导航:首页 > 使用方法 > 食用菌的蛋白的测定方法

食用菌的蛋白的测定方法

发布时间:2023-01-08 14:05:57

❶ 叙述生物样品中蛋白质含量测定方法有哪些

蛋白质含量测定方法有:凯氏定氮法,双缩脲(Biuret)法,酚试剂法(Lowry)法,考马斯亮蓝(Bradford)法,紫外吸收法,BCA法及杜马斯燃烧法。其中BCA法与Bradford法成为当今实验室最为常用的两种蛋白浓度定量检测方法

BCA法常用现成的试剂盒来做,操作简单又稳定。以下是厚百上BCA蛋白定量试剂盒:

厚百holdbio提供生物试剂、耗材等全面实验室用品及实验技术服务,科研整体服务(课题设计-实验-SCI)。

❷ 用什么方法检测蛋白质

目前食品中蛋白质的测定方法有蛋白质自动分析仪,近红外自动测定仪,紫外分光光度法以及凯氏定氮法等。本文采用纳氏试剂作为显色剂测定食品中蛋白质含量,适用范围广,可用于各类食品及保健食品的检测。用本法对标准品、质控样品进行测定获得满意结果,对批量样品的快速测定更具有实用性。现将结果报告如下。

材料与方法

仪器与试剂 WFZ800-D3型紫外分光光度计(北京第二光学仪器厂)。分析纯硫酸、硫酸铜、硫酸钾。(1)纳氏试剂:称取碘化汞100g及碘化钾70g,溶于少量无氨蒸馏水中,将此溶液缓缓倾入己冷却的32%氢氧化钠溶液500ml中,并不停搅拌,再用蒸馏水稀释至1L,贮于棕色瓶中,用橡皮塞塞紧,避光保存。(2)硫酸铵标准储备溶液(1.0g/L):精确称取经硫酸干燥的硫酸铵0.4720g,加水溶解后移入100mL容量瓶中,并稀释至刻度,混均此液每毫升相当于1.0mgNH3-N(10℃下冰箱内储存稳定1年以上)。(3)硫酸铵标准使用溶液(0.01g/L):用移液管精密吸取1.0ml标准储备液(1.0g/L)于100ml容量瓶内,加水稀释至刻度,混匀,此溶液每毫升相当于10.0μg NH3-N。

方法

标准曲线绘制 取25ml比色管7支,分别准确吸取0.01g/L硫酸铵标准使用液0.00,0.5,1.0,3.0,5.0,7.0,10.0ml(相当于标准0.0,5.0,10.0,30.0,50.0,70.0,100.0μg),加水至10ml刻度,于标准系列管中各加2ml纳氏试剂,混匀后放置10min,移入1cm比色皿内,以零管为参比,于波长420mm处测量吸光度,以标准管含量为横坐标(μg),对应的吸光度(A)值为纵坐标绘制标准曲线。

样品测定 选择牛奶和奶粉为检测样品。精密称取样品0.1~2.0g置于250ml三角瓶中,加入0.2gCuSO4、1.0gK2SO4、硫酸10ml,先小火加热,待内容物全部炭化,泡沫停止后,加大火力至液体呈蓝色,使H2SO4剩余量约为3ml左右为止,室温放冷后,沿瓶壁慢慢加入10ml水,移入100ml容量瓶中,用少量蒸镏水洗三角瓶3次,洗液全部并入容量瓶中,冷却,加蒸馏水至刻度,混匀。测定时取0.5ml,加水至10ml刻度,以后操作同标准曲线。同时做空白试验。

计算公式

X=c×Fm×V2V1×1000×1000×1000

式中:X-试样中蛋白质含量(g/100g或g/100ml)

C-试样测定液中扣除空白后氮的含量(μg)

V1-试样消化液定容体积(ml)

V2-测定用消化液体积(ml)

m-样品质量(g)或体积(ml)

F-氮换算为蛋白质的系数。

蛋白质的氮含量一般为15%~17.6%,按16%计算乘以6.25即为蛋白质,乳制品为6.38,面粉为5.7,肉及肉制品为6.25,大豆为5.71。

结果

2.1 测定波长选择 含氮量为30μg的标准管在显色后,在波长400~440mm范围内每间隔5nm进行测定,最大吸收波长为420mm。

显色剂用量选择 含氮量为30μg的标准管分别加入不同量的纳氏试剂,在420mm的波长下分别测定其吸光度结果。纳氏试剂显色剂加入量为1.5~3.0ml时吸光度基本无变化,本法选择加入纳氏试剂2.0ml。

