导航:首页 > 使用方法 > 安徽卷高考数列题常用方法

安徽卷高考数列题常用方法

发布时间:2023-02-12 10:21:20

A. 高中数学解数列问题有哪些常用方法

数列问题解题方法技巧
1.判断和证明数列是等差(等比)数列常有三种方法:
(1)定义法:对于n≥2的任意自然数,验证 为同一常数。
(2)通项公式法:
①若 = +(n-1)d= +(n-k)d ,则 为等差数列;
②若 ,则 为等比数列。
(3)中项公式法:验证中项公式成立。
2. 在等差数列 中,有关 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
三、数列问题解题注意事项
1.证明数列 是等差或等比数列常用定义,即通过证明 或 而得。
2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。
3.注意 与 之间关系的转化。如:
= , = .
4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.
5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.原文链接: http://www.90house.cn/shuxue/shi/288.html

B. 高考中求数列的通项公式共有几种方法。

高考中求数列的通项公式主要有以下七种方法,具体情况说明如下:

  1. 公式法,当题意中知道,某数列的前n项和sn,则可以根据公式求得an=sn-s(n-1).

  2. 待定系数法:若题目特征符合递推关系式a1=A,an+1=Ban+C(A,B,C均为常数,B≠1,C≠0)时,可用待定系数法构造等比数列求其通项公式。

  3. 逐项相加法:若题目特征符合递推关系式a1=A(A为常数),an+1=an+f(n)时,可用逐差相加法求数列的通项公式。

  4. 逐项连乘法:若题目特征符合递推关系式a1=A(A为常数),an+1=f(n)&#8226;an时,可用逐比连乘法求数列的通项公式。

  5. 倒数法:若题目特征符合递推关系式a1=A,Ban+Can+1+Dan·an+1=0,(A,B,C,D均为常数)时,可用倒数法求数列的通项公式。

  6. 其他观察法或归纳法等。

C. 高中数学数列方法和技巧

数列是高中数学的重要内容,又是学习高等数学的基础。高考对数列的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。下面是我为大家整理的关于高中数学数列 方法 和技巧,希望对您有所帮助。欢迎大家阅读参考学习!

1高中数学数列方法和技巧

一.公式法

如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.

二.倒序相加法

如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.

三.错位相减法

如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.

四.裂项相消法

把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.

五.分组求和法

若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.

2高中数学数列问题的答题技巧

高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。

题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。

题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。针对这两类,我认为应该积累以下的一些方法。

对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法

对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。

总之,每次碰到一道陌生的数列题,要进行 总结 ,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。

3高考数学解题方法

解题过程要规范

高考数学计算题要保证既对且全,全而规范。应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。

解决高考数学计算题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,高考数学计算题解题过程和结果都不能离开实际背景。

先熟后生

高考数学书卷发下来后,通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对高考数学全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的数学计算。这样,在拿下数学熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

4高中生学好数学的诀窍

首先、准备好 笔记本 和草稿本,笔记本不是让你记公式记概念,那些东西书上都有,没必要再誊一遍到笔记本上,笔记本上主要记老师给的例题。毕竟老师是很有 经验 的,他们给的例题一定是很有代表性的,必要的时候可以背一背例题的解题方法,理解思路。

草稿本就是有些不是很重要的题,老师让举一反三这类的东西,就没必要写在笔记上,但是一定要跟着算,在纸上写两笔算一下绝对比你光看光想的效果要好得多。

其次、上课一定集中注意力,要和老师有一定的互动,时间长了,上课百分之九十的时间老师都是在看着你讲课,你不点头表示明白了她就不往下讲。。毕竟一节课四十分钟,一个老师一节课平均分给每个学生也就不到一分钟,所以自私点说,就是要给自己争取时间。

课下有问题就问,最好不要问同学,尤其是以为脑子很聪明所以数学学的好的同学,这种人千万别问,倒不是说人家不愿意给你讲,而是现在毕竟是应试 教育 ,那些聪明的同学上课不一定听讲有多认真,有些人做题就是根据自己的思路走,那些解题方法可能适合于他们并不适合你,所以问题一定找老师,老师会给你一套最适合应试的解题方法。


高中数学数列方法和技巧相关 文章 :

1. 高中数学的100个学习方法与高中数学48条秒杀的公式

2. 高中数学学习方法和技巧是什么

3. 高中数学学习的方法技巧

4. 高中数学数列通项公式的求法

5. 高中数学六种解题技巧与五种数学答题思路

6. 高二数学学习方法和技巧大全

7. 高中数学50个解题小技巧

8. 高中数学学习方法及策略

9. 高中数学学习方法总结

D. 数列解题方法有哪些

这讲不清楚的呀,不过方法有很多的,你只能看书呀,你把问题发上来吧
基本数列是等差数列和等比数列

一、等差数列

一个等差数列由两个因素确定:首项a1和公差d.
得知以下任何一项,就可以确定一个等差数列(即求出数列的通项公式):
1、首项a1和公差d
2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n)
3、任意两项a(n)和a(m),n,m为已知数

等差数列的性质:
1、前N项和为N的二次函数(d不为0时)
2、a(m)-a(n)=(m-n)*d
3、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)也是等差数列

