导航:首页 > 使用方法 > 探索图形规律常用方法

探索图形规律常用方法

发布时间:2023-02-16 12:16:04

❶ 数学找规律的方法

代数中的规律“有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。 找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。下面是我为大家整理的关于数学找规律的 方法 ,希望对您有所帮助。欢迎大家阅读参考学习!

1数学找规律方法

代数中的规律“有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。 找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。例1 观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是___。”分析:解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。 我们把有关的量放在一起加以比较: 给出的数:0,3,8,15,24,……。 序列号: 1,2,3, 4, 5,……。

平面图形中的规律:图形变化也是经常出现的。作这种数学规律的题目,都会涉及到一个或者几个变化的量。所谓找规律,多数情况下,是指变量的变化规律。所以,抓住了变量,就等于抓住了解决问题的关键。

2数学找规律方法

从具体的.实际的恩提出发,观察各个数量的特点及相互之间的变化规律。由此及彼,合理联想,大胆猜想善于类比,从不同事物中发现相似或相同点; 总结 规律,得出结论,并验证结论正确与否;在探索规律的过程中,要善于变化 思维方式 ,做到事半功倍 探索规律是一种思维活动,及思维从特殊到一半的跳跃,需要有一定的归纳与综合能力。

当以知的数据有很多组时,需要仔细观察,反复比较,才能准确找出规律。需用到的数学方法有:分类讨论法.转化法.归纳法.通过观察.分析.综合.归纳.概括.推理.判断等一系列探索活动,解答有关探索规律性问题的特点是问题的结论或条件不直接给出,需要逐步确定需要的结论和条件。解答这类题的关键是认真审题,掌握规律.合理推测.认真验证,从而得出问题的正确结论。

3数学找规律方法

标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包括序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。 例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是1002-1,第n个数是n2-1。 解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较: 给出的数:0,3,8,15,24,……。 序列号:1,2,3, 4, 5,……。 容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项n2-1,第100项是1002-1。

公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n有关。 例如:1,9,25,49,(81),(121),的第n项为( (2n-1)2 ), 1,2,3,4,5......,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推。

4数学找规律方法

初中数学的学习、学好要在理解的基础上进行学习,这是我们在学习中应该遵循的第一原则,也是其他科目普遍的共性及今后的学习考试趋势。首先对于概念、公式、定义、定理、公理要有准确的认识,到位的理解,除此之外,学生在这些知识点的学习中也是有一些规律可循的,反复认识理解就是一个好办法,比如数学概念的命名,都是有一定意义的,比如有理数(有道理的,有规律的,说得清的数――有限小数及无限循环小数);同位角、内错角、同旁内角的含义,内心、外心、非负数的含义等,都可以先作一个简单的认识,之后离真正的深刻的理解就不远了,而真正理解的东西想忘都忘不了。

❷ 图形中的规律是什么

图形中的规律如下:

四边形能分成(2)个三角形,五边形能分成(3)个三角形,六边形能分成( 4)个三角形,七边形能分成( 5)个三角形。

对图形推理题的解答,应注意以下技巧:

第一,树立“元素”概念。把每个图形当成是整体的组成“元素”。且要观察细心,善于提炼。元素一般包括点、线、面、体。就近两年的真题来看,主要考察的是“体”,即小图形组成大图形。

每种元素数量的变化、旋转或转动的方向上有无规律、图形之间是否互相叠加、外形上是否相等。因此选择答案时要仔细,不要发生视觉错误。还要学会运用变异思维,例如,有时缺乏某个元素,反倒可以说存在“有”、“无”方面的规律。

第二,寻找变化规律。可以从许多角度看其变化的规律。与前面的类型众多的数列、计算方法相比,图形变化的规律更加众多、复杂,而且可能是闻所未闻的变化“规律”,要靠应试者的逻辑思维功底和思维的灵活性来应对、解决。

第三,特殊图形注意采用特殊的规律。如元素组合类图形用元素组合推理规律等。如出现了四个“圆”,只能看作是“有”圆,而不计算“圆”的数量,这就是说,在某个图形的局部内容“构成不构成元素”的问题上,有着极大的干扰。