显色时间及稳定性 含氮量为30μg的标准管经显色后,分别在10,30min,1,2,4,8h进行测定。显色后10min~8h内吸光度稳定无变化。本法选显色10min后测定。

标准曲线 回归方程:y=0.016X-1.5×10-3,r=0.9998,最佳线性范围0.0~100μg。

精密度 牛乳和奶粉2种样品分别取6份按本法重复测定6次,牛乳和奶粉精密度测定结果:平均数分别为3.06,23.50;标准差分别为±0.029,±0.073;相对标准偏差分别为0.31%,0.94%。

对2种样品利用标准加入法作回收试验(表1) 结果可见,回收率为95.50%~99.44%。

2种方法测定结果比较 分别用GB/T5009.5-2003凯氏定氮法与本法测定。结果显示,2种分析方法的测定结果差异无统计学意义(t=0.026,P>0.05)。

测定标准物质 用本法测定4种不同的蛋白质标准物质,测定结果与标准物质含量一致。

以纳氏试剂作为显色剂快速测定食品中蛋白质的方法特点简单、快速,适用于批量样品测定。在碱性条件下NH3-N与纳氏试剂反应生成的黄色化合物稳定。本法与国标凯氏定氮法进行比较t=0.026,P<0.05,n=32,2种方法测定结果无明显差异。测定范围广,线性范围宽0.0~100.0μg;精密度高;相对标准偏差为0.31%~0.94%;回收率好,加标回标率为95.50%~99.44%。用本法测定标准物质结果一致,用于质量控制样本测定结果满意。本法仪器试剂简单,易于基层普及,有利于推广应用。

❸ 检测蛋白质的方法有哪些 检测蛋白质的方法介绍

1、凯氏定氮法

凯氏定氮法是测定化合物或混合物中总氮量的一种方法。即在有催化剂的条件下,用浓硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气蒸馏出来并为过量的硼酸液吸收,再以标准盐酸滴定,就可计算出样品中的氮量。

由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。

2、双缩脲法

双缩脲法是一个用于鉴定蛋白质的分析方法。双缩脲试剂是一个碱性的含铜试液,呈蓝色,由1%氢氧化钾、几滴1%硫酸铜和酒石酸钾钠配制。

当底物中含有肽键时(多肽),试液中的铜与多肽配位,配合物呈紫色。可通过比色法分析浓度,在紫外可见光谱中的波长为540nm。鉴定反应的灵敏度为5-160mg/ml。鉴定反应蛋白质单位1-10mg。

3、酚试剂法

取6支试管分别标号,前5支试管分别加入不同浓度的标准蛋白溶液,最后一支试管加待测蛋白质溶液,不加标准蛋白溶液,在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于650nm波长处测定各管中溶液的吸光度值。

4、紫外吸收法

大多数蛋白质在280nm波长处有特征的最大吸收,这是由于蛋白质中有酪氨酸,色氨酸和苯丙氨酸存在,可用于测定0.1~0.5mg/mL含量的蛋白质溶液。

取9支试管分别标号,前8支试管分别加入不同浓度的标准蛋白溶液,1号试管不加标准蛋白溶液,最后一支试管加待测蛋白质溶液,而不加标准蛋白溶液,每支试管液体总量通过加入蒸馏水补足而保持一致,将液体混合均匀,在280nm波长处进行比色,记录吸光度值。

5、考马斯亮蓝法

考马斯亮蓝显色法的基本原理是根据蛋白质可与考马斯亮蓝G-250 定量结合。当考马斯亮蓝 G-250 与蛋白质结合后,其对可见光的最大吸收峰从 465nm 变为 595nm。

在考马斯亮蓝 G-250 过量且浓度恒定的情况下,当溶液中的蛋白质浓度不同时,就会有不同量的考马斯亮蓝 G-250 从吸收峰为 465nm 的形式转变成吸收峰为 595nm 的形式,而且这种转变有一定的数量关系。

