导航:首页 > 使用方法 > 7种常用的聚类方法

7种常用的聚类方法

发布时间:2022-01-18 06:06:12

什么是聚类分析聚类算法有哪几种

聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于

分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行

定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识

难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又

将多元分析的技术引入到数值分类学形成了聚类分析。

聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论

聚类法、聚类预报法等。

聚类分析计算方法主要有如下几种:分裂法(partitioning methods):层次法(hierarchical

methods):基于密度的方法(density-based methods): 基于网格的方法(grid-based

methods): 基于模型的方法(model-based methods)。

Ⅱ 几种常用聚类方法的比较

1.k-mean聚类分析 适用于样本聚类;
2.分层聚类 适用于对变量聚类;
3.两步聚类 适用于分类变量和连续变量聚类;
4.基于密度的聚类算法;
5.基于网络的聚类;
6.机器学习中的聚类算法;
前3种,可用spss简单操作实现;

Ⅲ 聚类算法有哪些

聚类算法有:划分法、层次法、密度算法、图论聚类法、网格算法、模型算法。

1、划分法

划分法(partitioning methods),给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法。

2、层次法

层次法(hierarchical methods),这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等。

3、密度算法

基于密度的方法(density-based methods),基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。代表算法有:DBSCAN算法、OPTICS算法、DENCLUE算法等。

4、图论聚类法

图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。因此,每一个最小处理单元数据之间都会有一个度量表达,这就确保了数据的局部特性比较易于处理。图论聚类法是以样本数据的局域连接特征作为聚类的主要信息源,因而其主要优点是易于处理局部数据的特性。

5、网格算法

基于网格的方法(grid-based methods),这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法。

6、模型算法

基于模型的方法(model-based methods),基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。通常有两种尝试方向:统计的方案和神经网络的方案。

(3)7种常用的聚类方法扩展阅读:

聚类分析起源于分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又将多元分析的技术引入到数值分类学形成了聚类分析。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。

在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。

Ⅳ 聚类算法有哪几种

聚类分析计算方法主要有: 层次的方法(hierarchical method)、划分方法(partitioning method)、基于密度的方法(density-based method)、基于网格的方法(grid-based method)、基于模型的方法(model-based method)等。其中,前两种算法是利用统计学定义的距离进行度量。
k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然 后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
其流程如下:
(1)从 n个数据对象任意选择 k 个对象作为初始聚类中心;
(2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;
(3)重新计算每个(有变化)聚类的均值(中心对象);
(4)循环(2)、(3)直到每个聚类不再发生变化为止(标准测量函数收敛)。
优点: 本算法确定的K个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为 O(NKt),其中N是数据对象的数目,t是迭代的次数。
缺点:
1. K 是事先给定的,但非常难以选定;
2. 初始聚类中心的选择对聚类结果有较大的影响。

Ⅳ 聚类算法有哪几种

聚类分析计算方法主要有: 层次的方法(hierarchical method)、划分方法(partitioning method)、基于密度的方法(density-based method)、基于网格的方法(grid-based method)、基于模型的方法(model-based method)等。其中,前两种算法是利用统计学定义的距离进行度量。

k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然 后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。

其流程如下:

(1)从 n个数据对象任意选择 k 个对象作为初始聚类中心;

(2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;

(3)重新计算每个(有变化)聚类的均值(中心对象);

(4)循环(2)、(3)直到每个聚类不再发生变化为止(标准测量函数收敛)。

优点: 本算法确定的K个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为 O(NKt),其中N是数据对象的数目,t是迭代的次数。

