导航:首页 > 使用方法 > 常用统计方法分类

常用统计方法分类

发布时间:2023-01-17 15:35:36

① 分类统计的常用方法

常用的统计方法:1、计量资料的统计方法:分析计量资料的统计分析方法可分为参数检验法和非参数检验法;2、计数资料的统计方法:计数资料的统计方法主要针对四格表和R×C表利用检验进行分析;3、等级资料的统计方法:等级资料(有序变量)是对性质和类别的等级进行分组,再清点每组观察单位个数所得到的资料。统计资料丰富且错综复杂,要想做到合理选用统计分析方法并非易事。对于同一 个资料,若选择不同的统计分析方法处理,有时其结论是截然不同的。

② 统计分析方法有哪些


统计分析方法有以下:
1、描述性统计分析方法。描述性统计分析方法是指运用制表和分类和图形概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
2、相关分析方法。相关分析方法是研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。
3、方差分析方法。方差分析是用来分析一项实验的影响因素与相应变量的关系,同时考虑多个影响因素之间的关系。
4、列联表分析方法。列联表分析是用于分析离散变量或定型变量之间是否存在相关。
5、主成分分析方法。主成分分析方法是将彼此梠关的一组指标变适转化为彼此独立的一组新的指标变量,并用其中较少的几个新指标变量就能综合反应原多个指标变量中所包含的主要信息。

③ 统计学方法有哪些

一、描述统计

描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析和离中趋势分析和相关分析三大部分。

集中趋势分析:集中趋势分析主要靠平均数、中数、众数等统计指标来表示数据的集中趋势。例如被试的平均成绩多少?是正偏分布还是负偏分布?

离中趋势分析:离中趋势分析主要靠全距、四分差、平均差、方差(协方差:用来度量两个随机变量关系的统计量)、标准差等统计指标来研究数据的离中趋势。例如,我们想知道两个教学班的语文成绩中,哪个班级内的成绩分布更分散,就可以用两个班级的四分差或百分点来比较。

相关分析:相关分析探讨数据之间是否具有统计学上的关联性。这种关系既包括两个数据之间的单一相关关系——如年龄与个人领域空间之间的关系,也包括多个数据之间的多重相关关系——如年龄、抑郁症发生率、个人领域空间之间的关系;既包括A大B就大(小),A小B就小(大)的直线相关关系,也可以是复杂相关关系(A=Y-B*X);既可以是A、B变量同时增大这种正相关关系,也可以是A变量增大时B变量减小这种负相关,还包括两变量共同变化的紧密程度——即相关系数。实际上,相关关系唯一不研究的数据关系,就是数据协同变化的内在根据——即因果关系。获得相关系数有什么用呢?简而言之,有了相关系数,就可以根据回归方程,进行A变量到B变量的估算,这就是所谓的回归分析,因此,相关分析是一种完整的统计研究方法,它贯穿于提出假设,数据研究,数据分析,数据研究的始终。

例如,我们想知道对监狱情景进行什么改造,可以降低囚徒的暴力倾向。我们就需要将不同的囚舍颜色基调、囚舍绿化程度、囚室人口密度、放风时间、探视时间进行排列组合,然后让每个囚室一种实验处理,然后用因素分析法找出与囚徒暴力倾向的相关系数最高的因素。假定这一因素为囚室人口密度,我们又要将被试随机分入不同人口密度的十几个囚室中生活,继而得到人口密度和暴力倾向两组变量(即我们讨论过的A、B两列变量)。然后,我们将人口密度排入X轴,将暴力倾向分排入Y轴,获得了一个很有价值的图表,当某典狱长想知道,某囚舍扩建到N人/间囚室,暴力倾向能降低多少。我们可以当前人口密度和改建后人口密度带入相应的回归方程,算出扩建前的预期暴力倾向和扩建后的预期暴力倾向,两数据之差即典狱长想知道的结果。

推论统计:

推论统计是统计学乃至于心理统计学中较为年轻的一部分内容。它以统计结果为依据,来证明或推翻某个命题。具体来说,就是通过分析样本与样本分布的差异,来估算样本与总体、同一样本的前后测成绩差异,样本与样本的成绩差距、总体与总体的成绩差距是否具有显着性差异。例如,我们想研究教育背景是否会影响人的智力测验成绩。可以找100名24岁大学毕业生和100名24岁初中毕业生。采集他们的一些智力测验成绩。用推论统计方法进行数据处理,最后会得出类似这样儿的结论:“研究发现,大学毕业生组的成绩显着高于初中毕业生组的成绩,二者在0.01水平上具有显着性差异,说明大学毕业生的一些智力测验成绩优于中学毕业生组。”

其中,如果用EXCEL 来求描述统计。其方法是:工具-加载宏-勾选"分析工具库",然后关闭Excel然后重新打开,工具菜单就会出现"数据分析"。描述统计是“数据分析”内一个子菜单,在做的时候,记得要把方格输入正确。最好直接点选。

