‘壹’ 什么是表述物理规律的三种基本方法
文字叙述、数学公式和函数图像
文字叙述:在物理学发展初期就形成了,比如亚里斯多德吧,它就是那个时候的神,他将很多现象都用文字表述出来.
数学公式:这是许多物理学家的最求,而且公式总比冗长的文字简洁吧,而且能够很好的用来推理演算.
函数图象:图象很形象,可以一目了然.
‘贰’ 物理规律的描述往往有三种基本形式
任何物理规律都可以用文字、数学公式和图象来表示,所以在学习物理规律时,应该从这三个方面全方位地去理解、记忆和应用。
阐述物理过程中内在的本质的联系。这种联系在一定条件和范围内经常起作用,决定物理现象发展变化的必然趋势,常表述为定律、定理、原理等,一般要在对物理现象充分分析研究的基础上总结出来。
(2)表述物理规律的三种常用方法扩展阅读:
经过多年重复实验和观察为基础并在科学领域内普遍接受的典型结论。用定律形式归纳描述我们环境是科学的基本目的。并非所有作者对物理定律用法相同;一些哲学家,如诺曼·斯沃茨认为这是自然的定律,而不是由科学家推导出来。
一些定律是其它更一般定律的近似;而在限制的应用范围内很好的近似;例如,牛顿动力学是特别相对论的低速情况。类似,牛顿的万有引力定律是广义相对论的低质量近似。
而库伦定律是大距离(与弱相互作用区域比)的量子电动力学近似。在此情况下,一般用定律的简单,近似形式代替较精确的一般形式。
‘叁’ 物理规律的描述
简单点说
文字描述:在乌龟跑完全程时乌龟的平均速度比兔子的平均速度大
数学公式:1代表乌龟2代表兔子则
t1=s/v1<t2=t0+s/v2
t1是乌龟跑完全程的时间s是路程v1是乌龟
的速度t0是兔子睡觉的时间v2是兔子的速度
函数图像:
‘肆’ 描述物理规律的方法有哪几种每种方法举例说明。
1、控制变量法:如研究液体压强和液体深度的关系时,保持液体种类(密度)不变;
2、转换法:如研究电热功率与电阻的关系时,用煤油柱上升的高度表示电阻通电后发热的情况;
3、等效替代法:如在研究同一直线上二力合成时,用一个与两个力共同作用的效果相同的力替代两个力;
4、模型法:如在研究杠杆问题时,将杠杆抽象为一根绕某个定点旋转的直杆;
5、类比法:如在研究电流产生的原因时,用水流类比电流,从而通过水压是水流产生的原因得出电压是电流产生的原因这一结论。
似乎常用的是这些吧,要把它说全了就太多了……网络上有很多相关问题你看看吧。
‘伍’ 物理规律教学中有哪些科学方法07
一、控制变量法
控制变量法是初中物理实验中常用的探索问题和分析解决问题的科学方法之一。所谓控制变量法是指为了研究物理量同影响它的多个因素中的一个因素的关系,可将除了这个因素以外的其它因素人为地控制起来,使其保持不变,再比较、研究该物理量与该因素之间的关系,得出结论,然后再综合起来得出规律的方法。
这种方法在整个初中物理实验中的应用比较普遍。例如在人教版实验教科书《物理》(八年级上册)第一章第一节关于探究声是怎样传播的实验中,就开始渗透控制变量的思想。因为固体、液体和气体都是传声的介质,我们逐一研究它们分别可以传声时,就必须控制其它两个因素。在进行该实验时恰当地点拨,提出:“把两张课桌紧紧地挨在一起,一个同学轻敲桌面,另一个同学把耳朵贴在另一张桌子上,听到的敲击声为什么就能认为是桌子传来而不是空气传来的?”分析比较,使学生体验到控制变量的思想。在接着的探究影响音调、响度等因素的实验中,把控制变量的思想对学生给予简要的介绍,就会使学生逐步领悟到控制变量法的实质要领,为以后的探究实验作好方法上的准备。 在初中物理中,探究影响滑动摩擦力大小的因素;决定压力作用效果的因素;影响液体压强的大小的因素;影响动能大小的因素;影响重力势能大小的因素;影响蒸发快慢的因素;影响导体电阻大小的因素;电流跟电压电阻的关系;影响电功、电热大小的因素;影响电磁铁磁性强弱的因素;影响磁场对通电导体力的大小的因素等等实验,运用了控制变量法。
