导航:首页 > 使用方法 > 补缺失数据常用的方法

补缺失数据常用的方法

发布时间:2022-11-28 14:37:07

⑴ 数据分析中的缺失值处理

数据分析中的缺失值处理
没有高质量的数据,就没有高质量的数据挖掘结果,数据值缺失是数据分析中经常遇到的问题之一。当缺失比例很小时,可直接对缺失记录进行舍弃或进行手工处理。但在实际数据中,往往缺失数据占有相当的比重。这时如果手工处理非常低效,如果舍弃缺失记录,则会丢失大量信息,使不完全观测数据与完全观测数据间产生系统差异,对这样的数据进行分析,你很可能会得出错误的结论。
造成数据缺失的原因
现实世界中的数据异常杂乱,属性值缺失的情况经常发全甚至是不可避免的。造成数据缺失的原因是多方面的:
信息暂时无法获取。例如在医疗数据库中,并非所有病人的所有临床检验结果都能在给定的时间内得到,就致使一部分属性值空缺出来。
信息被遗漏。可能是因为输入时认为不重要、忘记填写了或对数据理解错误而遗漏,也可能是由于数据采集设备的故障、存储介质的故障、传输媒体的故障、一些人为因素等原因而丢失。
有些对象的某个或某些属性是不可用的。如一个未婚者的配偶姓名、一个儿童的固定收入状况等。
有些信息(被认为)是不重要的。如一个属性的取值与给定语境是无关。
获取这些信息的代价太大。
系统实时性能要求较高。即要求得到这些信息前迅速做出判断或决策。
对缺失值的处理要具体问题具体分析,为什么要具体问题具体分析呢?因为属性缺失有时并不意味着数据缺失,缺失本身是包含信息的,所以需要根据不同应用场景下缺失值可能包含的信息进行合理填充。下面通过一些例子来说明如何具体问题具体分析,仁者见仁智者见智,仅供参考:
“年收入”:商品推荐场景下填充平均值,借贷额度场景下填充最小值;
“行为时间点”:填充众数;
“价格”:商品推荐场景下填充最小值,商品匹配场景下填充平均值;
“人体寿命”:保险费用估计场景下填充最大值,人口估计场景下填充平均值;
“驾龄”:没有填写这一项的用户可能是没有车,为它填充为0较为合理;
”本科毕业时间”:没有填写这一项的用户可能是没有上大学,为它填充正无穷比较合理;
“婚姻状态”:没有填写这一项的用户可能对自己的隐私比较敏感,应单独设为一个分类,如已婚1、未婚0、未填-1。
缺失的类型
在对缺失数据进行处理前,了解数据缺失的机制和形式是十分必要的。将数据集中不含缺失值的变量称为完全变量,数据集中含有缺失值的变量称为不完全变量。从缺失的分布来将缺失可以分为完全随机缺失,随机缺失和完全非随机缺失。
完全随机缺失(missing completely at random,MCAR):指的是数据的缺失是完全随机的,不依赖于任何不完全变量或完全变量,不影响样本的无偏性。如家庭地址缺失。
随机缺失(missing at random,MAR):指的是数据的缺失不是完全随机的,即该类数据的缺失依赖于其他完全变量。例如财务数据缺失情况与企业的大小有关。
非随机缺失(missing not at random,MNAR):指的是数据的缺失与不完全变量自身的取值有关。如高收入人群的不原意提供家庭收入。
对于随机缺失和非随机缺失,删除记录是不合适的,随机缺失可以通过已知变量对缺失值进行估计;而非随机缺失还没有很好的解决办法。
说明:对于分类问题,可以分析缺失的样本中,类别之间的比例和整体数据集中,类别的比例
缺失值处理的必要性
数据缺失在许多研究领域都是一个复杂的问题。对数据挖掘来说,缺省值的存在,造成了以下影响:
系统丢失了大量的有用信息;
系统中所表现出的不确定性更加显着,系统中蕴涵的确定性成分更难把握;
包含空值的数据会使挖掘过程陷入混乱,导致不可靠的输出。
数据挖掘算法本身更致力于避免数据过分拟合所建的模型,这一特性使得它难以通过自身的算法去很好地处理不完整数据。因此,缺省值需要通过专门的方法进行推导、填充等,以减少数据挖掘算法与实际应用之间的差距。
缺失值处理方法的分析与比较
处理不完整数据集的方法主要有三大类:删除元组、数据补齐、不处理。
删除元组
也就是将存在遗漏信息属性值的对象(元组,记录)删除,从而得到一个完备的信息表。这种方法简单易行,在对象有多个属性缺失值、被删除的含缺失值的对象与初始数据集的数据量相比非常小的情况下非常有效,类标号缺失时通常使用该方法。
然而,这种方法却有很大的局限性。它以减少历史数据来换取信息的完备,会丢弃大量隐藏在这些对象中的信息。在初始数据集包含的对象很少的情况下,删除少量对象足以严重影响信息的客观性和结果的正确性;因此,当缺失数据所占比例较大,特别当遗漏数据非随机分布时,这种方法可能导致数据发生偏离,从而引出错误的结论。
说明:删除元组,或者直接删除该列特征,有时候会导致性能下降。
数据补齐
这类方法是用一定的值去填充空值,从而使信息表完备化。通常基于统计学原理,根据初始数据集中其余对象取值的分布情况来对一个缺失值进行填充。数据挖掘中常用的有以下几种补齐方法:
人工填写(filling manually)
由于最了解数据的还是用户自己,因此这个方法产生数据偏离最小,可能是填充效果最好的一种。然而一般来说,该方法很费时,当数据规模很大、空值很多的时候,该方法是不可行的。
特殊值填充(Treating Missing Attribute values as Special values)
将空值作为一种特殊的属性值来处理,它不同于其他的任何属性值。如所有的空值都用“unknown”填充。这样将形成另一个有趣的概念,可能导致严重的数据偏离,一般不推荐使用。