2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。

二、假设检验

1、参数检验

参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。

1)U验 :使用条件:当样本含量n较大时,样本值符合正态分布

2)T检验 使用条件:当样本含量n较小时,样本值符合正态分布

A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;

B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;

C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。

2、非参数检验

非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。

适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。

A 虽然是连续数据,但总体分布形态未知或者非正态;

B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;

主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。

三、信度分析

介绍:信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。信度分析的方法主要有以下四种:重测信度法、复本信度法、折半信度法、α信度系数法。

方法:(1)重测信度法编辑:这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。显然,重测信度属于稳定系数。重测信度法特别适用于事实式问卷,如性别、出生年月等在两次施测中不应有任何差异,大多数被调查者的兴趣、爱好、习惯等在短时间内也不会有十分明显的变化。如果没有突发事件导致被调查者的态度、意见突变,这种方法也适用于态度、意见式问卷。由于重测信度法需要对同一样本试测两次,被调查者容易受到各种事件、活动和他人的影响,而且间隔时间长短也有一定限制,因此在实施中有一定困难。

(2)复本信度法编辑:让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。复本信度属于等值系数。复本信度法要求两个复本除表述方式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。

(3)折半信度法编辑:折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表(李克特量表(Likert scale)是属评分加总式量表最常用的一种,属同一构念的这些项目是用加总方式来计分,单独或个别项目是无意义的。它是由美国社会心理学家李克特于1932年在原有的总加量表基础上改进而成的。该量表由一组陈述组成,每一陈述有"非常同意"、"同意"、"不一定"、"不同意"、"非常不同意"五种回答,分别记为5、4、3、2、1,每个被调查者的态度总分就是他对各道题的回答所得分数的加总,这一总分可说明他的态度强弱或他在这一量表上的不同状态。)。进行折半信度分析时,如果量表中含有反意题项,应先将反意题项的得分作逆向处理,以保证各题项得分方向的一致性,然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数(rhh,即半个量表的信度系数),最后用斯皮尔曼-布朗(Spearman-Brown)公式:求出整个量表的信度系数(ru)。

(4)α信度系数法编辑:Cronbach
α信度系数是目前最常用的信度系数,其公式为:

α=(k/(k-1))*(1-(∑Si^2)/ST^2)

其中,K为量表中题项的总数, Si^2为第i题得分的题内方差, ST^2为全部题项总得分的方差。从公式中可以看出,α系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。这种方法适用于态度、意见式问卷(量表)的信度分析。

总量表的信度系数最好在0.8以上,0.7-0.8之间可以接受;分量表的信度系数最好在0.7以上,0.6-0.7还可以接受。Cronbach 's alpha系数如果在0.6以下就要考虑重新编问卷。

检査测量的可信度,例如调查问卷的真实性。

分类:

1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度

2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。

四、列联表分析

列联表是观测数据按两个或更多属性(定性变量)分类时所列出的频数表。

简介:一般,若总体中的个体可按两个属性A、B分类,A有r个等级A1,A2,…,Ar,B有c个等级B1,B2,…,Bc,从总体中抽取大小为n的样本,设其中有nij个个体的属性属于等级Ai和Bj,nij称为频数,将r×c个nij排列为一个r行c列的二维列联表,简称r×c表。若所考虑的属性多于两个,也可按类似的方式作出列联表,称为多维列联表。

列联表又称交互分类表,所谓交互分类,是指同时依据两个变量的值,将所研究的个案分类。交互分类的目的是将两变量分组,然后比较各组的分布状况,以寻找变量间的关系。

用于分析离散变量或定型变量之间是否存在相关。

列联表分析的基本问题是,判明所考察的各属性之间有无关联,即是否独立。如在前例中,问题是:一个人是否色盲与其性别是否有关?在r×с表中,若以pi、pj和pij分别表示总体中的个体属于等级Ai,属于等级Bj和同时属于Ai、Bj的概率(pi,pj称边缘概率,pij称格概率),“A、B两属性无关联”的假设可以表述为H0:pij=pi·pj,(i=1,2,…,r;j=1,2,…,с),未知参数pij、pi、pj的最大似然估计(见点估计)分别为行和及列和(统称边缘和)

为样本大小。根据K.皮尔森(1904)的拟合优度检验或似然比检验(见假设检验),当h0成立,且一切pi>0和pj>0时,统计量的渐近分布是自由度为(r-1)(с-1) 的Ⅹ分布,式中Eij=(ni·nj)/n称为期望频数。当n足够大,且表中各格的Eij都不太小时,可以据此对h0作检验:若Ⅹ值足够大,就拒绝假设h0,即认为A与B有关联。在前面的色觉问题中,曾按此检验,判定出性别与色觉之间存在某种关联。

需要注意:

若样本大小n不很大,则上述基于渐近分布的方法就不适用。对此,在四格表情形,R.A.费希尔(1935)提出了一种适用于所有n的精确检验法。其思想是在固定各边缘和的条件下,根据超几何分布(见概率分布),可以计算观测频数出现任意一种特定排列的条件概率。把实际出现的观测频数排列,以及比它呈现更多关联迹象的所有可能排列的条件概率都算出来并相加,若所得结果小于给定的显着性水平,则判定所考虑的两个属性存在关联,从而拒绝h0。