以上内容参考:网络-图形规律

❸ 请问图形推理找不到规律怎么破,有没有好的学习方法呢

图形推理的两大灵魂是数量关系和图形转动。牢牢把握住这两大灵魂就基本把握了图形推理题目。在这两大灵魂统帅下的十大基本规律,是每个想要在公考中取得优异成绩的考生必须系统熟练把握的。

下面小考啦来为大家举例说明。

例1:

请点击此处输入图片描述

解析:D,所有图形都含有竖线。

❹ 找规律图形有哪些

找规律的图形有三角形,正方形,圆形。由于数量类的题里面要数,点,线,角,面,素,在确定要去看数量规律,还要知道他们具体的特征。例如点的特征是线条较多或凌乱,有明显的交叉或相切特征,线的特征是组成元素不同,出现直线或曲线较多、

角的特征是图形棱角分明,出现三角形较多,锯齿状折线或者图形有小缺口时,优先考虑数角,面的特征是图形封闭空间特征明显或者明显的黑白块分布,元素数量的特征图形由多个部分构成。

找规律图形的特点

位置类的题有两大类考法,一种是动态位置一种是静态位置,当考察动态位置的时候,特征为组成元素相同整体或局部位置变化明显。当考察静态位置的时候,特征为两个图形或多个图形之间相对的位置关系。

在知道了这些特征后,拿到图形题后可以运用这种观察方法迅速找规律,当然也要注意一些特殊规律的图形特征,例如,一笔画,汉字,黑白格。平时的练习中可以不断的去总结,形成自己的一种思维模式,在备考中才能事半功倍。

❺ 探索图形规律,可以从哪些方面进行思考

探索图形规律,可以找各个图形的特点,然后找他们的规律。

❻ 探索常见图形的规律,用火柴棒按下图的方式搭三角形(1)填写下表: 三角形的个数 1 2 3 4 5

(1)如表所示:

三角形的个数 1 2 3 4 5
火柴棒的根数 3 5 7 9 11
(2)照这样的规律搭建下去,搭n个这样的三角形需要2n+1 根火柴棒.
故答案为:9、11、2n+1.

❼ 初中数学探索规律技巧

【基本原理】数学思考的基本原理

拿出任意一道数学题,观察一下,它有什么特征。

已知条件和结论对吧?我们解题的目标,就是要根据已知,得出一个答案或者结论。中间过程,也就是“如何从已知条件得到结论”,是我们需要探索得问题。

中间的发生了什么?怎么想到的?
怎么想到的呢?有时候是脑海里飘来的灵感,有时候是突然联想到一道曾经做过的题目,有时候是突然想到一个定理。

有没有一种普遍的方法,能够加速我们想到一个思路呢?

这种方法叫做——”探索法”

在做题的每一步,都不断地发问,好处就是让你的大脑活跃起来、尽快地想到解决办法,而不是盯着题目,大脑一片空白。

呈上一个活跃着的、思考数学问题的大脑:

首先,这个大脑开始理解题目。(很多朋友以为,读题是一个不太需要思考的题目,但是,高手们在这个阶段大脑已经预热起来了,并且开始对题目发问)

未知数是什么?
已知数据(指已知数、已知图形和已知事项等的统称)是什么?条件是什么?
满足条件是否可能?
要确定未知数,条件是否充分?或者它是否不充分?或者是多余的?或者是矛盾的?
画张图或者引入适当的符号。
把条件的各个部分分开。你能否把它们写下来?
然后,这个大脑开始寻找已知数和未知数的联系,并且开始进一步发问,以得到解题的灵感。

(图确实有点小了,但是请务必认真看一下!每一个问题都有可能是帮你想到正确思路的救星)

通过这一系列的发问和排查,大脑已经对条件进行了充分的解构,对结论进行了充分的联想,加快了你达到正确答案的速度,也许此时解题已经进展卓越了,就等待大功告成的一瞬。

对我而言,这样的方法真正教会了我思考:

现在遇到任何一个推理性的问题,我就会问自己:

①观察未知量——仔细观察,未知量是什么?

②观察已知量——再看,已知量是什么?

