❶ 数据处理的常用方法有
1、列表法:是将实验所获得的数据用表格的形式进行排列的数据处理方法。列表法的作用有两种:一是记录实验数据,二是能显示出物理量间的对应关系。
2、图示法:是用图象来表示物理规律的一种实验数据处理方法。一般来讲,一个物理规律可以用三种方式来表述:文字表述、解析函数关系表述、图象表示。
3、图解法:是在图示法的基础上,利用已经作好的图线,定量地求出待测量或某些参数或经验公式的方法。
4、逐差法:由于随机误差具有抵偿性,对于多次测量的结果,常用平均值来估计最佳值,以消除随机误差的影响。
5、最小二乘法:通过实验获得测量数据后,可确定假定函数关系中的各项系数,这一过程就是求取有关物理量之间关系的经验公式。从几何上看,就是要选择一条曲线,使之与所获得的实验数据更好地吻合。
❷ 大数据技术常用的数据处理方式有哪些
大数据技术常用的数据处理方式,有传统的ETL工具利用多线程处理文件的方式;有写MapRece,有利用Hive结合其自定义函数,也可以利用Spark进行数据清洗等,每种方式都有各自的使用场景。
在实际的工作中,需要根据不同的特定场景来选择数据处理方式。
1、传统的ETL方式
传统的ETL工具比如Kettle、Talend、Informatica等,可视化操作,上手比较快,但是随着数据量上升容易导致性能出问题,可优化的空间不大。
2、Maprece
写Maprece进行数据处理,需要利用java、python等语言进行开发调试,没有可视化操作界面那么方便,在性能优化方面,常见的有在做小表跟大表关联的时候,可以先把小表放到缓存中(通过调用Maprece的api),另外可以通过重写Combine跟Partition的接口实现,压缩从Map到rece中间数据处理量达到提高数据处理性能。
3、Hive
在没有出现Spark之前,Hive可谓独占鳌头,涉及离线数据的处理基本都是基于Hive来做的,Hive采用sql的方式底层基于Hadoop的Maprece计算框架进行数据处理,在性能优化上也不错。
4、Spark
Spark基于内存计算的准Maprece,在离线数据处理中,一般使用Spark sql进行数据清洗,目标文件一般是放在hdf或者nfs上,在书写sql的时候,尽量少用distinct,group by recebykey 等之类的算子,要防止数据倾斜。
❸ 数据处理的常用方式
数据分析与处理方法:
采集
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的大量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些大量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的K-Means、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,还有,常用数据挖掘算法都以单线程为主。
❹ 16种常用的数据分析方法汇总
一、描述统计
描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。
2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。
二、假设检验
1、参数检验
参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验 。
1)U验 使用条件:当样本含量n较大时,样本值符合正态分布
2)T检验 使用条件:当样本含量n较小时,样本值符合正态分布
A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;
B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;
C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。
2、非参数检验
非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。
A 虽然是连续数据,但总体分布形态未知或者非正态;
B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;
主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
三、信度分析
检査测量的可信度,例如调查问卷的真实性。
分类:
1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度
2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。
四、列联表分析
用于分析离散变量或定型变量之间是否存在相关。
对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。
列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。
五、相关分析
研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。