对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。

列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。

五、相关分析

研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。

1、单相关: 两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量;

2、复相关 :三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关;

3、偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关。

六、方差分析

使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。

分类

1、单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系

2、多因素有交互方差分析:一顼实验有多个影响因素,分析多个影响因素与响应变量的关系,同时考虑多个影响因素之间的关系

3、多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因素之间没有影响关系或忽略影响关系

4、协方差分祈:传统的方差分析存在明显的弊端,无法控制分析中存在的某些随机因素,使之影响了分祈结果的准确度。协方差分析主要是在排除了协变量的影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的一种分析方法,

七、回归分析

分类:

1、一元线性回归分析:只有一个自变量X与因变量Y有关,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布。

2、多元线性回归分析

使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。

1)变呈筛选方式:选择最优回归方程的变里筛选法包括全横型法(CP法)、逐步回归法,向前引入法和向后剔除法

2)横型诊断方法:

A 残差检验: 观测值与估计值的差值要艰从正态分布

B 强影响点判断:寻找方式一般分为标准误差法、Mahalanobis距离法

C 共线性诊断:

• 诊断方式:容忍度、方差扩大因子法(又称膨胀系数VIF)、特征根判定法、条件指针CI、方差比例

• 处理方法:增加样本容量或选取另外的回归如主成分回归、岭回归等

3、Logistic回归分析

线性回归模型要求因变量是连续的正态分布变里,且自变量和因变量呈线性关系,而Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况

分类:

Logistic回归模型有条件与非条件之分,条件Logistic回归模型和非条件Logistic回归模型的区别在于参数的估计是否用到了条件概率。

4、其他回归方法 非线性回归、有序回归、Probit回归、加权回归等

八、聚类分析

聚类与分类的不同在于,聚类所要求划分的类是未知的。

聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。

从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多着名的统计分析软件包中,如SPSS、SAS等。

从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。

聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。

从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。而且聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他算法(如分类和定性归纳算法)的预处理步骤。

定义:

依据研究对象(样品或指标)的特征,对其进行分类的方法,减少研究对象的数目。

各类事物缺乏可靠的历史资料,无法确定共有多少类别,目的是将性质相近事物归入一类。

各指标之间具有一定的相关关系。

聚类分析(cluster
analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。聚类分析区别于分类分析(classification
analysis) ,后者是有监督的学习。

变量类型:定类变量、定量(离散和连续)变量

样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量。

1、性质分类:

Q型聚类分析:对样本进行分类处理,又称样本聚类分祈使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等

R型聚类分析:对指标进行分类处理,又称指标聚类分析使用相似系数作为统计量衡量相似度,相关系数、列联系数等

2、方法分类:

1)系统聚类法:适用于小样本的样本聚类或指标聚类,一般用系统聚类法来聚类指标,又称分层聚类

2)逐步聚类法:适用于大样本的样本聚类

3)其他聚类法:两步聚类、K均值聚类等

九、判别分析

1、判别分析:根据已掌握的一批分类明确的样品建立判别函数,使产生错判的事例最少,进而对给定的一个新样品,判断它来自哪个总体

2、与聚类分析区别

1)聚类分析可以对样本逬行分类,也可以对指标进行分类;而判别分析只能对样本

2)聚类分析事先不知道事物的类别,也不知道分几类;而判别分析必须事先知道事物的类别,也知道分几类

3)聚类分析不需要分类的历史资料,而直接对样本进行分类;而判别分析需要分类历史资料去建立判别函数,然后才能对样本进行分类

3、进行分类 :

1)Fisher判别分析法 :

以距离为判别准则来分类,即样本与哪个类的距离最短就分到哪一类,适用于两类判别;

以概率为判别准则来分类,即样本属于哪一类的概率最大就分到哪一类,适用于

适用于多类判别。

2)BAYES判别分析法 :

BAYES判别分析法比FISHER判别分析法更加完善和先进,它不仅能解决多类判别分析,而且分析时考虑了数据的分布状态,所以一般较多使用;

十、主成分分析

介绍:主成分分析(Principal
Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。

在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。

主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。

将彼此梠关的一组指标变适转化为彼此独立的一组新的指标变量,并用其中较少的几个新指标变量就能综合反应原多个指标变量中所包含的主要信息。

原理:在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

缺点: 1、在主成分分析中,我们首先应保证所提取的前几个主成分的累计贡献率达到一个较高的水平(即变量降维后的信息量须保持在一个较高水平上),其次对这些被提取的主成分必须都能够给出符合实际背景和意义的解释(否则主成分将空有信息量而无实际含义)。

2、主成分的解释其含义一般多少带有点模糊性,不像原始变量的含义那么清楚、确切,这是变量降维过程中不得不付出的代价。因此,提取的主成分个数m通常应明显小于原始变量个数p(除非p本身较小),否则维数降低的“利”可能抵不过主成分含义不如原始变量清楚的“弊”。

