㈠ 聚类算法有哪些
聚类算法有:划分法、层次法、密度算法、图论聚类法、网格算法、模型算法。
1、划分法
划分法(partitioning methods),给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法。
2、层次法
层次法(hierarchical methods),这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等。
3、密度算法
基于密度的方法(density-based methods),基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。代表算法有:DBSCAN算法、OPTICS算法、DENCLUE算法等。
4、图论聚类法
图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。因此,每一个最小处理单元数据之间都会有一个度量表达,这就确保了数据的局部特性比较易于处理。图论聚类法是以样本数据的局域连接特征作为聚类的主要信息源,因而其主要优点是易于处理局部数据的特性。
5、网格算法
基于网格的方法(grid-based methods),这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法。
6、模型算法
基于模型的方法(model-based methods),基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。通常有两种尝试方向:统计的方案和神经网络的方案。
(1)常用的聚类方法有扩展阅读:
聚类分析起源于分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又将多元分析的技术引入到数值分类学形成了聚类分析。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。
在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。
㈡ 聚类算法有哪几种
聚类分析计算方法主要有: 层次的方法(hierarchical method)、划分方法(partitioning method)、基于密度的方法(density-based method)、基于网格的方法(grid-based method)、基于模型的方法(model-based method)等。其中,前两种算法是利用统计学定义的距离进行度量。
k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然 后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
其流程如下:
(1)从 n个数据对象任意选择 k 个对象作为初始聚类中心;
(2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;
(3)重新计算每个(有变化)聚类的均值(中心对象);
(4)循环(2)、(3)直到每个聚类不再发生变化为止(标准测量函数收敛)。
优点: 本算法确定的K个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为 O(NKt),其中N是数据对象的数目,t是迭代的次数。
缺点:
1. K 是事先给定的,但非常难以选定;
2. 初始聚类中心的选择对聚类结果有较大的影响。
㈢ 什么是聚类分析聚类算法有哪几种
聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于
分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行
定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识
难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又
将多元分析的技术引入到数值分类学形成了聚类分析。
聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论
聚类法、聚类预报法等。
聚类分析计算方法主要有如下几种:分裂法(partitioning methods):层次法(hierarchical
methods):基于密度的方法(density-based methods): 基于网格的方法(grid-based
methods): 基于模型的方法(model-based methods)。
㈣ 未知分类数目的聚类方法有哪些呀
给定一个数组 --> @x 做聚类分析,现在不知道它能分成多少类,是要做 fuzzy C-means clustering么?如何在实现未知分类数目的聚类分析?-------------------------------------------------------------------------------------------------------我现在的数据都是正整数,如下:492, 500, 490, 486, 490, 491, 493, 480, 461, 504, 476, 434, 500, 470, 495, 3116, 3805, 3142, 12836, 12692, 3062, 3091, 3141, 3177, 3685, 3150, 3114, 3149, 12658, 3134, 3143, 3156, 3119, 3172, 3113, 12307, 12338, 3162, 2679, 3177, 3111, 3115, 3136, 3156, 12394, 3129, 3176, 3134, 3108, 12657, 506, 473, 495, 494, 434, 459, 445, 475, 476, 3146, 2009, 3132, 3155, 2704, 3125, 3170, 3187具体分类的话,我查到了这个: http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/cmeans.html 使得Jm 最小。-------------------------------------------------------------------------------------------------------然后是详细的对所面临的数据的手工分类过程: 理论上数据可以分成1类,或者2类,这个在每行数据里是不固定的。即某些行可以分成一类,有些行可以分成两类,但是哪些行分成1类那些行分成两类不固定 但是,由于有实验误差的问题,有些数据需要抛弃,比如,如果一组数据是 23,24,25,332,334,336,2000; 那么这个2000是实验误差,需要摒弃。一般来讲这个误差会是非常大的,比如这里是2000,或者更大,30000;同时误差的个数不固定,有时候是一个2000,有时候是一个2000,一个30000。这里取决于这一行包含数据的个数。数据个数越多,其中包含错误的个数便越多。 如果让我来手工分类,基本上就是按照上面的方式;首先确定是一个cluster或者是两个clusters,然后再摒弃掉距离cluster距离非常远的数字。 这里如果是一个cluster,则这个cluster附近的数字符合正态分布;如果是两个cluster,那么在这两个cluster附近的数字分别符合正态分布