二、等效替代法
等效替代法是指在研究某一个物理现象和规律中,因实验本身的特殊限制或因实验器材等限制,不可以或很难直接揭示物理本质,而采取与之相似或有共同特征的等效现象来替代的方法。这种方法若运用恰当,不仅能顺利得出结论,而且容易被学生接受和理解。
例如,在探究平面镜成像规律的实验中,用玻璃板替代了平面镜,因两者在成像特征上有共同之处,容易使学生接受,而玻璃板又是透明的,能通过它观察到玻璃板后面的蜡烛,便于研究像的特点,揭示出规律。我们在学习中,在亲历实验过程的基础上,要进行方法的总结,在以后遇到有关的实验设计时,就会自觉地加以运用。比如在学习伏安法测电阻之后,要求设计一个实验,在上述实验中缺少电压表或电流表,其它器材不变,另有一个已知阻值的定值电阻供选用,要求测出未知电阻,应该怎么办?学生就可以用等效替代的思想进行设计了。
三、转换法
有的物理量不便于直接测量,有的物理现象不便于直接观察,通过转换为容易测量到与之相等或与之相关联的物理现象,从而获得结论的方法。譬如,在研究电热与电阻关系的实验中,电流通过阻值不等的两根电阻丝产生的热量无法直接观测和比较,而我们通过转换为让煤油吸热,观察煤油温度变化情况,从而推导出哪个电阻放热多。教学时不妨设计一问:为什么研究电热与电阻大小的关系时,还用到似乎与实验无关的煤油呢?引发学生的思考和讨论,在小结出该实验中煤油的作用的基础上,进而再问:该实验能否不用煤油而改用其它方式来观察电阻通电后的发热情况?这样促使学生思维得以发散,转换的思维方法得到训练,设计实验的能力也随着提高了。 在初中物理实验中,利用软细绳测量地图上铁路线上的长度、刻度尺和三角板配合测量硬币的直径、圆锥的高;在探究声音的响度与什么有关系的实验中,用乒乓球的振动放大和转换音叉的振动;利用电路中的灯泡是否发光等电流的效应来判断电路中是否有电流;利用磁场的吸铁性来研究磁场、电磁铁的磁性强弱等,都运用了转换法的思想。
四、类比法
类比法是一种推理方法。为了把要表达的物理问题说清楚明白,往往用具体的、有形的、人们所熟知的事物来类比要说明的那些抽象的、无形的、陌生的事物,通过借助于一个比较熟悉的对象的某些特征,去理解和掌握另一个有相似性的对象的某些特征。
如:用水波类比声波;用水路来类比电路;在研究电压的作用时,借助于看得见而学生比较熟悉的“水压形成水流”的实验作类比,来揭示电压是形成电流的原因。又比如在研究通电螺线管的磁场的实验中,为准确记忆通电螺线管的北极与电流方向的关系,以紧握的右拳头类比为螺线管,四指为线圈并指向电流的方向,则大拇指所指的一端为北极。这样形象直观很容易被学生理解记忆牢固。当然,这里还可以用其他方式来类比,充分发挥学生的主观能动性,还可以找到更符合学生实际的类比方法。
五、图象法
图象是一个数学概念,用来表示一个量随另一个量的变化关系,很直观。由于物理学中经常要研究一个物理量随另一个物理量的变化情况,因此图象在物理中有着广泛的应用。在实验中,运用图象来处理实验数据,探究内在的物理规律,具有独特之处。如:在探究固体熔化时温度的变化规律和水的沸腾情况的实验中,就是运用图象法来处理数据的。它形象直观地表示了物质温度的变化情况,学生在亲历实验自主得出数据的基础上,通过描点、连线绘出图象就能准确地把握住晶体和非晶体的熔化特点、液体的沸腾特点了。 在其他的实验中,教师也可以有意识地引导学生采用图象来处理数据。例如在探究串联电路中电流规律实验中,把各点作为横轴、电流为纵轴,作出的图象为水平直线,很直观表示出串联电路中各点电流相等的规律。这样学生非常容易理解和记忆。在探究电阻上的电流跟电压的关系、同种物质的质量与体积的关系、重力大小跟质量的关系等实验中都运用到图象法。这样把数形结合、图形与文字结合起来处理数据、描述物理规律,能很好地促进学生处理数据能力和分析问题能力的提高。