一般情况,当溶液中的蛋白质浓度增加时,显色液在 595nm 处的吸光度基本能保持线性增加,因此可以用考马斯亮蓝 G-250 显色法来测定溶液中蛋白质的含量。

❹ 食品国家标准(GB/T)

有一定的限定,要分食品的类别,比如禽蛋制品,肉制品,粮油制品,面制品,糖制品等不同。食品类别不同,所含营养素含量就有限定。你可以参考中华人民共和国食品标准,上面都有限定数值。

本人是学习食品专业的,对这方面有些了解,希望我的回答对你有帮助

❺ 常用的蛋白质含量测定方法有哪些

①凯氏定氮法
原理:蛋白质平均含氮量为16%。当样品与浓硫酸共热,蛋白氮转化为铵盐,在强碱性条件下将氨蒸出,用加有指示剂的硼酸吸收,最后用标准酸滴定硼酸,通过标准酸的用量即可求出蛋白质中的含氮量和蛋白质含量。
②双缩脲法
原理:尿素在180℃下脱氨生成双缩脲,在碱性溶液中双缩脲可与Cu2+形成稳定的紫红色络合物。蛋白质中的肽键实际上就是酰胺键,故多肽、蛋白质等都有双缩脲(biuret)反应,产生蓝色或紫色复合物。比色定蛋白质含量。
缺点:灵敏度低,样品必须可溶,在大量糖类共存和含有脯氨酸的肽中显色不好。其 精确度 较差 (数mg),且会受样品中 硫酸铵 及 Tris 的干扰,但 准确度 较高,不受蛋白质的种类影响。
③Folin酚法(Lowry)
Folin酚法是biuret 法的延伸,所用试剂由试剂甲和乙两部分组成。试剂甲相当于双缩脲试剂(碱性铜试剂),试剂乙中含有磷钼酸和磷钨酸。
在碱性条件下,蛋白质中的巯基和酚基等可将Cu2+还原成Cu+, Cu+能定量地与Folin-酚试剂反应生成蓝色物质,600nm比色测定蛋白质含量。
灵敏度较高(约 0.1 mg),但较麻烦,也会受 硫酸铵 及 硫醇化合物 的干扰。 步骤中各项试剂的混合,要特别注意均匀澈底,否则会有大误差。
④紫外法
280nm光吸收法:利用Tyr在280nm在吸收进行测定。
280nm-260nm的吸收差法:若样品液中有少量核酸共存按下式计算:
蛋白质浓度(mg/ml)=1.24E280-0.74E260 (280 260为角标)
⑤色素结合法(Bradford 法)
直接测定法:利用蛋白质与色素分子(Coomassie Brilliant Blue G-250)结合物的光吸收用分光光度法进行测定。
考马斯亮兰(CBG)染色法测定蛋白质含量。CBG 有点像指示剂,会在不同的酸碱度下变色;在酸性下是茶色,在中性下为蓝色。当 CBG接到蛋白质上去的时候,因为蛋白质会提供 CBG一个较为中性的环境,因此会变成蓝色。当样本中的蛋白质越多,吸到蛋白质上的CBG也多,蓝色也会增强。因此,蓝色的呈色强度,是与样本中的蛋白质量成正比。
间接测定法:蛋白质与某些酸性或碱性色素分子结合形成不溶性的盐沉淀。用分光光度计测定未结合的色素,以每克样品结合色素的量来表示蛋白质含量的多少。
⑥BCA法
BCA(Bicinchoninc acid procere,4,4’-二羧-2,2’-二喹啉)法与Lowry法相似,主要差别在碱性溶液中,蛋白质使Cu2+转变Cu+后,进一步以BCA 取代Folin试剂与Cu+结合产生深紫色,在波长562 nm有强的吸收。
它的优点在于碱性溶液中BCA 比Folin试剂稳定,因此BCA与碱性铜离子溶液结合的呈色反应只需一步骤即完成。灵敏度Lowry法相似。
本方法对于阴离子、非离子性及二性离子的清洁剂和尿素较具容忍度,较不受干扰,但会受还原糖 及EDTA的干扰。
⑦胶体金测定法
胶体金(colloidal gold)是氯金酸(chloroauric acid)的水溶胶,呈洋红色,具有高电子密度,并能与多种生物大分子结合。
胶体金是一种带负电荷的疏水胶体遇蛋白质转变为蓝色,颜色的改变与蛋白质有定量关系,可用于蛋白质的定量测定。
⑧其他方法
有些蛋白质含有特殊的 非蛋白质基团,如 过氧化物酶含有 亚铁血红素基团,可测 403 nm 波长的吸光来定量之。 含特殊金属的酶 (如镉),则可追踪该金属。