例题1:已知a(5)=8,a(9)=16,求a(25)
解: a(9)-a(5)=4*d=16-8=8
a(25)-a(5)=20*d=5*4*d=40
a(25)=48

例题2:已知a(6)=13,a(9)=19,求a(12)
解:a(6)、a(9)、a(12)成等差数列
a(12)-a(9)=a(9)-a(6)
a(12)=2*a(9)-a(6)=25

二、等比数列

一个等比数列由两个因素确定:首项a1和公差d.
得知以下任何一项,就可以确定一个等比数列(即求出数列的通项公式):
1、首项a1和公比r
2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n)
3、任意两项a(n)和a(m),n,m为已知数

等比数列的性质:
1、a(m)/a(n)=r^(m-n)
2、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)是等比数列
3、等比数列的连续m项和也是等比数列
即b(n)=a(n)+a(n+1)+...+a(n+m-1)构成的数列是等比数列。

三、数列的前N项和与逐项差

1、如果数列的通项公式是关于N的多项式,最高次数为P,则数列的前N项和是关于N的多项式,最高次数为P+1。
(这与积分很相似)

2、逐项差就是数列相邻两项的差组成的数列。
如果数列的通项公式是关于N的多项式,最高次数为P,则数列的逐项差的通项公式是关于N的多项式,最高次数为P-1。
(这与微分很相似)
例子:
1,16,81,256,625,1296 (a(n)=n^4)
15,65,175,369,671
50,110,194,302
60,84,108
24,24
从上例看出,四次数列经过四次逐项差后变成常数数列。

等比数列的逐项差还是等比数列

四、已知数列通项公式A(N),求数列的前N项和S(N)。
这个问题等价于求S(N)的通项公式,而S(N)=S(N-1)+A(N),这就成为递推数列的问题。
解法是寻找一个数列B(N),
使S(N)+B(N)=S(N-1)+B(N-1)
从而S(N)=A(1)+B(1)-B(N)
猜想B(N)的方法:把A(N)当作函数求积分,对得出的函数形式设待定系数,利用B(N)-B(N-1)=-A(N)求出待定系数。

例题1:求S(N)=2+2*2^2+3*2^3+...+N*2^N
解:S(N)=S(N-1)+N*2^N
N*2^N积分得(N*LN2-1)*2^N/(LN2)^2
因此设B(N)=(PN+Q)*2^N
则 (PN+Q)*2^N-[P(N-1)+Q)*2^(N-1)=-N*2^N
(P*N+P+Q)/2*2^N=-N*2^N
因为上式是恒等式,所以P=-2,Q=2
B(N)=(-2N+2)*2^N
A(1)=2,B(1)=0
因此:S(N)=A(1)+B(1)-B(N)
=(2N-2)*2^N+2

例题2:A(N)=N*(N+1)*(N+2),求S(N)
解法1:S(N)为N的四次多项式,
设:S(N)=A*N^4+B*N^3+C*N^2+D*N+E
利用S(N)-S(N-1)=N*(N+1)*(N+2)
解出A、B、C、D、E

解法2:
S(N)/3!=C(3,3)+C(4,3)+...C(N+2,3)
=C(N+3,4)
S(N)=N*(N+1)*(N+2)*(N+3)/4

E. 高考中求数列的通项公式共有几种方法。

高考中求数列的通项公式主要有以下七种方法,具体情况说明如下:
1.
公式法,当题意中知道,某数列的前n项和sn,则可以根据公式求得an=sn-s(n-1).
2.
待定系数法:若题目特征符合递推关系式a1=A,an+1=Ban+C(A,B,C均为常数,B≠1,C≠0)时,可用待定系数法构造等比数列求其通项公式。
3.
逐项相加法:若题目特征符合递推关系式a1=A(A为常数),an+1=an+f(n)时,可用逐差相加法求数列的通项公式。
4.
逐项连乘法:若题目特征符合递推关系式a1=A(A为常数),an+1=f(n)•an时,可用逐比连乘法求数列的通项公式。
5.
倒数法:若题目特征符合递推关系式a1=A,Ban+Can+1+Dan·an+1=0,(A,B,C,D均为常数)时,可用倒数法求数列的通项公式。
6.
其他观察法或归纳法等。

阅读全文

与安徽卷高考数列题常用方法相关的资料

热点内容
沙糖桔种子种植方法 浏览:498
手机掉水里的处理方法 浏览:647
细胞死亡的检测方法有哪些 浏览:871
三彩瓷鉴别方法 浏览:351
水钟的制作方法简单 浏览:669
开启手机功能的方法 浏览:322
如何了解消费者调查的方法 浏览:620
skf激光对中仪使用方法 浏览:170
哪里有下奶的土方法 浏览:647
桩基检测方法及数量表 浏览:453
怎么清理微信在电脑里的缓存在哪里设置方法 浏览:212
简易汽车手机支架安装方法 浏览:237
正压送风口安装方法 浏览:513
手机都有什么使用方法 浏览:402
迷你世界如何制作扁皮的方法 浏览:330
锻炼翘臀的方法 浏览:102
玉米淀粉检测方法 浏览:986
铠甲肌肉锻炼方法 浏览:227
诺特兰德b族食用方法 浏览:26
折纸可爱玫瑰花简单方法 浏览:172