六、理想化方法
理想化方法是指在物理教学中通过想象建立模型和进行实验的一种科学方法。可分为理想化模型和理想化实验。
理想化模型就是指把复杂的问题简单化,把研究对象的一些次要因素舍去,抓住主要因素,对实际问题进行理想化处理去再现原形的本质的东西,构成理想化的物理模型。这是一种重要的物理研究方法。例如探究杠杆平衡条件的实验,杠杆就是一种理想化的模型。杠杆在使用时,由于受到力的作用,都会引起或多或少的形变,然而在研究中把此时的形变忽略不计,这里我们就把杠杆经过理想化的处理,认为它无形变,视为一个硬棒,从而使学生在研究时不被细枝末节的因素影响,顺利地得出杠杆平衡原理。
理想化实验是一种科学的抽象方法。它既要以实验事实作基础,但又不能直接由实验得到结论。比如,我们在探究空气能传声的实验中,逐渐将真空罩内的空气抽出,听到罩内的闹钟的声音逐渐变弱,于是我们推理得出将真空罩内的空气抽完(即真空),就听不到闹钟的声音了,从而得出空气能传声而真空不能传声的结论。这里采用的方法就是理想化,因为无论怎样抽气是不可能将真空罩内的空气抽完的。又如牛顿第一定律就是理想化实验得出的一条重要物理规律。如果教师在教学中注意很好地渗透这一方法,有利于培养学生的科学思想,提高学生的创新能力。
七、比值定义法
比值定义法,就是在定义一个物理量的时候采取比值的形式定义。用比值法定义的物理概念在物理学中占有相当大的比例,比如速度、密度、压强、功率、比热容、热值、电阻等等
比值法适用于物质属性或特征、物体运动特征的定义。由于它们在与外界接触作用时会显示出一些性质,这就给我们提供了利用外界因素来表示其特征的间接方式,往往借助实验寻求一个只与物质或物体的某种属性特征有关的两个或多个可以测量的物理量的比值,就能确定一个表征此种属性特征的新物理量。应用比值法定义物理量,往往需要一定的条件;一是客观上需要,二是间接反映特征属性的的两个物理量可测,三是两个物理量的比值必须是一个定值。 八、归纳推理,又称归纳法: 从一般性较小的前提出发,推出一般性较大的结论的推理方法叫归纳法。在科学研究中,归纳法发挥着重要的作用,许多物理概念、定律及规律的获得都是借助了归纳法的力量,由实验(演示实验或学生实验)归纳获得的。因而归纳法的教学是中学教学中的一个重要方面。
‘陆’ 学物理有哪三个好方法
一.联系生活实际,勤于观察思考是基础
观察就是充分利用人的各种感觉器官,对自然界的物理现象(包括实验现象)的知觉过程。伽利略通过观察吊灯的摆动,认识了摆的等时性。伦福德在从事枪炮制造时,观察到钻孔时落在地上的金属碎屑具有极高的温度,他认为这么多的热并不是金属提供的,并做了一系列金属钻孔的实验,根据实验结果,伦福德断言热质说不足为信,应当把热看成是一种运动形式。后来,英国的戴维做了更加严格的实验,为热是物质微粒的一种运动形式奠定了实验基础。人们对客观世界的正确认识,是在反复观察,实验的基础上形成的。观察既然如此重要,在学习物理知识时,应建立“随时观察”、“用心观察”的意识
①观察时要集中注意力,不放弃偶然目标,不轻易放过那些你甚至觉得毫无关系的现象。长期训练,使之形成一种一丝不苟的科学习惯。
②走进实验室去实验,尽量地重现生活实际的现象,并反复观察,找出实验中产生某种现象的原因,透过现象看本质。