❻ 菌体蛋白饲料中真蛋白的测定方法 (含有真菌)

实验室常用考马斯亮蓝G-250法,不是以测定"氮"含量为基础。马斯亮蓝是一种甲基取代的三苯基甲烷,分子中磺酸基的蓝色染料,在465nm处有最大吸收值。考马斯亮蓝G-250能与蛋白质通过范得华相互作用形成蛋白质-考马斯亮蓝复合物蓝色溶液,引起该染料的最大吸收λmax的位置发生红移,在595nm处有最大吸收值。由于蛋白质-考马斯亮蓝复合物在595nm处的光吸收远高于考马斯亮蓝在465nm处的光吸收,因此,可大大地提高蛋白质的测定灵敏度。蛋白质-考马斯亮蓝复合物溶液颜色的深浅与蛋白质的浓度成正比。利用溶液颜色的差异进行比色测定,适合于蛋白质类的定量分析,呈色反应颜色稳定、灵敏度高,最低测试蛋白质量在1ug左右。但是考马斯亮蓝G250分子含苯环。

也可以用“紫外吸收法”,它也不是以测定“氮”含量为基础,其中以280nm处的吸光度值是最常用的紫外吸收法。其原理是蛋白质分子中酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比,利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定,三聚氰胺等化合物含有共轭双键的苯环,但是没有肽键,所以238nm处的吸光度值可以排除其它苯环共轭双键的干扰。

❼ 食品中蛋白质含量怎么

目前食品中蛋白子含量的测定通常采用凯氏定氮法。

凯氏定氮法是测定化合物或混合物中总氮量的一种方法。即在有催化剂的条件下,用浓硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气馏出并为过量的酸液吸收,再以标准碱滴定,就可计算出样品中的氮量。由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。

凯氏定氮法检测的是粗蛋白,原理是检测其中的氮含量,因为氮含量在真蛋白中大约 是16%左右,倒数就是6.25,所以,检测出氮含量后,乘以6.25就是粗蛋白含量了。

凯氏定氮法的缺点是把非蛋白中的氮也算进去了,所以,才会有前几年出现的三聚氰胺的事件,三聚氰胺是非蛋白氮,用凯氏定氮法检测时,也把它算进去了,这就是奶粉造假的依据。