缺点

1. K 是事先给定的,但非常难以选定;

2. 初始聚类中心的选择对聚类结果有较大的影响。

Ⅵ 未知分类数目的聚类方法有哪些呀

给定一个数组 --> @x 做聚类分析,现在不知道它能分成多少类,是要做 fuzzy C-means clustering么?如何在实现未知分类数目的聚类分析?-------------------------------------------------------------------------------------------------------我现在的数据都是正整数,如下:492, 500, 490, 486, 490, 491, 493, 480, 461, 504, 476, 434, 500, 470, 495, 3116, 3805, 3142, 12836, 12692, 3062, 3091, 3141, 3177, 3685, 3150, 3114, 3149, 12658, 3134, 3143, 3156, 3119, 3172, 3113, 12307, 12338, 3162, 2679, 3177, 3111, 3115, 3136, 3156, 12394, 3129, 3176, 3134, 3108, 12657, 506, 473, 495, 494, 434, 459, 445, 475, 476, 3146, 2009, 3132, 3155, 2704, 3125, 3170, 3187具体分类的话,我查到了这个: http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/cmeans.html 使得Jm 最小。-------------------------------------------------------------------------------------------------------然后是详细的对所面临的数据的手工分类过程: 理论上数据可以分成1类,或者2类,这个在每行数据里是不固定的。即某些行可以分成一类,有些行可以分成两类,但是哪些行分成1类那些行分成两类不固定 但是,由于有实验误差的问题,有些数据需要抛弃,比如,如果一组数据是 23,24,25,332,334,336,2000; 那么这个2000是实验误差,需要摒弃。一般来讲这个误差会是非常大的,比如这里是2000,或者更大,30000;同时误差的个数不固定,有时候是一个2000,有时候是一个2000,一个30000。这里取决于这一行包含数据的个数。数据个数越多,其中包含错误的个数便越多。 如果让我来手工分类,基本上就是按照上面的方式;首先确定是一个cluster或者是两个clusters,然后再摒弃掉距离cluster距离非常远的数字。 这里如果是一个cluster,则这个cluster附近的数字符合正态分布;如果是两个cluster,那么在这两个cluster附近的数字分别符合正态分布

Ⅶ 分类和聚类的区别及各自的常见算法

1、分类和聚类的区别:
Classification (分类),对于一个classifier,通常需要你告诉它“这个东西被分为某某类”这样一些例子,理想情况下,一个 classifier 会从它得到的训练集中进行“学习”,从而具备对未知数据进行分类的能力,这种提供训练数据的过程通常叫做supervised learning (监督学习),
Clustering (聚类),简单地说就是把相似的东西分到一组,聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起。因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了,因此 clustering 通常并不需要使用训练数据进行学习,这在Machine Learning中被称作unsupervised learning (无监督学习).
2、常见的分类与聚类算法
所谓分类,简单来说,就是根据文本的特征或属性,划分到已有的类别中。如在自然语言处理NLP中,我们经常提到的文本分类便就是一个分类问题,一般的模式分类方法都可用于文本分类研究。常用的分类算法包括:决策树分类法,朴素贝叶斯分类算法(native Bayesian classifier)、基于支持向量机(SVM)的分类器,神经网络法,k-最近邻法(k-nearestneighbor,kNN),模糊分类法等等。
分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,这时候可以考虑使用聚类算法。
而K均值(K-mensclustering)聚类则是最典型的聚类算法(当然,除此之外,还有很多诸如属于划分法K中心点(K-MEDOIDS)算法、CLARANS算法;属于层次法的BIRCH算法、CURE算法、CHAMELEON算法等;基于密度的方法:DBSCAN算法、OPTICS算法、DENCLUE算法等;基于网格的方法:STING算法、CLIQUE算法、WAVE-CLUSTER算法;基于模型的方法)。

Ⅷ 聚类方法选择

聚类结果的好坏取决于该聚类方法采用的相似性比较方法,选择的聚类方法应能再现内在的分类组,且对一个数据组内的错误或异常值比较敏感。

系统聚类的相似性(类与类之间的距离)比较方法有许多种,例如最长距离法(两类之间的距离用两类间最远样本的距离来表示,它是空间扩张的)、最短距离法(两类之间的距离以两类间的最近样本的距离来表示,它是空间压缩的)、重心距离法(两类间的距离以重心之间的距离表示,具有非单调性)、类平均法(两类间的距离以各类元素两两之间的平均平方距离来表示,具有空间保持及单调性)和离差平方和法(两类之间的平方距离用两类归类后所增加的离差平方和表示,聚类过程中使类内各指标的方差最小,类间的方差尽可能大,也具有单调性)等。

