㈠ 四组之间用什么统计学方法
您好,四组之间要采用方差分析。
多组均数之间的比较要采用方差分析 ,当方差分析结果为P <0.05时 ,只能说明k组总体均数之间不完全相同。若想进一步了解哪两组的差别有统计学意义 ,需进行多个均数间的多重比较 ,即SNK - q检验 (多个均数两两之间的全面比较 )、LSD -t检验 (适用于一对或几对在专业上有特殊意义的均数间差别的比较 )和Dunnett检验 (适用于k - 1个实验组与一个对比组均数差别的多重比较 )。
㈡ 比较两组数据显着差异用什么检验
交叉表卡方检验如果结果显着,那么有必要考究多个分组之间到底是哪些组间差异(率或构成比)有统计学意义,此时可采取分割法进行两两比较。在视频课程中,我介绍的是自己手动进行筛选个案,将整个样本拆分为多个两两比较的过程,比较麻烦且容易出错。 今天分享SPSS的一个厉害参数选项——【交叉表→Z检验-比较列比例】。借用 生存分析公号 的案例数据,欲考察了解乡镇、县城和城市中不同教师,对“你是否赞成教师聘任实行双向选择制度?”这一问题的看法是否存在差异
两个相关样本检验的方法主要有:Wilcoxon检验、Sign(符号)检验、McNemar检验和Marginal Homogeneity(边际同质性)检验等。
Sign(符号)检验
配对资料的符号检验,通过分析两个样本各每对数据之差的正负符号的数目,来判断两个总体分布是否相同,而不考虑差值的实际大小。它对样本是否来自正态总体没有严格规定,它常用来检验两平均值的一致性。
通常情况下,配对数据之差是正值时为“+”,是负值时为“-”。若所得的差值为“+”、“-”号的个数大致相等,则可认为两组数据的分布没有显着差异,出现“+”或“-”的概率为0.5。若配对数据之差中“+”号和“-”号出现次数悬殊,则说明就可以在一定的显着性水平α上,推断这两组数据的中值水平或总体分布是不相同的。
Wilcoxon符号秩检验 ( Wilcoxon signedrank test )
它是非参数统计中符号检验法的改进, 它不仅利用了观察值和原假设中心位置的差的正负,还利用了差的值的大小的信息。虽然是 简单的非参数方法,但却体现了秩的基本思想。
将差值按大小顺序排列且编自然序号(秩)后,若其正号的秩和(记为T+)与负号的秩
㈢ 组间差异检验,终于有人讲清楚了!
什么是组间差异检验?就是组间的差异分析以及显着性检验,应用统计学上的 假设检验 方法,检验组间是否有差异及其差异程度。坦率地讲,所有的差异检验都基于一个假设:组间没有差异,变量之间没有关系(即原假设, )。上海交大王成老师也说方差分析其实研究的就是不同水平下是否有差异化的假设检验问题。而假设检验就是先对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程。
所以,本着负责的态度,在本文的开始我们有必要回顾一下《概率论与数理统计》中关于假设检验的基本概念。
其中 参数 这个概念最值得我们好好体会,因为今天的主角 组间差异检验 ,在这个水平上可以分为两类:参数检验和非参数检验。那么什么叫参数检验和非参数检验,它们之间的区别是什么呢。要理解前面的问题,首先需要明白统计推断的概念。
统计推断是研究如何利用样本数据来推断总体特征的统计学方法,包括参数估计和假设检验两大类。总体的参数一般是未知的,通常可以用样本统计量来对总体的参数进行估计,例如可以用样本均值对总体均值进行点估计,利用样本均值的分布对总体均值进行区间估计,这些都称为参数估计。
参数检验和非参数检验的区别:
那么什么时候用参数检验,什么时候用非参数检验呢?非参数检验一般不直接用样本观察值作分析,统计量的计算基于原始数据在整个样本中的秩次,丢弃了观察值的具体数值,因此凡适合参数检验的资料,应首选参数检验。但是不清楚是否合适参数检验的资料,则应采用非参数检验。
此处也许大家期待作者带我们温习一下假设检验的4 个步骤(提出假设;构造检验统计量;根据显着水平,确定临界值和拒绝域;做出检验决策),但是带有几分傲气的作者绝情地不为我们没有学好的课程补刀,补课的事情让我们自己去做,他转而讲自己认为重要的知识点:抽样分布。