1、单相关: 两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量;
2、复相关 :三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关;
3、偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关。
六、方差分析
使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。
分类
1、单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系
2、多因素有交互方差分析:一顼实验有多个影响因素,分析多个影响因素与响应变量的关系,同时考虑多个影响因素之间的关系
3、多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因素之间没有影响关系或忽略影响关系
4、协方差分祈:传统的方差分析存在明显的弊端,无法控制分析中存在的某些随机因素,使之影响了分祈结果的准确度。协方差分析主要是在排除了协变量的影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的一种分析方法,
七、回归分析
分类:
1、一元线性回归分析:只有一个自变量X与因变量Y有关,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布。
2、多元线性回归分析
使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。
1)变呈筛选方式:选择最优回归方程的变里筛选法包括全横型法(CP法)、逐步回归法,向前引入法和向后剔除法
2)横型诊断方法:
A 残差检验: 观测值与估计值的差值要艰从正态分布
B 强影响点判断:寻找方式一般分为标准误差法、Mahalanobis距离法
C 共线性诊断:
诊断方式:容忍度、方差扩大因子法(又称膨胀系数VIF)、特征根判定法、条件指针CI、方差比例
处理方法:增加样本容量或选取另外的回归如主成分回归、岭回归等
3、Logistic回归分析
线性回归模型要求因变量是连续的正态分布变里,且自变量和因变量呈线性关系,而Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况
分类:
Logistic回归模型有条件与非条件之分,条件Logistic回归模型和非条件Logistic回归模型的区别在于参数的估计是否用到了条件概率。
4、其他回归方法 非线性回归、有序回归、Probit回归、加权回归等
八、聚类分析
样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量。
1、性质分类:
Q型聚类分析:对样本进行分类处理,又称样本聚类分祈 使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等
R型聚类分析:对指标进行分类处理,又称指标聚类分析 使用相似系数作为统计量衡量相似度,相关系数、列联系数等
2、方法分类:
1)系统聚类法: 适用于小样本的样本聚类或指标聚类,一般用系统聚类法来聚类指标,又称分层聚类
2)逐步聚类法 :适用于大样本的样本聚类
3)其他聚类法 :两步聚类、K均值聚类等
九、判别分析
1、判别分析:根据已掌握的一批分类明确的样品建立判别函数,使产生错判的事例最少,进而对给定的一个新样品,判断它来自哪个总体
2、与聚类分析区别
1)聚类分析可以对样本逬行分类,也可以对指标进行分类;而判别分析只能对样本
2)聚类分析事先不知道事物的类别,也不知道分几类;而判别分析必须事先知道事物的类别,也知道分几类
3)聚类分析不需要分类的历史资料,而直接对样本进行分类;而判别分析需要分类历史资料去建立判别函数,然后才能对样本进行分类
3、进行分类 :
1)Fisher判别分析法 :
以距离为判别准则来分类,即样本与哪个类的距离最短就分到哪一类, 适用于两类判别;
以概率为判别准则来分类,即样本属于哪一类的概率最大就分到哪一类,适用于
适用于多类判别。
2)BAYES判别分析法 :
BAYES判别分析法比FISHER判别分析法更加完善和先进,它不仅能解决多类判别分析,而且分析时考虑了数据的分布状态,所以一般较多使用;
十、主成分分析
将彼此梠关的一组指标变适转化为彼此独立的一组新的指标变量,并用其中较少的几个新指标变量就能综合反应原多个指标变量中所包含的主要信息 。
十一、因子分析
一种旨在寻找隐藏在多变量数据中、无法直接观察到却影响或支配可测变量的潜在因子、并估计潜在因子对可测变量的影响程度以及潜在因子之间的相关性的一种多元统计分析方法
与主成分分析比较:
相同:都能够起到済理多个原始变量内在结构关系的作用
不同:主成分分析重在综合原始变适的信息.而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法
用途:
1)减少分析变量个数
2)通过对变量间相关关系探测,将原始变量进行分类
十二、时间序列分析