十一、因子分析

一种旨在寻找隐藏在多变量数据中、无法直接观察到却影响或支配可测变量的潜在因子、并估计潜在因子对可测变量的影响程度以及潜在因子之间的相关性的一种多元统计分析方法

与主成分分析比较:

相同:都能够起到治理多个原始变量内在结构关系的作用

不同:主成分分析重在综合原始变适的信息.而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法

用途:

1)减少分析变量个数

2)通过对变量间相关关系探测,将原始变量进行分类

十二、时间序列分析

动态数据处理的统计方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题;时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。

主要方法:移动平均滤波与指数平滑法、ARIMA横型、量ARIMA横型、ARIMAX模型、向呈自回归横型、ARCH族模型

时间序列是指同一变量按事件发生的先后顺序排列起来的一组观察值或记录值。构成时间序列的要素有两个:其一是时间,其二是与时间相对应的变量水平。实际数据的时间序列能够展示研究对象在一定时期内的发展变化趋势与规律,因而可以从时间序列中找出变量变化的特征、趋势以及发展规律,从而对变量的未来变化进行有效地预测。

时间序列的变动形态一般分为四种:长期趋势变动,季节变动,循环变动,不规则变动。

时间序列预测法的应用:

系统描述:根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述;

系统分析:当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理;

预测未来:一般用ARMA模型拟合时间序列,预测该时间序列未来值;

决策和控制:根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。

特点:

假定事物的过去趋势会延伸到未来;

预测所依据的数据具有不规则性;

撇开了市场发展之间的因果关系。

①时间序列分析预测法是根据市场过去的变化趋势预测未来的发展,它的前提是假定事物的过去会同样延续到未来。事物的现实是历史发展的结果,而事物的未来又是现实的延伸,事物的过去和未来是有联系的。市场预测的时间序列分析法,正是根据客观事物发展的这种连续规律性,运用过去的历史数据,通过统计分析,进一步推测市场未来的发展趋势。市场预测中,事物的过去会同样延续到未来,其意思是说,市场未来不会发生突然跳跃式变化,而是渐进变化的。

时间序列分析预测法的哲学依据,是唯物辩证法中的基本观点,即认为一切事物都是发展变化的,事物的发展变化在时间上具有连续性,市场现象也是这样。市场现象过去和现在的发展变化规律和发展水平,会影响到市场现象未来的发展变化规律和规模水平;市场现象未来的变化规律和水平,是市场现象过去和现在变化规律和发展水平的结果。

需要指出,由于事物的发展不仅有连续性的特点,而且又是复杂多样的。因此,在应用时间序列分析法进行市场预测时应注意市场现象未来发展变化规律和发展水平,不一定与其历史和现在的发展变化规律完全一致。随着市场现象的发展,它还会出现一些新的特点。因此,在时间序列分析预测中,决不能机械地按市场现象过去和现在的规律向外延伸。必须要研究分析市场现象变化的新特点,新表现,并且将这些新特点和新表现充分考虑在预测值内。这样才能对市场现象做出既延续其历史变化规律,又符合其现实表现的可靠的预测结果。

②时间序列分析预测法突出了时间因素在预测中的作用,暂不考虑外界具体因素的影响。时间序列在时间序列分析预测法处于核心位置,没有时间序列,就没有这一方法的存在。虽然,预测对象的发展变化是受很多因素影响的。但是,运用时间序列分析进行量的预测,实际上将所有的影响因素归结到时间这一因素上,只承认所有影响因素的综合作用,并在未来对预测对象仍然起作用,并未去分析探讨预测对象和影响因素之间的因果关系。因此,为了求得能反映市场未来发展变化的精确预测值,在运用时间序列分析法进行预测时,必须将量的分析方法和质的分析方法结合起来,从质的方面充分研究各种因素与市场的关系,在充分分析研究影响市场变化的各种因素的基础上确定预测值。

需要指出的是,时间序列预测法因突出时间序列暂不考虑外界因素影响,因而存在着预测误差的缺陷,当遇到外界发生较大变化,往往会有较大偏差,时间序列预测法对于中短期预测的效果要比长期预测的效果好。因为客观事物,尤其是经济现象,在一个较长时间内发生外界因素变化的可能性加大,它们对市场经济现象必定要产生重大影响。如果出现这种情况,进行预测时,只考虑时间因素不考虑外界因素对预测对象的影响,其预测结果就会与实际状况严重不符。

④ 常见的数据统计方法

这里有几个技巧,大家可以学习一下:

1、统计分析方法

2、数据透视表

学会这几点,你才能真正成为数据分析高手。

技巧1:统计分析方法

对于很多职场新人来说,看到这样一张数据表格,完全不知道如何下手,没有分析的方向。

不知道要从哪些角度,去分析这些数据,这是因为他们还没有学习具体的统计分析方法。

只要你能掌握一些有用的统计方法,就可以轻松的找到分析方向。

常用的统计方法有两个:分组对比法和交叉分析法。接下来,我们就对这两种方法进行具体的讲解。

1、 分组对比法

我们经常会遇到数据量很多的表格,我们只要看到这种数据量很多的表格,就会头大,不知道该怎么下手。

这时候,我们就需要按照数据分组的规则,按照时间、地点、任务、产品类型等原则,对数据进行分组,可以有效地减少数据量,让数据变得清晰。

分组之后,我们就可以对数据进行汇总计算了。常见的方法是通过求和、平均值、百分比、技术等方式,把相同类别的数据,汇总成一个数据,减少数据量。

2、 交叉分析法

如果想要统计出某个部门在某个月份的销售总额,我们就需要对这些表格进行汇总计算,并列出二维表,如下图所示。

这种二维表的制作,如果我们采用一般的分类汇总方法,过程十分繁琐,所以我们需要学习另一个神器——数据透视表。

技巧2:数据透视表

点击【插入】选项卡中的【数据透视表】,打开对话框,确定选区,点击确定

然后就可以在新的工作表中看到数据透视表视图,只需要拖动表格字段到【行】【列】【值】中,就可以得到相应的数据统计表格。

总结:

常用分析方法:分组对比法,减少数据量,让数据变得更加清晰;交叉分析法,用二维表形式,快速查询数据。

数据透视表:可以摆脱公式,快速完成数据统计,你需要熟练掌握数据透视表的方法才能玩出更多的花样。

⑤ 统计分析方法有哪几种 常用的统计方法有哪些

1、系统聚类分析:是一门多元统计分类法,根据多种地学要素对地理实体进行划分类别的方法。对不同的要素划分类别往往反映不同目标的等级序列,如土地分等定级、水土流失强度分级等。

2、回归分析:在统计学中,回归分析(regression analysis)指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

3、主成分分析:主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。

⑥ 统计分析方法 有哪些统计分析方法

1、描述统计。描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。

(1)缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。

(2)正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。

2、假设检验

(1)参数检验。参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验 。U验 使用条件:当样本含量n较大时,样本值符合正态分布。T检验 使用条件:当样本含量n较小时,样本值符合正态分布。单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。

(2)非参数检验。非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。虽然是连续数据,但总体分布形态未知或者非正态;体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;

主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。

3、信度分析

检査测量的可信度,例如调查问卷的真实性。分类:

(1)外在信度:不同时间测量时量表的一致性程度,常用方法重测信度

(2)内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。

4、列联表分析。用于分析离散变量或定型变量之间是否存在相关。

对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。

5、相关分析

研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。

(1)单相关: 两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量;

(2)复相关 :三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关;

(3)偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关。

6、方差分析

使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。

(1)单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系

(2)多因素有交互方差分析:一顼实验有多个影响因素,分析多个影响因素与响应变量的关系,同时考虑多个影响因素之间的关系

(3)多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因素之间没有影响关系或忽略影响关系

(4)协方差分祈:传统的方差分析存在明显的弊端,无法控制分析中存在的某些随机因素,使之影响了分祈结果的准确度。协方差分析主要是在排除了协变量的影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的一种分析方法,