知道我们的研究对象整体处于什么状态,是一件非常重要的事情。三大抽样分布( -分布、 分布、 -分布)和正态分布共同构成了现代数理统计学的基础,其中,正态分布和 -分布是关于均值的分布; 分布、 -分布是关于方差的分布。很多同学做统计做了很多年,却不知道为什么几乎每个方差分析都有 值。可见,统计学拼到最后拼的都是 基础 。
离开分布,假设检验无从谈起;离开假设检验,差异分析毫无根基。同样地,出于人道主义,我们来重温一下抽样分布。
设 X 1 ,X 2 ,......X n 相互独立, 都服从标准正态分布N(0,1), 则称随机变量χ 2 =X 1 2 +X 2 2 +......+X n 2 所服从的分布为自由度为 n 的 分布
设 服从标准正态分布N(0,1), 服从自由度为n的 分布,且 、 相互独立,则称变量 所服从的分布为自由度为n的 -分布
设 服从自由度为 的 分布, 服从自由度为 的 分布,且 、 相互独立,则称变量 所服从的分布为 分布,其中第一自由度为 ,第二自由度为 。一般滴,这里F就是均方之比。
不管是参数检验还是非参数检验,都要基于特定的分布来做假设检验。当总体分布已知时,例如总体服从正态分布,我们可以根据给定的显着性水平(通常为0.01 或0.05)查表获得临界值。当总体分布未知时,可以先用Permutation test 构造经验分布,再根据显着性水平获得临界值。
传统的统计量检验的方法是在检验之前确定显着性水平 ,也就意味着事先确定了临界值和拒绝域。这样,不论检验统计量的值是大还是小,只要它的值落入拒绝域就拒绝原假设,否则就不拒绝原假设。这种给定显着性水平的方法,无法给出观测数据与原假设之间不一致程度的精确度量。要测量出样本观测数据与原假设中假设值的偏离程度,则需要计算pvalue值。pvalue 值,也称为观测到的显着性水平,它表示为如果原假设 正确时得到实际观测样本结果的概率。pvalue 值越小,说明实际观测到的数据与 之间的不一致的程度就越大,检验的结果就越显着。
变量较多,判断组间差异时需要多重检验的情况在宏基因组扩增子差异分析中十分常见。这种情况下,基于单次比较的检验标准将变得过于宽松,使得阳性结果中的错误率(FDR 值FalseDiscovery Rate)非常大(已经大到令人不可忍受的地步)。怎么办呢?最好的办法就提高判断的标准(p value),单次判断的犯错概率就会下降,总体犯错的概率也将下降。在多重检验中提高判断标准的方法,我们就称之为 多重检验校正 。从1979 年以来,统计学家提出了多种多重检验校正的方法。相应地,对p值校正之后的叫法也不一样,比如,FDR、Q value、Adjusted p-value,这个大家知道在多重检验时需要校正就行了,具体的用法作者有时间再教大家(这个作者真是皮啊~~)。
关于宏基因组或扩增子组间差异检验的理论知识就到这了,作者认为知道以上知识点是必要的,也告诉我们,今天我们讨论的是统计推断。换句话说,找差异,我们是专业的。
人民为了找差异,这才学会做统计。为了说明组间的数据差异很大,人民开发了许多沿用至今的图画,下面我们就一起来揭开这一幅幅有差异的画面。
在数据科学家的工具箱里,这是一款经久不衰、常用常新的瑞士军刀。几乎只要想到差异分析,就会想到箱线图。也开发出类箱线图的工具比如小提琴图(小提琴图Violin plot)
一般有进化树和层次聚类树,如果你想表达对象之间的距离差异,最直观的的也许就是树状图了。为了用图表示亲缘关系,把分类单位摆在图上树枝顶部,根据分枝可以表示其相互关系,具有二次元和三次元。在数量分类学上用于表型分类的树状图,称为表型树状图(phenogram),掺入系统的推论的称为系统树状图(cladogram)以资区别。
贴心的作者小朋友把实现这些图形的常见R包列给大家,安装后就能用啦
这里说的基于物种言下之意是通过统计分析,可以有针对性的找出分组间丰度变化差异显着的物种,并得到差异物种在不同分组间的富集情况,同时,可以比较组内差异和组间差异的大小,判断不同分组间的群落结构差异是否具有显着意义。也就是说可以找出区别组间的一个biomarker。
