假设,在统计学中,我们无法对备择假设进行直接检验,只能对原假设进行直接检验。根据是否强调检验方向性,假设检验可分为单尾假设检验和双尾假设检验。单尾检验强关心研究对象高于还是低于某一水平,而双尾检验值关心两个总体参数之间是否有差异。
Ⅵ 简述假设检验的步骤
简述假设没漏检验的步骤:
(1)建立假设(。
2)确定显着性水平。
(3)计算统计量。
(4)确定概率值p(。
5)做出推断结论,
假设检验(hypothesistesting),又称统计假设检验,是用来判断样本与样本、样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。
显着性检验是假设检验中最常用的迹核一种方法,也是一种最基本的统计推断形式,其基本原理是先对总体的特征做出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受做出推断。
常姿察掘用的假设检验方法有Z检验、t检验、卡方检验、F检验等
Ⅶ 总结!14个常用的统计假设检验的方法
本文分享利用SPSSAU进行14个常用的统计假设检验的方法,分为以下五个部分:
一、正态性检验
正态性特质是很多分析方法的基础前提,如果不满足正态性特质,则应该选择其它的分析方法,因此在做某些分析时,需要先进行正态性检验。如果样本量大于50,则应该使用Kolmogorov-Smirnov检验结果,反之则使用Shapro-Wilk检验的结果。
常见的分析方法正态性特质要求归纳如下表(包括分析方法,以及需要满足正态性的分析项,如果不满足时应该使用的分析方法)。
如果p 值大于0.05,则说明具有正态性特质,反之则说明数据没有正态性特质。
如果是问卷研究,数据很难满足正态性特质,而实际研究中却也很少使用不满足正态性分析时的分析方法。
SPSSAU认为有以下三点原因:
① 参数检验的检验效能高于非参数检验,比如方差分析为参数检验,所以很多时候即使数据不满足正态性要求也使用方差分析
② 如果使用非参数检验,呈现出差异性,则需要对比具体对比差异性(但是非参数检验的差异性不能直接用平均值描述,这与实际分析需求相悖,因此有时即使数据不正态,也不使用非参数检验,或者Spearman相关系数等)
③ 理想状态下数据会呈现出正态性特质,但这仅会出现在理想状态,现实中的数据很难出现正态性特质(尤其是比如问卷数据)【可直接使用“直方图”直观展示数据正态性情况】。
二、方差齐检验
如果要进行方差分析,需要满足方差齐性的前提条件,需要进行方差齐检验,其用于分析不同定类数据组别对定量数据时的波动情况是否一致。例如研究人员想知道三组学生的智商 波动情况是否一致(通常情况希望波动一致,即方差齐)。
判断p 值是否呈现出显着性(p <0.05),如果呈现出显着性,则说明不同组别数据波动不一致,即说明方差不齐;反之p 值没有呈现出显着性(p >0.05)则说明方差齐。
提示: 方差不齐时可使用‘非参数检验’,或者还可使用welch 方差,或者Brown-Forsythe方差。
三、相关性检验
(1)相关分析
相关分析是一种简单易行的测量定量数据之间的关系情况的分析方法。可以分析包括变量间的关系情况以及关系强弱程度等。相关系数常见有三类,分别是:
1.Pearson相关系数
2.Spearman等级相关系数
3.Kendall相关系数
三种相关系数最常使用的是Pearson相关系数;当数据不满足正态性时,则使用Spearman相关系数,Kendall相关系数用于判断数据一致性,比如裁判打分。下图是详细使用场景:
如果呈现出显着性(结果右上角有*号,此时说明有关系;反之则没有关系)。
有了关系之后,关系的紧密程度直接看相关系数大小即可。(一般0.7以上说明关系非常紧密;0.4~0.7之间说明关系紧密;0.2~0.4说明关系一般。)
如果说相关系数值小于0.2,但是依然呈现出显着性(右上角有*号,1个*号叫0.05水平显着,2个*号叫0.01水平显着;显着是指相关系数的出现具有统计学意义普遍存在的,而不是偶然出现),说明关系较弱,但依然是有相关关系。
(2)卡方检验
卡方检验主要用于研究定类与定类数据之间的差异关系。卡方检验要求X、Y项均为定类数据,即数字大小代表分类。并且卡方检验需要使用卡方值和对应p 值去判断X与Y之间是否有差异。通常情况下,共有三种卡方值,分别是Pearson卡方,yates校正卡方,Fisher卡方;优先使用Pearson卡方,其次为yates校正卡方,最后为Fisher卡方。
具体应该使用Pearson卡方,yates校正卡方,也或者Fisher卡方;需要结合X和Y的类别个数,校本量,以及期望频数格子分布情况等,选择最终应该使用的卡方值。SPSSAU已经智能化处理这一选择过程。
第一:分析X分别与Y之间是否呈现出显着性(p值小于0.05或0.01);
第二:如果呈现出显着性;具体对比选择百分比(括号内值),描述具体差异所在;
第三:对分析进行总结。
卡方检验,SPSSAU提供两个按钮,二者的区别是,后者输出更多的统计量过程值以及深入指标表格,满足需要更多分析指标的研究人员,如下各图。
进行卡方检验,上传数据时需要特别注意数据格式,有两种格式:常规格式和加权格式。