③作好观察后的总结,对观察到的现象和记录的数据进行认真分析,以便形成物理概念,建立物理规律。例如,观察凸透镜成像实验,首先要明确实验时主要观察蜡烛和屏的位置变化以及屏上像的变化。本实验过程中,注意力应集中在蜡烛的位置、屏的位置和像的情况上。为了更准确地观察这些现象,可进行多次实验,最后总结出物距、像距、焦距以及像的虚实、放大、缩小等现象之间的关系。
④观察时不放过细微的地方。那些往往是比较隐蔽的现象,往往就是本质的物理过程。例如,浮沉子实验中,当用手挤压瓶子时,浮沉子会下沉。而挤压引起下沉的本质是挤压使浮沉子上部的空气柱的体积减小,所受浮力减小所至。有的人只发现挤压与下沉的简单关系。而有的人则能发现挤压是造成下沉的本质原因。
二.把实际问题转化为物理问题是关键
应从物理学的基本概念,基本规律出发,先分析物理现象,找出产生这些现象的本质因素,将实际问题转化为物理问题,再选择适当的物理知识来解答物理问题。如:夏天冰棍冒“白烟”,水缸“出汗”等都是水蒸气液化现象。05年北京市中考的压轴题就是把居民楼的电梯看作被提升的物体,一组机械看作动滑轮,提升重物。问题难度大大降低。
再如:三个温度计都指示在20℃的位置,但有一个温度计的刻度不准确,因此肯定有一个温度计测量到的温度与实际温度不符,是什么原因导致a、b、c三个图中的实际温度出现偏差呢?
图c杯中的酒精与空气相通,由于蒸发吸热,使得它的温度低于室温,而图b瓶中虽然也装满了酒精,但不会蒸发,因此它的温度应和室温相同,于是可以判断图c的温度计刻度不准确。
物理思维的基本方法
①顺藤摸瓜法,即正向推理法,它是从已知条件推论到其结果的方法。
②发散思维法,即从某条物理规律出发,找出规律的多种表述。这是形成熟练的技能技巧的重要方法。例如,从欧姆定律以及串并联电能的特点出发,推出如下结论:串联电路的总电阻大于任何一个分电阻、并联电路的总电阻小于任何一个分电阻;串联电路中,阻值大的电阻两端的电压大,阻值小的电阻两端的电压小;并联电路中,阻值大的电阻通过的电流小,阻值小的电阻通过的电流大。
③老鼠走迷宫式思维法:老鼠走迷宫时走遍所有的路线,记住走错的路线,不重复,最终走出迷宫。如:为判断两盏分别标有“220V 40W”、“220V 60W”的白炽灯在一电路里发光是串联还是并联,用电压表测得两者的电压同为220V。分析:如果两灯串联,因两灯型号不同,电压定不会相同,故串联不可能,只能并联。正面分析可知,并联时不论型号相同与否电压都相同。
三.准确运用物理基础知识是解决问题的保障
俗话说“熟能生巧”,巧了自然就会快。物理基础知识是指一系列基本概念和基本规律、原理组成的知识体系。对生活技术中的实际问题做出正确的解释、判断或合理的解决。应做到:
首先要熟练掌握课本知识,牢记一些重要的公式和结论。其次,克服没有根据的猜想和乱套公式的习惯。如:“两辆同规格的汽车,一辆高速奔驰,一辆低速行驶,惯性大小相比, 大。”对于此类问题有的同学认为是高速奔驰的汽车惯性大,产生错误的原因是没有真正理解惯性概念的含义,物体的惯性大小是由物体的质量决定的,与物体速度的大小无关,只要物体的质量不变,物体惯性的大小不会发生改变。速度的大小影响的是物体动能的大小,速度较大的那辆汽车动能较大。
四.多动手实验或参加一些科技小制作活动来提高
实验是物理科学的基础,也是物理知识的源泉,加强实验是物理教学的时代特征,又是提高学习质量的先决条件。同样,实验或科技小制作也是形成物理概念、建立物理规律的重要方法,物理学习就是通过对物理现象、过程获得必要的感性认识,这种感性认识可以来源于实际生活,也可以来源于实验提供的物理事实。从生活中得到的感性材料通常来自复杂的运动形态,本质的、非本质的因素通常交融在一起,仅通过这种途径形成概念,建立规律有相当的困难。而实验则可提供经过简化和纯化了的感性材料。它能将物理事实自然转化为具体的认识。例如,初中物理教材中,影响蒸发快慢的因素是直接从日常生活经验中分析归纳得出的结论;声音的发生是从实验现象中分析归纳得出的结论;杠杆平衡条件是由大量的实验数据,经归纳和必要的数学处理得到的结论,液体的压强是先从实验现象中得出定性的结论,再进一步寻求严格的定量关系。