这类检验一般只输出p值,它的目的很简单,就是检验比较组之间的相似性距离是否有差异。常用的分析方法有卡方检验、Student t检验、Wilcoxon秩和检验等等。
如果只有两个样本比较,适合用卡方检验 ,不过说实在的,检验出来的结果没什么可靠性,因为现阶段16s研究不做重复实在“难以服众”了。先不说价格便宜,做重复压根没有难度,就是从生物学、统计学角度考虑,也需要做重复。
如果是两组样本(至少3重复),可以试一下Student t,Welch‘st以及Wilcoxon秩和检验 。Student t检验需要样本符合正态分布,而且方差对齐。当组间样本数不同,方差也不对齐的时候,Welch’s t检验是很好的选择。
Wilcoxon秩和检验又叫Mann-Whitney U 检验,是基于变量排名的一种统计方法,不需要样本符合正态分布,也不需要样本方差对齐,是更为广泛的检验方法,但同时也由于检验太宽松,容易带来很多假阳性。
如果是多组样本比较,可以选择one way ANOVA、TURKEY以及Kruskal-Wallis H检验等方法 。one way ANOVA和TURKEY其实都是基于方差分析,只不过后者带有后验,可以知道两个分组对整体差异的贡献度。
Kruskal-Wallis H检验本质也是一种秩和检验,与前两者的区别在于,它不需要样本数和方差的对齐,应用更为广泛。Kruskal-Wallis检验又被称之为单因素非参数方差分析。
毫不客气地讲,一般秩和检验或置换检验属于非参数检验。在这类差异检验中,有两种集成方法特别值得我们注意:LEfSe 、metastats。
得到结果展示如下,差异体现在柱形图和树状图上。LDA值分布柱状图中展示了LDA Score大于设定值(默认设置为4)的物种,即组间具有统计学差异的Biomarker。展示了不同组中丰度差异显着的物种,柱状图的长度代表差异物种的影响大小(即为 LDA Score)。
在进化分支图中,由内至外辐射的圆圈代表了由门至属(或种)的分类级别。在不同分类级别上的每一个小圆圈代表该水平下的一个分类,小圆圈直径大小与相对丰度大小呈正比。着色原则:无显着差异的物种统一着色为黄色,差异物种Biomarker跟随组进行着色,红色节点表示在红色组别中起到重要作用的微生物类群,绿色节点表示在绿色组别中起到重要作用的微生物类群,若图中某一组缺失,则表明此组中并无差异显着的物种,故此组缺失。图中英文字母表示的物种名称在右侧图例中进行展示。
metastats结果给出差异物种的p值和q值(表中 的数据是假的!)
所谓基于距离也就是检验的是群落差异而不是某个物种。上面所提及的检验方法,其实都只能告诉大家,这些分组是否有显着差异(可以简单理解为有无)。那如果想同时知道这些差异的程度(可以简单理解为多少)呢,那需要Anosim,Adonis以及MRPP等检验方法。这些方法不但可以输出检验显着性结果(p值),还有程度结果(R值),R值可以用来判断分组贡献度大小。Anosim、Adonis这些可用于多元统计检验的模型就非常适合了。要值得注意的是,Anosim本质是基于排名的算法,其实与NMDS的配合效果最好。如果是PCoA分析,建议配合使用Adonis检验结果。
Anosim(Analysis of similarities)是一种非参数检验方法。它首先通过变量计算样本间关系(或者说相似性),然后计算关系排名,最后通过排名进行置换检验判断组间差异是否显着不同于组内差异。这个检验有两个重要的数值,一个是p值,可以判断这种组间与组内的比较是否显着;一个是R值,可以得出组间与组内比较的差异程度。Anosim用来检验组间的差异是否显着大于组内差异,从而判断分组是否有意义,Anosim分析使用R vegan包anosim函数,一般基于Bray-Curtis距离值的秩次进行组间差异显着行检验,详细计算过程可查看 Anosim 。
该方法主要有两个数值结果:一个是R,用于不同组间否存在差异;一个是P,用于说明是否存在显着差异。以下分别对两个数值进行说明:
R值的计算公式如下:
rB:组间差异性秩的平均值(mean rank of between group dissimilarities)
rW:组内差异性秩的平均值(mean rank of within group dissimilarities)
n:总样本个数(the number of samples)
R的范围为[-1,1]
R>0说明组间差异大于组内差异,R<0组间差异小于组内差异。
R只是组间是否有差异的数值表示,并不提供显着性说明。
P值则说明不同组间差异是否显着,该P值通过置换检验(Permutation Test)获得。
置换检验大致原理:(假设原始分组为实验组和对照组)
1、对所有样本进行随机分组,即实验组和对照组。
2、计算当前分组时的R值,即为Ri。
3、重复当前操作N次,对所有Ri及原始R从大到小排序,R所处的位置除以N即为置换检验P值。
ADONIS又称置换多因素方差分析(permutational MANOVA)或非参数多因素方差分析(nonparametric MANOVA),是一种基于Bray-Curtis距离的非参数多元方差分析方法。它与Anosim的用途其实差不多,也能够给出不同分组因素对样品差异的解释度(R值)与分组显着性(P值)。不同点是应用的检验模型不同,ADONIS本质是基于F统计量的方差分析,所以很多细节与上述方差分析类似。该方法可分析不同分组因素对样本差异的解释度,并使用置换检验对分组的统计学意义进行显着性分析。ADONIS分析使用R vegan包adonis函数进行分析,详细计算过程可 adonis
MRPP分析与Anosim类似,但是MRPP是基于Bray-Curtis的参数检验,用于分析组间微生物群落结构的差异是否显着,通常配合PCA、PCoA、NMDS等降维图使用,MRPP分析使用R vegan包mrpp函数,详细计算过程可查看 MRPP
分子方差分析法 (AMOVA)与ANOVA类似,是基于加权或非加权Unifrac距离矩阵,检验不同组间差异显着性的非参数分析方法。一般基于Unifrac距离,使用mothur软件amova函数进行组间差异分析,详细计算过程可查看 Amova
Mantel test,Mantel test 是对两个矩阵相关关系的检验,顾名思义,是一种检验。既然是检验就得有原假设,它的原假设是两个矩阵见没有相关关系。检验过程如下:两个矩阵都对应展开,变量两列,计算相关系数(理论上什么相关系数都可以计算,但常用pearson相关系数),然后其中一列或两列同时置换,再计算一个值,permutation 成千上万次,看实际的r值在所得r值分布中的位置,如果跟随机置换得到的结果站队较近,则不大相关,如果远远比随机由此得到显着性。详细计算过程可查看 Mantel test
作者实在太懒,坚持别人已经说过的话不愿再说,只要抄过来就好了,在文章的最后他把赵小胖的一段话原版搬了过来:
无论你从事何种领域的科学研究还是统计调查,显着性检验作为判断两个乃至多个数据集之间是否存在差异的方法被广泛应用于各个科研领域。笔者作为科研界一名新人也曾经在显着性检验方面吃过许多苦头。后来醉心于统计理论半载有余才摸到显着性检验的皮毛,也为显着性检验理论之精妙,品种之繁多,逻辑之严谨所折服。在此,特写下这篇博文,以供那些仍然挣扎在显着性检验泥潭的非统计专业的科研界同僚们参考。由于笔者本人也并非统计专业毕业,所持观点粗陋浅鄙,贻笑大方之处还望诸位业界前辈,领域翘楚不吝赐教。小可在此谢过诸位看官了。
参考:
㈣ 统计学比较方法
为了更深入更系统地了解统计比较的真实涵义,以便更好地通过统计比较进行统计综合分析,统计比较可以从许多不同的角度来进行分类。一般说,主要有以下几种分类:
1、按其时间状况不同,可以分为静态比较和动态比较。
静态比较——也叫横向比较,是同一时间(时期或时点)条件下的数量比较,如不同地区的比较,不同部门的比较,实际完成情况和计划目标的比较。
动态比较——也叫纵向比较,是同一统计指标不同时间上统计数值的比较,它反映随历史发展而发生的数量上的变化。根据统计综合分析的需要,这两种比较可以单独使用,但在实际应用中常常要把二者结合使用。数量比较的结果统称为比较指标,分别称为静态比较指标和动态比较指标。