① 常规格式数据 ,如下图。则通用方法中的【交叉(卡方)】和实验/医学研究中的【卡方检验】都可以使用。
② 加权数据: 但在某些情况下,我们得到的不是原始数据,而是经过整理的汇总统计数据。比如下面这样格式的数据:
类似这样的格式,不能直接使用的,需要整理成加权数据格式,只能使用实验/医学研究中的【卡方检验】
这时候点击实验/医学研究面板中的【卡方检验】-拖拽三个【分析变量】分别到对应分析框-【开始分析】即可。
四、参数检验
(1) 单样本t检验
单样本T检验用于比较样本数据与一个特定数值之间是否存在差异情况。
首先判断p 值是否呈现出显着性,如果呈现出显着性,则分析项明显不等于设定数字,具体差异可通过平均值进行对比判断。
(2)独立样本T检验(T检验)
独立样本T检验用于分析定类数据(X)与定量数据(Y)之间的差异情况。
独立样本T检验除了需要服从正态分布、还要求两组样本的总体方差相等。当数据不服从正态分布或方差不齐时,则考虑使用非参数检验。
首先判断p 值是否呈现出显着性,如果呈现出显着性,则说明两组数据具有显着性差异,具体差异可通过平均值进行对比判断。
(3)配对样本T检验
用于分析配对定量数据之间的差异对比关系。与独立样本t检验相比,配对样本T检验要求样本是配对的。两个样本的样本量要相同;样本先后的顺序是一一对应的。
常见的配对研究包括几种情况:
判断p 值是否呈现出显着性,如果呈现出显着性,,则说明配对数据具有显着性差异,具体差异可通过平均值进行对比判断。
(4)方差分析
方差分析(单因素方差分析),用于分析定类数据与定量数据之间的关系情况.例如研究人员想知道三组学生的智商平均值是否有显着差异。
进行方差分析需要数据满足以下两个基本前提:
理论上讲,数据必须满足以上两个条件才能进行方差分析,如不满足,则使用非参数检验。但现实研究中,数据多数情况下无法到达理想状态。正态性检验要求严格通常无法满足,实际研究中,若峰度绝对值小于10并且偏度绝对值小于3,或正态图基本上呈现出 钟形 ,则说明数据虽然不是绝对正态,但基本可接受为正态分布,此时也可使用方差分析进行分析。
第一:分析X与Y之间是否呈现出显着性(p值小于0.05或0.01)。
第二:如果呈现出显着性;通过具体对比平均值大小,描述具体差异所在。
第三:如果没有呈现出显着性;说明X不同组别下,Y没有差异。
(5)重复测量方差
在某些实验研究中,常常需要考虑时间因素对实验的影响,当需要对同一观察单位在不同时间重复进行多次测量,每个样本的测量数据之间存在相关性,因而不能简单的使用方差分析进行研究,而需要使用重复测量方差分析。
第一、首先进行球形度检验,p <0.05说明没有通过球形度检验,p >0.05说明通过球形度检验;
第二、如果没有通过球形度检验,并且球形度W值大于0.75,则使用HF校正结果;
第三、如果没有通过球形度检验,并且球形度W值小于0.75,则使用GG校正结果;
第四、如果通过球形度检验,组内效应分析结果时使用“满足球形度检验”结果即可;
将数据上传至SPSSAU分析,选择【实验/医学研究】--【重复测量方差】。
五、非参数检验
凡是在分析过程中不涉及总体分布参数的检验方法,都可以称为“非参数检验”。因而,与参数检验一样,非参数检验包括许多方法。以下是最常见的非参数检验及其对应的参数检验对应方法:
非参数秩和检验研究X不同组别时Y的差异性,针对方差不齐,或者非正态性数据(Y)进行差异性对比(X为两组时使用mannWhitney检验,X超过两组时使用Kruskal-Wallis检验,系统默认进行判断);
(1)单样本Wilcoxon检验
单样本Wilcoxon检验是单样本t检验的代替方法。该检验用于检验数据是否与某数字有明显的区别,如对比调查对象整体态度与满意程度之间的差异。首先需要判断数据是否呈现出正态性分析特质,如果数据呈现出正态性特质,此时应该使用单样本t检验进行检验;如果数据没有呈现出正态性特质,此时应该使用单样本Wilcoxon检验
首先判断p 值是否呈现出显着性,如果呈现出显着性,则分析项明显不等于设定数字,具体差异可通过中位数进行对比判断。
(2)Mann-Whitney检验
Mann-Whitney检验是独立样本t检验的非参数版本。该检验主要处理包含等级数据的两个独立样本,SPSSAU中称为非参数检验。
第一:分析X与Y之间是否呈现出显着性(p值小于0.05或0.01)。
第二:如果呈现出显着性;通过具体对比中位数大小,描述具体差异情况。
(3)Kruskal-Wallis检验
Kruskal-Wallis检验是单因素方差分析的非参数替代方法。Kruskal-Wallis检验用于比较两个以上独立组的等级数据。
在SPSSAU中,与Mann-Whitney检验统称为“非参数检验”,分析时SPSSAU会根据自变量组别数自动选择使用Kruskal-Wallis检验或Mann-Whitney检验。
(4)配对Wilcoxon检验
Wilcoxon符号秩检验是配对样本t检验的非参数对应方法。该检验将两个相关样本与等级数据进行比较。
第一:分析每组配对项之间是否呈现出显着性差异(p值小于0.05或0.01)。
第二:如果呈现出显着性;具体对比中位数(或差值)大小,描述具体差异所在。