进行一些科技小制作如:潜望镜的制作、小孔成像的制作、门铃的小制作、自己设计和制作某些简单模型或玩具等,能逐步养成用实验解决物理问题的习惯,是非常好的一举多得的做法。
物理学在形成的发展过程中,逐步形成了一种物质观,即物质普遍存在于相互作用之中,普遍存在于运动之中,普遍存在于能的转化与守恒之中。于是,研究宏观物体的受力、运动、和机械能的规律形成了力学。研究分子的受力、运动和内能的规律形成了热学。研究电、磁之间的受力、运动和能的规律形成了电磁学等。在物理学习时,当我们形成了这种物质观,就会有目的去认识和理解物质的相互作用规律、运动规律和能的转化与守恒规律,学习就会更上一个台阶。正确的学习方法是搞好学习的事半功倍的金钥匙。然而成功的学习靠的是辛勤的劳动,天道筹勤
‘柒’ 物理规律的三种表达方式分别是:①___;②___;③___.
了解物理概念和规律是建立物理学的基本,物理规律的三种表达方式分别是文字表达、图线表达和公式表达,这三种表达方式都可以互相转换的.
故答案为:文字表达;图线表达;公式表达.
‘捌’ 物理描述规律方的法有哪几种 在线等
物理学常用数学表示物理概念、描述物理规律。例如应用数学中的比例关系描述物质的密度(ρ=m/v)。物体的运动速度(v=s/t),牛顿第二定律(a= F/m)等。应用数学中的坐标图象方法描绘出温度———时间图象(表示某种物质的熔解与凝固过程),位移———时间图象、速度———时间图象、能量——— 位移图象等。应用数学中的几何方法表示光的传播、折射、反射等。
基本概念和基本规律是学习物理的基础,首先必须很好地掌握基本概念和规律。必须做到如下几点:(1)每个概念和规律是怎样引出来的?(2)定义、公式、单位或注意事项各是什么?(3)其物理意义或适用条件是什么?(4)与有关物理概念、规律的区别和联系是什么?(5)这些概念和规律在物理中的地位和作用是什么?(6)适度训练。
‘玖’ 物理规律的描述往往有三种基本形式,即……比如龟兔赛跑的故事可以用三点描述
任何物理规律都可以用文字、数学公式和图象来表示
‘拾’ 初中物理中物理规律运用了哪些科学方法
初中物理教学中常用科学方法分析
巴甫洛夫认为:“重要的是科学方法,科学是思想的总结,认识一个科学家的方法远比认识他的成果价值要大。”为培养学生科学探究精神、实践能力和创新意识,帮助学生提高素质,我们在教学中要十分重视科学方法的培养。近几年的中考中,科学方法的考察已逐渐成为热点内容之一。 而在中学课本中,并没有提及到这一方法的知识,老师在上课的时候也很少讲到,所以我们有必要拿出来大家一起学习一下。
研究物理的科学方法有许多,经常用到的有观察法、实验法、比较法、类比法、等效法、转换法、控制变量法、模型法、科学推理法等。
研究某些物理知识或物理规律,往往要同时用到几种研究方法。如在研究电阻的大小与哪些因素有关时,我们同时用到了观察法(观察电流表的示数)、转换法(把电阻的大小转换成电流的大小、通过研究电流的大小来得到电阻的大小)、归纳法(将分别得出的电阻与材料、长度、横截面积、温度有关的信息归纳在一起)、和控制变量法(在研究电阻与长度有关时控制了材料、横截面积)等方法。可见,物理的科学方法题无法细致的分类。只能根据题意看题中强调的是哪一过程,来分析解答。下面我们将一些重要的实验方法进行一下分析。
一、 控制变量法