2、按比较方式不同,分为相比(除)比较和相差(减)比较。
相比(除)比较——是将比较对象和比较标准相除而进行的,比较的结果表现为相对数,如系数、倍数、分数、成数、百分数、千分数、万分数等。相比比较表明静态差别的比率或者动态变化的程度。
相差(减)比较——是将比较对象和比较标准相减而进行的,相减的结果表明两者相差的绝对量。这两种比较方式给人们不同的感受。有时可以单独使用,但以结合使用为好。结合使用可使人们认识比较完整,既可了解差别或变化的程度,也可了解相差的绝对量。
3、按比较对象内容范围不同,可分为单项比较和综合比较。
单项比较——是指比较某种总体现象某一方面、某一局部,它可以使用单独一个统计指标,也可以将反映某一方面、某一局部的若干指标联系起来进行比较分析。
综合比较——是指对总体或若干方面的全面评价比较,通常称为综合评价。例如,宏观方面的国民经济和社会发展情况的全面评价和比较;微观方面的同类企业经济效益的综合评价和比较;对某种产品质量的综合评价和比较,等等。
统计比较是统计综合分析研究中基本的、常用的方法,其作用主要有以下几个方面:
1、可以更深入、更明确地认识事物
一个单独的统计指标数值或一群指标数值只能说明总体的实际数量状况,只靠它是得不到明确而深刻的认识的。只有经过综合分析比较,从数量的差别和变化中,才可更深入、更明确地认识事物,帮助人们做出评价。
2、可以进行监督查检,深入分析原因,找出解决办法。
将某种事物的存在和发展状况同有关政策规定进行比较,看其是否符合要求标准规定,进行某些监督检查。并据此进一步深入分析其原因,进而找出解决的办法。
3、可以发挥更大、更广泛的促进作用
监督也会起促进作用,但统计比较的促进作用比监督更广泛。应用统计指标在各地区、各单位之间进行比较,在单位内部进行比较,会发现它们之间的差别,产生促后进赶先进的作用。使用规定若干统计指标进行比较,有组织的进行评比竞赛,能发挥更大的促进作用。
统计比较是统计分析中经常使用的方法,在许多情况下,统计分析往往是从比较开始 的;而且,在统计分析的许多其他方法中,都包含着比较的内容。例如,统计指数实际是一种综合比较方法,相关分析要通过比较才能判明相关程度,等等。
统计比较看起来简单易行,但要使用得好也是不容易的,要注意到这种方法的局限性。
㈤ 5种常用的统计学方法是什么
1、大量观察法
(5)比较组间差异的常用统计学方法扩展阅读:
(一)大量观察法
这是统计活动过程中搜集数据资料阶段(即统计调查阶段)的基本方法:即要对所研究现象总体中的足够多数的个体进行观察和研究,以期认识具有规律性的总体数量特征。大量观察法的数理依据是大数定律,大数定律是指虽然每个个体受偶然因素的影响作用不同而在数量上几存有差异。
但对总体而言可以相互抵消而呈现出稳定的规律性,因此只有对足够多数的个体进行观察,观察值的综合结果才会趋向稳定,建立在大量观察法基础上的数据资料才会给出一般的结论。统计学的各种调查方法都属于大量观察法。
(二)、统计分组法
由于所研究现象本身的复杂性、差异性及多层次性,需要我们对所研究现象进行分组或分类研究,以期在同质的基础上探求不同组或类之间的差异性。统计分组在整个统计活动过程中都占有重要地位,在统计调查阶段可通过统计分组法来搜集不同类的资料,并可使抽样调查的样本代表性得以提高(即分层抽样方式);
在统计整理阶段可以通过统计分组法使各种数据资料得到分门别类的加工处理和储存,并为编制分布数列提供基础;在统计分析阶段则可以通过统计分组法来划分现象类型、研究总体内在结构、比较不同类或组之间的差异(显着性检验)和分析不同变量之间的相关关系。统计学中的统计分组法有传统分组法、判别分析法和聚类分析法等。
(三)、综合指标法
统计研究现象的数量方面的特征是通过统计综合指标来反映的。所谓综合指标,是指用来从总体上反映所研究现象数量特征和数量关系的范畴及其数值,常见的有总量指标、相对指标,平均指标和标志变异指标等。
综合指标法在统计学、尤其是社会经济统计学中占有十分重要的地位,是描述统计学的核心内容。如何最真实客观地记录、描述和反映所研究现象的数量特征和数量关系,是统计指标理论研究的一大课题。