想了解更多关于凯氏定氮法的详细信息可参阅:网络-凯氏定氮法。也可追问我哦~

❽ 食品中蛋白质测定是怎么操作的

食品中蛋白质的测定
1 原理
蛋白质是含氮的有机化合物.食品与硫酸和硫酸铜、硫酸钾一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵.然后碱化蒸馏使氨游离,用硼酸吸收后以硫酸或盐酸标准滴定溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质的含量.
2 分析步骤
2.1 试样处理:称取0.20g~2.00g固定试样或2.00g~5.00g半固体试样或吸取10.00ml~25.00ml液体试样(约相当氮30mg~40mg),移入干燥的100ml或500ml定氮瓶中,加入0.2g硫酸铜,6g硫酸钾及20ml硫酸,稍摇匀后于瓶口放一小漏斗,将瓶以45°角斜支于有小孔的石棉网上.小心加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体沸腾,至液体呈蓝绿色澄清透明后,再继续加热0.5h~1h.取下放冷,小心加20ml水.放冷后,移入100ml容量瓶中.并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用.同时做试剂空白试验.
2.2 测定:按上图装好定氮装置,于水蒸气发生瓶内装水至三分之二处,加入数粒玻璃珠,加甲基红指示液数滴及数毫升硫酸,以保持水呈酸性,用调压器控制,加热煮沸水蒸气发生瓶内的水.2.3 向接收瓶内加入10ml硼酸溶液(20g/L)及1~2滴混合指示液,并使冷凝管的下端插入液面下,准确吸取10ml试样处 理液由小漏洞流入反应室,并以10ml水洗涤小烧杯使流入反应室内,棒状玻塞塞紧.将10ml氢氧化钠溶液(400g/L)倒入小玻杯,提起玻塞使其缓缓流入反应室,立即将玻塞盖紧.并加水于小玻杯以防漏气.夹紧螺旋夹,开始蒸馏.蒸馏5min.移动接收瓶,液面离开冷凝管下端,再蒸馏1min.然后用少量水冲洗冷凝管下端外部.取下接收瓶.以硫酸或盐酸标准滴定溶液(0.05mol/L)滴定至灰色或蓝紫色为终点.同时准确吸取10ml.
试剂空白消化液按2.2操作.
3 结果计算
试样中蛋白质的含量按下列公式计算.
式中:
X—试样中蛋白质的含量,单位为克每百克或克每百毫升(g/100g或g/100ml)
V1—试样消耗硫酸或盐酸标准滴定液的体积,单位为毫升(ml) V2—试剂空白消耗硫酸或盐酸标准滴定液的体积,单位为毫升.
(ml)
C—硫酸或盐酸标准滴定液的浓度,单位为摩尔每升(mol/L) 0.0140—1.0ml
硫酸[c(1/2H2SO4)=1.000mol/L]或盐酸
[c(HCL)=1.000mol/L]标准滴定溶液相当的氮的质量,单位为克(g)
m—试样的质量或体积,单位为克或毫升(g或ml)
F—氮换算为蛋白质的系数,一般食物为6.25;乳制品为6.38;面粉为5.70;玉米、高粱为6.24;花生为5.46;米为5.95;大豆及其制品为5.71;肉与肉制品为6.25;大麦、小米、燕麦、裸麦为5.83;芝麻、向日葵为5.30.计算结果保留三位有效数字.
4 精密度
在重复性条件下获得的两次独立测定结果的绝对差不得超过算数平均值的10%.
zttn037 2014-11-19

❾ 食品中蛋白质的测定

食品中蛋白质的测定如下:
蛋白质的检测原理是基于食品中蛋白质含量与食品中氮含量的比例关系换算的。如乳中蛋白质与氮含量的比值为6.38,大豆中蛋白质与氮含量的比值为5.71,普通食品中蛋白质与氮含量的比值为6.25。因此是通过测定食品中氮含量后再根据换算系数得到食品中蛋白质含量。
蛋白质的检测方法:
1、凯氏定氮法:样品在高温浓硫酸的消化作用下,将样品中的有机氮转化为无机铵,待消化液冷却后,加入过量的碱,使无机铵转化为挥发性的氨,再将氨蒸出后,利用盐酸标准溶液滴定,最后根据消耗的盐酸标液体积推算样品中的氮含量。
2、杜马斯定氮法:样品在高纯氧中充分燃烧的过程中,将氮元素转化为氮气或氮氧化物,再经过高温铜的还原,使所有的氮转化为N2,然后利用热导检测器检测N2的含量来推算样品中氮含量。因此杜马斯定氮法也称为杜马斯燃烧法或燃烧定氮法。

阅读全文

与食用菌的蛋白的测定方法相关的资料

热点内容
奶奶教裁剪方法简单好用 浏览:446
老人机短信中心在哪里设置方法 浏览:852
化肥中氮的含量检测方法视频 浏览:74
照片如何加水印方法 浏览:534
有点打呼噜有什么好方法 浏览:404
如何赏析诗句方法公式 浏览:723
快速融化冰块的方法 浏览:129
手臂痛怎么治疗方法 浏览:483
days360函数的使用方法 浏览:631
治疗湿尤有效方法 浏览:911
小米的快捷键设置在哪里设置方法 浏览:771
用底线思维方法解决问题 浏览:279
检测方法elisa法 浏览:194
远离口臭的最佳治疗方法 浏览:685
中药及其制剂常用的纯化方法 浏览:153
充电机使用方法步骤12V 浏览:1001
正确怀孕的方法 浏览:52
iphone6跳屏解决方法 浏览:897
怎么鉴定玉的真假最简单的方法 浏览:62
椰子鞋带交叉方法视频 浏览:528