物理学研究中常用的一种研究方法——控制变量法。所谓控制变量法,就是在研究和解决问题的过程中,对影响事物变化规律的因素或条件加以人为控制,使其中的一些条件按照特定的要求发生变化或不发生变化,最终解决所研究的问题。
可以说任何物理实验,都要按照实验目的、原理和方法控制某些条件来研究。
如:导体中的电流与导体两端的电压以及导体的电阻都有关系,中学物理实验难以同时研究电流与导体两端的电压和导体的电阻的关系,而是在分别控制导体的电阻与导体两端的电压不变的情况下,研究导体中的电流跟这段导体两端的电压和导体的电阻的关系,分别得出实验结论。通过学生实验,让学生在动脑与动手,理论与实践的结合上找到这“两个关系”,最终得出欧姆定律I=U/R。
为了研究导体的电阻大小与哪些因素有关, 控制导体的长度和材料不变,研究导体电阻与横截面积的关系。
为了研究滑动摩擦力的大小跟哪些因素有关,保证压力相同时,研究滑动摩擦力与接触面粗糙程度的关系。
利用控制变量法研究物理问题,注重了知识的形成过程,有利于扭转重结论、轻过程的倾向,有助于培养学生的科学素养,使学生学会学习。
中学物理课本中,蒸发的快慢与哪些因素的有关;滑动摩擦力的大小与哪些因素有关;液体压强与哪些因素有关;研究浮力大小与哪些因素有关;压力的作用效果与哪些因素有关;滑轮组的机械效率与哪些因素有关;动能、重力势能大小与哪些因素有关;导体的电阻与哪些因素有关;研究电阻一定、电流与电压的关系;研究电压一定、电流和电阻的关系;研究电流做功的多少跟哪些因素有关系;电流的热效应与哪些因素有关;研究电磁铁的磁性强弱跟哪些因素有关系等均应用了这种科学方法。
二、转换法
一些比较抽象的看不见、摸不着的物质的微观现象,要研究它们的运动等规律,使之转化为学生熟知的看得见、摸得着的宏观现象来认识它们。这种方法在科学上叫做“转换法”。 如:分子的运动,电流的存在等,
如:空气看不见、摸不到,我们可以根据空气流动(风)所产生的作用来认识它;分子看不见、摸不到,不好研究,可以通过研究墨水的扩散现象去认识它;电流看不见、摸不到,判断电路中是否有电流时,我们可以根据电流产生的效应来认识它;磁场看不见、摸不到,我们可以根据它产生的作用来认识它。
再如,有一些物理量不容易测得,我们可以根据定义式转换成直接测得的物理量。在由其定义式计算出其值,如电功率(我们无法直接测出电功率只能通过P=UI利用电流表、电压表测出U、I计算得出P)、电阻、密度等。
中学物理课本中,
测不规则小石块的体积我们转换成测排开水的体积
我们测曲线的长短时转换成细棉线的长度
在测量滑动摩擦力时转换成测拉力的大小
大气压强的测量(无法直接测出大气压的值,转换成求被大气压压起的水银柱的压强)测硬币的直径时转换成测刻度尺的长度
测液体压强(我们将液体的压强转换成我们能看到的液柱高度差的变化)
通过电流的效应来判断电流的存在(我们无法直接看到电流),
通过磁场的效应来证明磁场的存在(我们无法直接看到磁场),
研究物体内能与温度的关系(我们无法直接感知内能的变化,只能转换成测出温度的改变来说明内能的变化);
在研究电热与电流、电阻的因素时,我们将电热的多少转换成液柱上升的高度。
在我们研究电功与什么因素有关的时候,我们将电功的多少转换成砝码上升的高度。
密度、功率、电功率、电阻、压强(大气压强)等物理量都是利用转换法测得的。
在我们回答动能与什么因素有关时,我们回答说小球在平面上滑动的越远则动能越大,就是将动能的大小转换成了小球运动的远近。以上列举的这些问题均应用了这种科学方法。
例:1、分子运动看不见、摸不着,不好研究,但科学家可以通过研究墨水的扩散现象去认识它,这种方法在科学上叫做“转换法’。下面是小明同学在学习中遇到的四个研究实例,其中采取的方法与刚才研究分子运动的方法相同的是( )