㈥ 三组数据两两比较差异性用什么检验
如下:
比较性别(分类变量,定性数据)使用卡方检验,比较年龄(连续型变量,定量数据)使用单因素方差分析。
分析→描述性统计→交叉表,然后将性别选入行变量框,分组选入列变量框(行、列变量反过来选没有影响),点击统计按钮,勾选卡方选项即可。
分析→比较平均值→单因素 ANOVA,将年龄选入因变量框,分组选入因子框,点击选项按钮,勾选描述性,方差同质性检验(也就是方差齐性检验)即可。
1.对数据进行统计分析前,务必了解清楚分析方法使用的前提假设条件。
2. 经 ANOVA(或 Kruskal-Wallis test)检验差异有统计学意义(alpha = 0.05),需要对每两个均数进行比较,需要采用上图所述“两两比较方法”,而不能直接对每两组数据进行t-test(或 Mann-Whitney U-test),因为会增加犯 I 类错误 的概率:
例如三组数据资料,ANOVA结果显示p< 0.05;然后每两组均数t-test比较一次,则需比较3次,那么比较3次至少有一次犯 I 类错误 的概率就是 alpha' = 1-0.95^3 = 0.1426 > 0.05。
3.第一型及第二型错误(英语:Type I error & Type II error)或型一错误及型二错误。
4.对于双样本t-test讨论:
z-test:大样本;>30;z分布。
t-test:小样本;<30;t分布。
但是,对于 > 30 的样本,Z-test检验要求知道总体参数的标准差,在理论上成立,事实上总体参数的标准差未知,实际应用中一般使用t-test。
5. 小知识:如何选取两两比较的方法?
5-1、SNK 法最为常用,但当两两比较的次数极多时,该方法的假阳性很高,最终可以达到 100%。因此比较次数 较多时,不推荐使用。
5-2、若存在明显的对照组,要进行的是“验证性研究”,即计划好的某两个或几个组间的比较,宜用 LSD 法。
5-3、若设计了对照组,要进行 k-1 个组与某个对照组之间的比较,宜用 Dunnett 法。
5-4、若需进行多个均数间的两两比较(探索性研究),且各组人数相等,宜用 Tukey法。
5-5、根据对所研究领域内相关研究的文献检索,参照所研究领域内的惯例选择适当的方法。
㈦ 如何比较两组数据之间的差异性
1、如下图,比较两组数据之间的差异性。
(7)比较组间差异的常用统计学方法扩展阅读
相关分析研究的是两个变量的相关性,但你研究的两个变量必须是有关联的,如果你把历年人口总量和你历年的身高做相关性分析,分析结果会呈现显着地相关,但它没有实际的意义,因为人口总量和你的身高都是逐步增加的,从数据上来说是有一致性,但他们没有现实意义。
当数据之间具有了显着性差异,就说明参与比对的数据不是来自于同一总体(Population),而是来自于具有差异的两个不同总体,这种差异可能因参与比对的数据是来自不同实验对象的,比如一些一般能力测验中,大学学历被试组的成绩与小学学历被试组会有显着性差异。也可能来自于实验处理对实验对象造成了根本性状改变,因而前测后测的数据会有显着性差异。
㈧ 统计学两组数据的比较选用哪种方法
统计学两组数据的比较选用分析方法。
分析两组间的变量关系用——典型相关分析法。
比较两种东西的性能上的一些比较数据可以利用——单因素方差分析。主要看数据是以什么形式表达的,如果是定量的,比如身高,可以用t检验,如果是其他非正态的或方差不齐的,可以使用秩和检验。如果是定性的,比如是否患病,可以用卡方检验。
统计学
是通过搜索、整理、分析、描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。统计学用到了大量的数学及其它学科的专业知识,其应用范围几乎覆盖了社会科学和自然科学的各个领域。
㈨ 两组数据对比的统计学方法(内详,急求)
方差分析 T检验都可以
分析---一般线性模型---- 比较一组内的就用单变量 比较两组间就用多变量
因变量放20-50的那个变量 固定因子放6个时间点的分组变量