⑦ 统计学可以分为哪几种方式

统计学的分类与种类

统计学的种类很多,按不同的标准可以有以下几种不同的分类。

(1)按统计研究的性质不同进行分类。按此类方法可以把统计学分为理论统计学和应用统计学。

1)理论统计学是以统计学的基本原理(一般理论和方法)为主要研究内容的统计学,如统计学原理、数理统计学等。

2)应用统计学是以统计方法在各专业领域中的应用研究所呈现的特有的统计方法为主要内容的统计学科,如经济统计学、人口统计学等。

(2)按统计方法的特点不同进行分类。按此类方法可以把统计学分为描述统计学和推断统计学。

1)描述统计学是以统计资料的收集、整理、综合计算及分析等方法和形式,对社会经济现象的总体进行数量方面反映的统计方法论。

2)推断统计学是以部分统计资料的个性特征,对全部或大部分同类现象的共性特性进行科学估计、检验及分析研究的统计方法论。

⑧ 常用的统计方法有哪些

统计方法有:
1、计量资料的统计方法
分析计量资料的统计分析方法可分为参数检验法和非参数检验法。
参数检验法主要为t检验和 方差分析(ANOVN,即F检验)等,两组间均数比较时常用t检验和u检验,两组以上均数比较时常用方差分析;非参数检验法主要包括秩和检验等。t检验可分为单组设计资料的t检验、配对设计资料的t检验和成组设计资料的t检验;当两个小 样本比较时要求两 总体分布为 正态分布且方差齐性,若不能满足以上要求,宜用t 检验或非参数方法( 秩和检验)。 方差分析可用于两个以上 样本均数的比较,应用该方法时,要求各个样本是相互独立的随机样本,各样本来自正态总体且各处理组总体方差齐性。根据设计类型不同,方差分析中又包含了多种不同的方法。对于 定量资料,应根据所采用的设计类型、资料所具备的条件和分析目的,选用合适的统计分析方法,不应盲目套用t检验和 单因素方差分析。
2、计数资料的统计方法
计数资料的统计方法主要针对四格表和R×C表利用检验进行分析。
检验或u检验,若不能满足 检验:当计数资料呈配对设计时,获得的四格表为配对四格表,其用到的检验公式和校正公式可参考书籍。 R×C表可以分为双向无序,单向有序、双向有序属性相同和双向有序属性不同四类,不同类的行列表根据其研究目的,其选择的方法也不一样。
3、等级资料的统计方法
等级资料(有序变量)是对性质和类别的等级进行分组,再清点每组观察单位个数所得到的资料。在临床医学资料中,常遇到一些定性指标,如临床疗效的评价、疾病的临床分期、病症严重程度的临床分级等,对这些指标常采用分成若干个等级然后分类计数的办法来解决它的量化问题,这样的资料统计上称为等级资料。
统计方法的选择:
统计资料丰富且错综复杂,要想做到合理选用统计分析方法并非易事。对于同一 个资料,若选择不同的统计分析方法处理,有时其结论是截然不同的。
正确选择统计方法的依据是:
①根据研究的目的,明确研究试验设计类型、研究因素与水平数;
②确定数据特征(是否正态分布等)和样本量大小;
③ 正确判断统计资料所对应的类型(计量、计数和等级资料),同时应根据统计方法的适宜条件进行正确的统计量值计算;
最后,还要根据专业知识与资料的实际情况,结合统计学原则,灵活地选择统计分析方法。

⑨ 统计调查方法有哪些

问题一:统计中的调查方式都有哪些 朋友,你好!统计的调查方式,可以按照不同的标志划分为不同的类别。
(一)、按调查对象的范围分,可分为全面调查和非全面调查。全面调查又称普查,是指对每一个调查单位都要进行调查。非全面调查是指仅对总体中的一部分总体单位进行调查。包括:1、重点调查,2、典型调查,3、抽样调查。
重点调查是指只对总体中的重点单位进行调查,重点单位是指(1)、工作中的重点。(2)、这些重点单位的标志值在总体标志总量中占绝大部分。
典型调查是指从总体中预先选择具有代表性的单位进行调查。典型既有好的典型,也有坏的典型。
抽样调查简称抽查,是指按随机性原则从总体中抽取一部分单位进行调查,然后,根据样本总体的数量特征推断全及总体的数量特征。抽查的主要特点是随机性、推断性。
(二)、按调查的连续性来分,可分为一次性调查和经常性调查。一次性调查是指每隔一段时间进行一次调查,例如;我国全国人口普查每十年进行一次。经常性调查是指每天都要登记,例如,各单位考勤。
(三)、按调查的组织方式不同,可分为统计报表和专门调查。专门调查包括:普查,典型调查,重点调查,抽样调查。统计报表是由国家定期地从上往下布置,下级一级一级向上填报的报告制度,也是国家定期的一种调查组织方式。专门调查是指对一些专门问题进行调查,例如:海洋普查,是专门调查海洋的,农业普查是专门调查农业的
(四)、按调查的方法不同,可分为直接观察法、报告法和询问法。询问法又分为书面询问法和口头询问法。直接观察法是指统计人员直接到现场,报告法就是提供报表。

问题二:统计调查搜集资料的方法有哪些? 统计数据的具体搜集方法有:
访问调查。访问调查又称派员调查,它是调查者与被调查者通过面对面地交谈从而得到所需资料的调查方法。访问调查的方式有标准式访问和非标准式访问两种。前者是按一个事先设计好的访问结构,如固定格式的标准化问卷,有顺序地依次提问,并由受访者做出回答。非标准式访问则事先不做统一的问卷或表格,也没有统一的提问顺序,有的只是一个题目或提纲,由调查人员和受访者自由交谈,以获得所需的资料。
邮寄调查。它是通过邮寄或宣传媒体等方式将调查表或调查问卷送至被调查者手中,由被调查者填写,然后将调查表寄回或投放到指定收集点的一种调查方法。
电话调查。电话调查是调查人员利用电话同受访者进行语言交流,从而获得信息的一种调查方式。电话调查具有时效快、费用低等特点。
电脑辅助调查。它也称电脑辅助电话调查系统(puter-assisted telephone interviewing system,cati)。该系统使电话调查更加便利和快捷,也使调查的质量大大提高了。
座谈会。它也称为集体访谈法,它是将一组被调查者集中在调查现场,让他们对调查的主题(如一种产品、一项服务或其他话题)发表意见,从而获取调查资料的方法。
个别深度访问。它是一种一次只有一名受访者参加的特殊的定性研究。“深访”是一种无结构的个人访问,调查人员运用大量的追问技巧,尽可能让受访者自由发挥,表达他的想法和感受。
观察法。它是指就调查对象的行动和意识,调查人员边观察边记录以收集信息的方法。
实验法。它是一种特殊的观察调查方法,它是在所设定的特殊实验场所、特殊状态下,对调查对象进行实验以取得所需资料的一种调查方法。
其中前六种方法属于询问调查,后两种方法属于观察与实验的方法。