据研究,类平均法和离差平方和法能充分利用个样本的信息,是类型合并和区划中较好的方法,因而作为分区的主要方法。通过比较分析,本研究中采用离差平方和法。

Ⅸ 有哪些常用的聚类算法

【聚类】聚类分析是直接比较各对象之间的性质,根据在对象属性中发现的描述对象及其关系的信息,将数据对象分组。其目标是,组内的对象相互之间是相似的(相关的),而不同组中的对象是不同的(不相关的)。组内的相似性(同质性)越大,组间差别越大,聚类就越好。

聚类的目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,是无监督学习过程。在无监督学习中,训练样本标记信息是未知的。聚类试图将数据集中的样本划分为若干个通常不相交的子集,每个子集称为一个“簇”,每个簇可能对应于一些潜在的类别,这些类别概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇所对应的概念语义需要由使用者来把握和命名。

Ⅹ 聚类算法的具体方法

k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
k-means 算法的工作过程说明如下:
首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;
然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。
一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 K-MEANS有其缺点:产生类的大小相差不会很大,对于脏数据很敏感。
改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心的作用,这样的一个medoid就标识了这个类。K-medoids和K-means不一样的地方在于中心点的选取,在K-means中,我们将中心点取为当前cluster中所有数据点的平均值,在 K-medoids算法中,我们将从当前cluster 中选取这样一个点——它到其他所有(当前cluster中的)点的距离之和最小——作为中心点。
步骤:
1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。
以下是循环的:
2,将余下的对象分到各个类中去(根据与medoid最相近的原则);
3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。
4,这样循环直到K个medoids固定下来。
这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。 上面提到K-medoids算法不适合于大数据量的计算。Clara算法,这是一种基于采样的方法,它能够处理大量的数据。
Clara算法的思想就是用实际数据的抽样来代替整个数据,然后再在这些抽样的数据上利用K-medoids算法得到最佳的medoids。Clara算法从实际数据中抽取多个采样,在每个采样上都用K-medoids算法得到相应的(O1, O2 … Oi … Ok),然后在这当中选取E最小的一个作为最终的结果。 Clara算法的效率取决于采样的大小,一般不太可能得到最佳的结果。
在Clara算法的基础上,又提出了Clarans的算法,与Clara算法不同的是:在Clara算法寻找最佳的medoids的过程中,采样都是不变的。而Clarans算法在每一次循环的过程中所采用的采样都是不一样的。
与上面所讲的寻找最佳medoids的过程不同的是,必须人为地来限定循环的次数。

阅读全文

与7种常用的聚类方法相关的资料

热点内容
用什么方法才能把嘴唇变成嘟嘟唇 浏览:778
冬天车子除雾有哪些方法 浏览:910
波罗的海植物琥珀鉴别方法 浏览:788
用友软件的使用方法 浏览:351
如何用说明方法来描写鲸的特征 浏览:862
老秦撒娇解决方法 浏览:807
如何变细心的方法 浏览:198
小区天然气的使用方法 浏览:861
想象古诗描绘的画面有哪些方法 浏览:538
锡纸盒怎么使用方法 浏览:484
宝宝厌食症的治疗方法 浏览:432
手机癌症的治疗方法 浏览:173
不限流解决方法 浏览:68
红糖醋姜片的腌制方法视频 浏览:768
led改造灯板安装方法 浏览:800
珍珠牙粉使用方法 浏览:255
躯体化形式障碍的治疗方法 浏览:108
设置电脑开机音乐的方法 浏览:933
自带电脑补助方法 浏览:893
老人打水的正确方法 浏览:348