动态数据处理的统计方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题;时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。
主要方法:移动平均滤波与指数平滑法、ARIMA横型、量ARIMA横型、ARIMAX模型、向呈自回归横型、ARCH族模型
十三、生存分析
用来研究生存时间的分布规律以及生存时间和相关因索之间关系的一种统计分析方法
1、包含内容:
1)描述生存过程,即研究生存时间的分布规律
2)比较生存过程,即研究两组或多组生存时间的分布规律,并进行比较
3)分析危险因素,即研究危险因素对生存过程的影响
4)建立数学模型,即将生存时间与相关危险因素的依存关系用一个数学式子表示出来。
2、方法:
1)统计描述:包括求生存时间的分位数、中数生存期、平均数、生存函数的估计、判断生存时间的图示法,不对所分析的数据作出任何统计推断结论
2)非参数检验:检验分组变量各水平所对应的生存曲线是否一致,对生存时间的分布没有要求,并且检验危险因素对生存时间的影响。
A 乘积极限法(PL法)
B 寿命表法(LT法)
3)半参数横型回归分析:在特定的假设之下,建立生存时间随多个危险因素变化的回归方程,这种方法的代表是Cox比例风险回归分析法
4)参数模型回归分析:已知生存时间服从特定的参数横型时,拟合相应的参数模型,更准确地分析确定变量之间的变化规律
十四、典型相关分析
相关分析一般分析两个变里之间的关系,而典型相关分析是分析两组变里(如3个学术能力指标与5个在校成绩表现指标)之间相关性的一种统计分析方法。
典型相关分析的基本思想和主成分分析的基本思想相似,它将一组变量与另一组变量之间单变量的多重线性相关性研究转化为对少数几对综合变量之间的简单线性相关性的研究,并且这少数几对变量所包含的线性相关性的信息几乎覆盖了原变量组所包含的全部相应信息。
十五、R0C分析
R0C曲线是根据一系列不同的二分类方式(分界值或决定阈).以真阳性率(灵敏度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线
用途:
1、R0C曲线能很容易地査出任意界限值时的对疾病的识别能力
用途
2、选择最佳的诊断界限值。R0C曲线越靠近左上角,试验的准确性就越高;
3、两种或两种以上不同诊断试验对疾病识别能力的比较,一股用R0C曲线下面积反映诊断系统的准确性。
十六、其他分析方法
多重响应分析、距离分祈、项目分祈、对应分祈、决策树分析、神经网络、系统方程、蒙特卡洛模拟等。
❺ 数据处理的方法有哪些,有什么优缺点
数据处理主要有四种分类方式
①根据处理设备的结构方式区分,有联机处理方式和脱机处理方式。
②根据数据处理时间的分配方式区分,有批处理方式、分时处理方式和实时处理方式。
③根据数据处理空间的分布方式区分,有集中式处理方式和分布处理方式。
④根据计算机中央处理器的工作方式区分,有单道作业处理方式、多道作业处理方式和交互式处理方式。
数据处理对数据(包括数值的和非数值的)进行分析和加工的技术过程。包括对各种原始数据的分析、整理、计算、编辑等的加工和处理。比数据分析含义广。随着计算机的日益普及,在计算机应用领域中,数值计算所占比重很小,通过计算机数据处理进行信息管理已成为主要的应用。如测绘制图管理、仓库管理、财会管理、交通运输管理,技术情报管理、办公室自动化等。在地理数据方面既有大量自然环境数据(土地、水、气候、生物等各类资源数据),也有大量社会经济数据(人口、交通、工农业等),常要求进行综合性数据处理。故需建立地理数据库,系统地整理和存储地理数据减少冗余,发展数据处理软件,充分利用数据库技术进行数据管理和处理。
计算机数据处理主要包括8个方面。
①数据采集:采集所需的信息。
②数据转换:把信息转换成机器能够接收的形式。
③数据分组:指定编码,按有关信息进行有效的分组。
④数据组织:整理数据或用某些方法安排数据,以便进行处理。
⑤数据计算:进行各种算术和逻辑运算,以便得到进一步的信息。
⑥数据存储:将原始数据或计算的结果保存起来,供以后使用。
⑦数据检索:按用户的要求找出有用的信息。
⑧数据排序:把数据按一定要求排成次序。
❻ 常用数据分析处理方法有哪些
1、漏斗分析法
漏斗分析法能够科学反映用户行为状态,以及从起点到终点各阶段用户转化率情况,是一种重要的分析模型。漏斗分析模型已经广泛应用于网站和APP的用户行为分析中,例如流量监控、CRM系统、SEO优化、产品营销和销售等日常数据运营与数据分析工作中。
2、留存分析法
留存分析法是一种用来分析用户参与情况和活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。从用户的角度来说,留存率越高就说明这个产品对用户的核心需求也把握的越好,转化成产品的活跃用户也会更多,最终能帮助公司更好的盈利。
3、分组分析法
分组分析法是根据数据分析对象的特征,按照一定的标志(指标),把数据分析对象划分为不同的部分和类型来进行研究,以揭示其内在的联系和规律性。
4、矩阵分析法
矩阵分析法是指根据事物(如产品、服务等)的两个重要属性(指标)作为分析的依据,进行分类关联分析,找出解决问题的一种分析方法,也称为矩阵关联分析法,简称矩阵分析法。
❼ 常用的数据分析方法有哪些
常见的数据分析方法有哪些?