问题三:我国目前主要采用的统计调查方法有哪些? 统计调查方法指的是搜集调查对象原始资料的方法、也就是调查者向被调查者搜集答案的方法。统计调查方法按组织方式分成以下五种:
1.统计报表制度
统计报表制度是我国统计调查方法体系中的一种重要的组织方式。它是根据国家的统-规定,按统一的表格形式,统一的指标内容,统一的报送时间,自上而下逐级提供统计资料的统计报告制度。统计报表制度具备统一性、时效性、全面性、可靠性的特点,可以满足各级管理层次的需要。
2.普 查
普查是专门组织的一次性全面调查。普查一般是调查-定时点上的社会经济现象的总量,但也可以调查某些时期现象的总量,乃至调查一些并非总量的指标。普查涉及面广,指标多,工作量大,时间性强。为了取得准确的统计资料,普查对集中领导和统一行动的要求最高。
3.抽样调查
抽样调查是非全面调查的一种主要组织形式。它是按照随机原则从总体中抽取部分单位作为样本进行观察,并用观察结果推断总体数量特征的一种调查方式。抽样调查与其它非全面调查相比,具有如下特点:(1)按照随机原则抽取调查单位;(2)以推断总体为目的,而且能够对推断结果的可靠性作出数学上的说明。
4.重点调查
重点调查是一种非全面调查。它是在调查对象中,只选择少数重点单位所进行的调查。重点调查的特点是省时、省力,能反映总体的基本情况。能否开展重点调查是由调查任务和调查对象的特点所决定的。当调查任务只要求掌握基本情况,而且调查对象中又确实存在重点单位时,方可实施。
5.典型调查
典型调查是一种非全面调查。它是根据调查目的,在对研究对象进行全面分析的基础上,有意识地选出少数有代表性的单位,进行深入细致调查的一种调查方法。典型调查可以弥补其它调查方法的不足,为数字资料补充丰富的典型情况,在有些情况下,可用典型调查估算总体数字或验证全面调查数字的真实性。
以上统计调查方法中统计报表制度和普查是全面调查,抽样调查、重点调查和典型调查是非全面调查。
谢谢采纳为最佳答案并给分。

问题四:一个完整的统计调查方案包括哪些主要内容 (1) 调查目的:调查目的要符合客观实际,是任何一套方案首先要明确的问题,是行动的指南。 (2) 调查对象和调查单位:调查对象即总体,调查单位即总体中的个体。 (3) 调查项目:即指对调查单位所要登记的内容。 (4) 调查表:就是将调查项目按一定的顺序所排列的一种表格形式。调查表一般有两种形式:单一表和一览表。一览表是把许多单位的项目放在一个表格中,它适用于调查项目不多时;单一表是在一个表格中只登记一个单位的内容。 (5) 调查方式和方法:调查的方式有普查、重点调查、典型调查、抽样调查、统计报表制度等。具体收集统计资料的调查方法有:访问法、观察法、报告法等。 (6) 调查地点和调查时间:调查地点是指确定登记资料的地点;调查时间:涉及调查标准时间和调查期限。 (7) 组织计划:是指确保实施调查的具体工作计划。