A。利用磁感应线去研究磁场问题
B。电流看不见、摸不着,判断电路中是否有电流时,我们可通过电路中的灯泡是否发光去确定
C。研究电流与电压、电阻关系时,先使电阻不变去研究电流与电压的关系:然后再让电压不变去研究电流与电阻的关系
D。研究电流时,将它比做水流
解析:B。
三、放**
在有些实验中,实验的现象我们是能看到的,但是不容易观察。我们就将产生的效果进行放大再进行研究。 比如音叉的振动很不容易观察,所以我们利用小泡沫球将其现象放大。观察压力对玻璃瓶的作用效果时我们将玻璃瓶密闭,装水,插上一个小玻璃管,将玻璃瓶的形变引起的液面变化放大成小玻璃管液面的变化。
四、 积累法
在测量微小量的时候,我们常常将微小的量积累成一个比较大的量、比如在测量一张纸的厚度的时候,我们先测量100张纸的厚度在将结果除以100,这样使测量的结果更接近真实的值就是采取的积累法。
要测量出一张邮票的质量、测量出心跳一下的时间,测量出导线的直径,均可用积累法来完成。
五、类比法
在我们学习一些十分抽象的,看不见、摸不着的物理量时,由于不易理解我们就拿出一个大家能看见的与之很相似的量来进行对照学习。如电流的形成、电压的作用通过以熟悉的水流的形成,水压使水管中形成了水流进行类比,从而得出电压是形成电流的原因的结论。学生在学习电学知识时,在老师的引导下,联想到:水压迫使水沿着一定的方向流动,使水管中形成了水流;类似的,电压迫使自由电荷做定向移动使电路中形成了电流。抽水机是提供水压的装置;类似的,电源是提供电压的装置。水流通过涡轮时,消耗水能转化为涡轮的动能;类似的,电流通过电灯时,消耗的电能转化为内能。
我们学习分子动能的时候与物体的动能进行类比;学习功率时,将功率和速度进行类比。
例: 1、某同学在学习电学知识时,在老师的引导下,联想力学实验现象,进行比较并找出了一些相类似的规律,其中不准确的是( )
A。水压使水管中形成水流;类似地,电压使电路中形成电流
B。抽水机是提供水压的装置;类似地,电源是提供电压的装置
C。抽水机工作时消耗水能;类似地,电灯发光时消耗电能
D。水流通过涡轮时,消耗水能转化为涡轮的动能:类似地,电流通过电灯时,消耗电能转化为内能和光能
解析:C
通过类比,用大家熟悉的水流、水压的直观认识,使得看不见、摸不着的抽象的电流、电压等知识跃然纸面,栩栩如生。
六、理想化物理模型:
实际现象和过程一般都十分复杂的,涉及到众多的因素,采用模型方法对学习和研究起到了简化和纯化的作用。但简化后的模型一定要表现出原型所反映出的特点、知识。模型法有较大的灵活性。每种模型有限定的运用条件和运用的范围。
中学课本中很多知识都应用了这个方法,比如有:
液柱、(比如在求液体对竖直的容器底的压强的时候,我们就选了一个液柱作为研究的对象简化,简化后的模型依然保留原来的特点和知识)
光线、(在我们学习光线的时候光线是一束的,而且是看不见的,我们使用一条看的见的实线来表示就是将问题简化,利用了理想化模型)
液片、(在我们研究连通器的特点,求大气压时我们都在某一位置取了一个液面,研究该液面所受到的压强和压力,也是将问题简化,利用理想化模型法)
光沿直线传播;(在我们学习中我们知道真正的空气是各处都不均匀的,比如越往上空气越稀薄,在比如因为空气各处不均匀形成了风,而在光是沿直线传播一节中我们将问题简化,只取一个简单的模型,一条光线在均匀的介质中传播)
匀速直线运动;(生活中很少有一个物体真正的做匀速直线运动,在我们研究问题的时候匀速直线运动只是一个模型)
磁感线(磁感线是不存在的一条线,但是我们为了便于研究磁场我们人为的引入了一条线,将我们研究的问题简化。)
例:1、在我们学习物理知识的过程中,运用物理模型进行研究的是( )