③已知量和未知量怎么发生联系?有时联想做过题目,有时联想定理公式,有时分解定义,有时拆分一个个条件,有时更改题设,有时结论反推。(来自于上面那张思维导图)

这整个过程,有点像让一个外星人来建造一个房子。
①(未知数)紧盯目标,我要一座房子!
②(已知条件)我有啥东西!
③(联系)我怎么用手头这些材料建造一个房子出来?
首先思考未知数:房子是啥?我曾经造过房子吗?没有啊……我记得小红、小明曾经建过一个房子,他们是怎么建的来着?
然后思考已知条件:我有木头、斧子、钉子,这些东西都是啥啊?我以前用过吗?
然后寻找联系:怎样从这些材料到建造房子呢?报一个木屋建造培训班?寻找一些以往建房子的资料模仿一下?回到定义看看是不是房子的定义中就有一些建造的方向?
如果以上还是没有想出来,没关系,那就看答案吧。着重关注,答案是怎么想出这个结论的,

每看一步答案,就要质问一下课本,“这答案每一步怎么想到的?是不是照着结论硬凑的?”大多数没想到,有两个原因,

对条件的积累不足,也就是说,你还没有彻底理解哪些木头斧子钉子是拿来干什么的以及曾经用来干过什么,因此你没有很好地迁移过来;
未知量的积累不足,反推建造一个房子需要什么材料和手续,你完全没有相应的积累,当然想不出来。
高手呢,他们用无数种材料建造过无数类型的房子,并且这一切深深地刻在他们的脑海里,无论出现材料还是房子,无论是小洋房、别墅、高楼大厦,他们都能联想到曾经实施过种种方案,甚至,在这无数种方案中,能找到一条非常新鲜的组合创新方案!

说白了,刷题主要是为了积累案例,积累模型,熟练知识为了以后看到条件或者未知数能够被触发。

04 数学纵览——工具的重要性

承接上面的造房子案例,我们还可以引出另外一个话题,就是数学的材料和工具。

回顾一下从小到大的数学题,其实解决思想都是相似的,只是不同阶段使用的材料不太一样。

【小学·基础材料】基础的加减乘除、基础方程思想、基础的物理规律(追击问题等)

【初中·简单材料】基础代数(二次方程、反比例函数、因式分解…),基础几何(圆、相似性),简单的解析几何、基础概率、简单的三角函数等

【高中*中级材料】工具(修房子的材料)丰富了许多。更深入的代数(不等式等)、更加深入的几何(立体几何等)、难度更高的解析几何(椭圆、抛物线等)、变换更丰富的三角函数、更深的概率论(排列组合……)以及微积分初步……

【大学·高级材料】极限、连续、导数、积分、级数……特定领域的深入挖掘,更多抽象的概念工具和证明要求。

看到了吧,每一个数学成长阶段,你都会面对如此不同的砖头木块,纷繁而又有秩。你需要去一一识别,掂起来,感受、理解、使用。但是一以贯之的,是那种不断发问思路、解决困难的决心毅力还有好奇的愿望。

05

除了帮你解决数学题目,在实际生活中,这种未知联系已知的思维能帮你大忙。换句话说,任何推理性的问题——无论是推理小说寻找一个嫌疑人、还是逻辑谜题、灯谜、填字游戏,又或者是工程搭建、商业战略,都可以用到这种思维。

❽ 探索图形找规律有哪些技巧

图形找规律,可以看各图形间的面积,周长之间的关系,还要培养深厚的图感,善于发现,不要畏难。

阅读全文

与探索图形规律常用方法相关的资料

热点内容
潮州土壤质量检测方法 浏览:282
平行面检测方法 浏览:164
锯盘的测量方法 浏览:27
锻炼做爱方法 浏览:682
锻炼基本功的方法 浏览:490
头风的治疗方法 浏览:363
啤酒的食用方法和用量 浏览:568
anica迷你手机设置日期方法 浏览:409
铜线和铝线连接正确方法家用 浏览:118
德育如何掌握人际交往的方法 浏览:899
白兔的探视用说明方法怎么描写 浏览:111
中深孔采矿是什么采矿方法 浏览:229
oppo显示电量百分比在哪里设置方法 浏览:927
电话销售如何开发新客户的方法 浏览:543
默认短信在哪里设置方法 浏览:645
治疗脚跟骨刺的好方法 浏览:914
风管漏风检测方法 浏览:253
东风菱智车顶棉安装方法 浏览:571
什么方法能让婴儿去痰 浏览:258
羽毛球的使用方法 浏览:581