问题五:统计调查的常用方式 常用的方式有:普查、抽样调查、和统计报表等 定义:为特定目的而专门组织的一次性全面调查。 对统计总体的全部单位进行调查以搜集统计资料的工作。普查资料常被用来说明现象在一定时点上的全面情况。如人口普查就是对全国人口一一进行调查登记,规定某个特定时点(某年某月某日某时)作为全国统一的统计时点,以反映有关人口的自然和社会的各类特征。意义:普查可以摸清一个国家的国情、国力,特别是可以了解与掌握人力、财力、物资资源状况,为国家制定长远规划与政策提供可靠的依据。因此它是一种全面调查,具有资料包括的范围全面、详尽、系统的优点;他是一次性的专门调查,因为普查的工作量大,耗资也多,时间周期较长,一般不宜经常举行。特点:1、需要规定统一的标准时间(资料所属时间)2、 通常是一次性或周期性的3、数据的规范化程度较高4、适用于关乎于国计民生的重要数据的搜集,应用范围比较狭窄我国通过普查进行的统计调查内容和时间周期已经规范化、制度化,具体包括:1、 人口普查,每10年进行一次,逢“0”的年份进行,如2010年进行了中国第六次人口普查。2、第三产业普查,每10年进行一次,逢“3”的年份进行,如2003年进行了中国第二次第三产业普查。3、工业普查,每10年进行一次,逢“5”的年份进行,如2005年进行了中国第四次工业普查。4、农业普查,每10年进行一次,逢“7”的年份进行,如2007年进行了中国第二次农业普查。5、基本单位普查,每5年进行一次,逢“1”和“6”的年份进行,如2011年进行了中国第四次基本单位普查。 定义:是指从研究对象的总体中抽取一部分单位作为样本进行调查,据此推断有关总体的数字特征。是市场调查中最常用的调查方式。特点:经济性好.实效性强.适应面广.准确性高抽样调查是根据部分实际调查结果来推断总体标志总量的一种统计调查方法,属于非全面调查的范畴。它是按照科学的原理和计算,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据以代表总体,推断总体。分类(1)简单随机抽样:又称纯随机抽样,它是指对总体不作任何处理,不进行分类也不进行排除,而是完全按随机的原则,直接从总体中抽取样本单位加以观察。从理论上说,是最符合抽样调查的随机原则,是抽样调查的最基本形式。具体方法有:直接抽选法、抽签法和随机数表法。(2)分层抽样:又称类型抽样或分类抽样。是先将总体各单位按主要标志加以分层,而后在各层中按随机的原则抽取若干样本单位,由各层的样本单位组成一个样本。(3)等距抽样:又称机械抽样或系统抽样。它是将总体全部单位按某一标志排队,而后按固定的顺序和相等间隔在总体中抽取若干样本单位,构成一个容量为n的样本。(3)整群抽样:是将总体各单位划分为若干群,然后以群为单元,从总体中随机抽取一部分群,对被抽中的群内所有单位进行全面调查。整群抽样对总体划分群的基本要求是:第一,群与群之间不重叠,即总体中的任一单位只能属于某个群;第二,全部总体单位毫无遗漏,即总体中的任一单位必须属于某个群。(4)多阶段抽样:当总体很大时,可把抽样过程分成几个过渡阶段,到最后才具体抽到样本单位。 是按统一规定的表格形式,统一的报送程序和报表时间,自下而上提供基础统计资料,是一种具有法律性质的报表制度。统计报表制度是一种自上而下布置,自下而上提供统计信息的报告制度。统计报表是一种以全面调查为主的调查方式,它是由 *** 主管部门根据统计法规,以条统计表格形式和行政手段字上而下布置,而后由企,事业单位自下而上层层汇总上报逐级提供基本统计数据的一种调查方式.统计调查方法体系统计资料的搜集,不......>>

问题六:统计调查有哪些组织方式 统计调查的组织形式主要有:统计报表和专门调查
专门调查又分为:普查、重点调查、典型调查、抽样调查

⑩ 常见的数据统计方法有什么

常见的数据统计方法有:表格、折线统计图、条形统计图、扇形统计图。举一个例子来具体分说明一下,比如说:我在淘宝开了个童装店,为了方便统计每半个月的销售额,现在用以上这四种统计方法来演示一下。

1.表格就是通过画格子的方式来统计数据,在这里可以画三行横线,得到两条细长的格子,再把这两行均匀的分为15个上下格子。横一为日期,横二为销售额,半个月下来都填进去就一目了然。

2.折线是通过画点,把15天的销售额都连成一条折线,通过上下起伏来看波动的数据。先画一“L”形,横线作日期,竖线作销售额,销售额可以自己写一个数,一直往上数与数之间相差一样。均匀的把横竖线分为15份,每个日期对应多少销售额,就在“L”的半框里,以对应的日期和销售画横线和竖线,交叉的位置取一点。然后每天如此,再用直线连接这15个点,就能清楚的看到这半个月哪一天销售最好,哪一天销售垫底。

3.条形统计图作出的是条状的数据统计图,和折线统计图一样,画“L”,横为日期竖为销售额。只不过这里不画点点,画倒立的长方形,然后通过高高低低的条形图来分析半个月的销售额。

4.扇形统计图就是把一个圆形,平均分为15份,一个月下来把所有的日销售额加起来,用当天的数据除以总数,乘以百分数。每一分里写上日期和当天销售额占总数的百分比,用这个百分数来统计半个月的数据。每个图的做法都不一样,但表达的意思都是同样的,这就是日常生活中最常见的几种数据统计。

阅读全文

与常用统计方法分类相关的资料

热点内容
酸奶的食用方法 浏览:139
神经性胃炎的治疗方法 浏览:257
人工整枝的主要技术方法有哪些 浏览:184
大田玉米收割方法视频 浏览:700
山东省教学方法 浏览:825
支付密码一般怎么设置在哪里设置方法 浏览:793
乳腺癌治疗方法及中药 浏览:552
老年人驼背有什么方法治疗 浏览:744
图片批量重命名编号的方法 浏览:285
目前测量儿童发育最常用的方法 浏览:442
重链沉积病最新治疗方法 浏览:7
斑秃怎么治疗方法好 浏览:938
如何做香干好吃的方法 浏览:509
室外管道连接的方法 浏览:473
西红柿盆栽种植方法 浏览:799
绿植墙怎么制作方法 浏览:183
如何培养孩子认识字的方法 浏览:354
小天鹅冰箱门拆卸安装方法 浏览:499
在教学方法的运用过程中 浏览:921
松手刹的正确方法 浏览:777