A、建立速度概念 B、研究光的直线传播
C、用磁感应线描述磁场 D、分析物体的质量
解析:B、C。
七、科学推理法:
当你在对观察到的现象进行解释的时候就是在进行推理,或说是在做出推论,例如当你家的狗在叫的时,你可能会推想有人在你家的门外,要做出这一推论,你就需要把现象(狗的叫声)与以往的知识经验,即有陌生人来时狗会叫结合起来。这样才能得出符合逻辑的答案
如:在进行牛顿第一定律的实验时,当我们把物体在越光滑的平面运动的就越远的知识结合起来我们就推理出,如果平面绝对光滑物体将永远做匀速直线运动。
如:在做真空不能传声的实验时,当我们发现空气越少,传出的声音就越小时,我们就推理出,真空是不能传声的。
八、等效替代法:
比如在研究合力时,一个力与两个力使弹簧发生的形变是等效的,那么这一个力就替代了两个力所以叫等效替代法,在研究串、并联电路的总电阻时,也用到了这样的方法。在平面镜成像的实验中我们利用两个完全相同的蜡烛,验证物与像的大小相同,因为我们无法真正的测出物与像的大小关系,所以我们利用了一个完全相同的另一根蜡烛来等效替代物体的大小。
九、归纳法:
是通过样本信息来推断总体信息的技术。要做出正确的归纳,就要从总体中选出的样本,这个样本必须足够大而且具有代表性。在我们买葡萄的时候就用了归纳法,我们往往先尝一尝,如果都很甜,就归纳出所有的葡萄都很甜的,就放心的买上一大串。
比如铜能导电,银能导电,锌能导电则归纳出金属能导电。在实验中为了验证一个物理规律或定理,反复的通过实验来验证他的正确性然后归纳、分析整理得出正确的结论。
在阿基米德原理中,为了验证F浮=G排,我们分别利用石块和木块做了两次实验,归纳、整理均得出F浮=G排,于是我们验证了阿基米德原理的正确性,使用的正是这种方法。
在验证杠杆的平衡条件中,我们反复做了三次实验来验证F1×L1=F2×L2也是利用这种方法。
一切发声体都在振动结论的得出(在实验中对多种结论进行分析整理并得出最后结论时),都要用到这一方法。
在验证导体的电阻与什么因素有关的时候,经过多次的实验我们得出了导体的电阻与长度,材料,横截面积,温度有关,也是将实验的结论整理到一起后归纳总结得出的。
在所有的科学实验和原理的得出中,我们几乎都用到了这种方法。
十、比较法(对比法)
当你想寻找两件事物的相同和不同之处,就需要用到比较法,可以进行比较的事物和物理量很多,对不同或有联系的两个对象进行比较,我们主要从中寻找它们的不同点和相同点,从而进一步揭示事物的本质属性。
如,比较蒸发和沸腾的异同点。如,比较汽油机和柴油机的异同点
如,电动机和热机 如,电压表和电流表的使用
利用比较法不仅加深了对它们的理解和区别,使同学们很快地记住它们,还能发现一些有趣的东西。
十一、分类法
把固体分为晶体和非晶体两类、导体和绝缘体。
十二、观察法
物理是一门以观察、实验为基础的学科。人们的许多物理知识是通过观察和实验认真地总结和思索得来的。着名的马德堡半球实验,证明了大气压强的存在。在教学中,可以根据教材中的实验,如长度、时间、温度、质量、密度、力、电流、电压等物理量的测量实验中,要求学生认真细致的观察,进行规范的实验操作,得到准确的实验结果,养成良好的实验习惯,培养实验技能。大部分均利用的是观察法。
十三、比值定义法:
例:密度、压强、功率、电流等概念公式采取的都是这样的方法。
十四、多因式乘积法:
例:电功、电热、热量等概念公式采取的都是这样的方法。
十五、逆向思维法
例:由电生磁想到磁生电
以上这些方法,还只是在初中物理的学习中会遇到和使用的一些科学方法,列举出来,希望能够给大家一些帮助。也希望大家都来关注这方面的问题,多了解和掌握一些科学方法,灵活运用,以便于指导我们的学习,工作和生活。