1.趋势分析
当有大量数据时,我们希望更快,更方便地从数据中查找数据信息,这时我们需要使用图形功能。所谓的图形功能就是用EXCEl或其他绘图工具来绘制图形。
趋势分析通常用于长期跟踪核心指标,例如点击率,GMV和活跃用户数。通常,只制作一个简单的数据趋势图,但并不是分析数据趋势图。它必须像上面一样。数据具有那些趋势变化,无论是周期性的,是否存在拐点以及分析背后的原因,还是内部的或外部的。趋势分析的最佳输出是比率,有环比,同比和固定基数比。例如,2017年4月的GDP比3月增加了多少,这是环比关系,该环比关系反映了近期趋势的变化,但具有季节性影响。为了消除季节性因素的影响,引入了同比数据,例如:2017年4月的GDP与2016年4月相比增长了多少,这是同比数据。更好地理解固定基准比率,即固定某个基准点,例如,以2017年1月的数据为基准点,固定基准比率是2017年5月数据与该数据2017年1月之间的比较。
2.对比分析
水平对比度:水平对比度是与自己进行比较。最常见的数据指标是需要与目标值进行比较,以了解我们是否已完成目标;与上个月相比,要了解我们环比的增长情况。
纵向对比:简单来说,就是与其他对比。我们必须与竞争对手进行比较以了解我们在市场上的份额和地位。
许多人可能会说比较分析听起来很简单。让我举一个例子。有一个电子商务公司的登录页面。昨天的PV是5000。您如何看待此类数据?您不会有任何感觉。如果此签到页面的平均PV为10,000,则意味着昨天有一个主要问题。如果签到页面的平均PV为2000,则昨天有一个跳跃。数据只能通过比较才有意义。
3.象限分析
根据不同的数据,每个比较对象分为4个象限。如果将IQ和EQ划分,则可以将其划分为两个维度和四个象限,每个人都有自己的象限。一般来说,智商保证一个人的下限,情商提高一个人的上限。
说一个象限分析方法的例子,在实际工作中使用过:通常,p2p产品的注册用户由第三方渠道主导。如果您可以根据流量来源的质量和数量划分四个象限,然后选择一个固定的时间点,比较每个渠道的流量成本效果,则该质量可以用作保留的总金额的维度为标准。对于高质量和高数量的通道,继续增加引入高质量和低数量的通道,低质量和低数量的通过,低质量和高数量的尝试策略和要求,例如象限分析可以让我们比较和分析时间以获得非常直观和快速的结果。
4.交叉分析
比较分析包括水平和垂直比较。如果要同时比较水平和垂直方向,则可以使用交叉分析方法。交叉分析方法是从多个维度交叉显示数据,并从多个角度执行组合分析。
分析应用程序数据时,通常分为iOS和Android。
交叉分析的主要功能是从多个维度细分数据并找到最相关的维度,以探究数据更改的原因。