平均值填充(Mean/Mode Completer)
将初始数据集中的属性分为数值属性和非数值属性来分别进行处理。
如果空值是数值型的,就根据该属性在其他所有对象的取值的平均值来填充该缺失的属性值;
如果空值是非数值型的,就根据统计学中的众数原理,用该属性在其他所有对象的取值次数最多的值(即出现频率最高的值)来补齐该缺失的属性值。与其相似的另一种方法叫条件平均值填充法(Conditional Mean Completer)。在该方法中,用于求平均的值并不是从数据集的所有对象中取,而是从与该对象具有相同决策属性值的对象中取得。
这两种数据的补齐方法,其基本的出发点都是一样的,以最大概率可能的取值来补充缺失的属性值,只是在具体方法上有一点不同。与其他方法相比,它是用现存数据的多数信息来推测缺失值。
热卡填充(Hot deck imputation,或就近补齐)
对于一个包含空值的对象,热卡填充法在完整数据中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。不同的问题可能会选用不同的标准来对相似进行判定。该方法概念上很简单,且利用了数据间的关系来进行空值估计。这个方法的缺点在于难以定义相似标准,主观因素较多。
K最近距离邻法(K-means clustering)
先根据欧式距离或相关分析来确定距离具有缺失数据样本最近的K个样本,将这K个值加权平均来估计该样本的缺失数据。
使用所有可能的值填充(Assigning All Possible values of the Attribute)
用空缺属性值的所有可能的属性取值来填充,能够得到较好的补齐效果。但是,当数据量很大或者遗漏的属性值较多时,其计算的代价很大,可能的测试方案很多。
组合完整化方法(Combinatorial Completer)
用空缺属性值的所有可能的属性取值来试,并从最终属性的约简结果中选择最好的一个作为填补的属性值。这是以约简为目的的数据补齐方法,能够得到好的约简结果;但是,当数据量很大或者遗漏的属性值较多时,其计算的代价很大。
回归(Regression)
基于完整的数据集,建立回归方程。对于包含空值的对象,将已知属性值代入方程来估计未知属性值,以此估计值来进行填充。当变量不是线性相关时会导致有偏差的估计。
期望值最大化方法(Expectation maximization,EM)
EM算法是一种在不完全数据情况下计算极大似然估计或者后验分布的迭代算法。在每一迭代循环过程中交替执行两个步骤:E步(Excepctaion step,期望步),在给定完全数据和前一次迭代所得到的参数估计的情况下计算完全数据对应的对数似然函数的条件期望;M步(Maximzation step,极大化步),用极大化对数似然函数以确定参数的值,并用于下步的迭代。算法在E步和M步之间不断迭代直至收敛,即两次迭代之间的参数变化小于一个预先给定的阈值时结束。该方法可能会陷入局部极值,收敛速度也不是很快,并且计算很复杂。
多重填补(Multiple Imputation,MI)
多重填补方法分为三个步骤:
为每个空值产生一套可能的填补值,这些值反映了无响应模型的不确定性;每个值都被用来填补数据集中的缺失值,产生若干个完整数据集合。
每个填补数据集合都用针对完整数据集的统计方法进行统计分析。
对来自各个填补数据集的结果进行综合,产生最终的统计推断,这一推断考虑到了由于数据填补而产生的不确定性。该方法将空缺值视为随机样本,这样计算出来的统计推断可能受到空缺值的不确定性的影响。该方法的计算也很复杂。
C4.5方法
通过寻找属性间的关系来对遗失值填充。它寻找之间具有最大相关性的两个属性,其中没有遗失值的一个称为代理属性,另一个称为原始属性,用代理属性决定原始属性中的遗失值。这种基于规则归纳的方法只能处理基数较小的名词型属性。
就几种基于统计的方法而言,删除元组法和平均值法差于热卡填充法、期望值最大化方法和多重填充法;回归是比较好的一种方法,但仍比不上hot deck和EM;EM缺少MI包含的不确定成分。值得注意的是,这些方法直接处理的是模型参数的估计而不是空缺值预测本身。它们合适于处理无监督学习的问题,而对有监督学习来说,情况就不尽相同了。譬如,你可以删除包含空值的对象用完整的数据集来进行训练,但预测时你却不能忽略包含空值的对象。另外,C4.5和使用所有可能的值填充方法也有较好的补齐效果,人工填写和特殊值填充则是一般不推荐使用的。
不处理
补齐处理只是将未知值补以我们的主观估计值,不一定完全符合客观事实,在对不完备信息进行补齐处理的同时,我们或多或少地改变了原始的信息系统。而且,对空值不正确的填充往往将新的噪声引入数据中,使挖掘任务产生错误的结果。因此,在许多情况下,我们还是希望在保持原始信息不发生变化的前提下对信息系统进行处理。
不处理缺失值,直接在包含空值的数据上进行数据挖掘的方法包括贝叶斯网络和人工神经网络等。
贝叶斯网络提供了一种自然的表示变量间因果信息的方法,用来发现数据间的潜在关系。在这个网络中,用节点表示变量,有向边表示变量间的依赖关系。贝叶斯网络仅适合于对领域知识具有一定了解的情况,至少对变量间的依赖关系较清楚的情况。否则直接从数据中学习贝叶斯网的结构不但复杂性较高(随着变量的增加,指数级增加),网络维护代价昂贵,而且它的估计参数较多,为系统带来了高方差,影响了它的预测精度。
人工神经网络可以有效的对付缺失值,但人工神经网络在这方面的研究还有待进一步深入展开。
知乎上的一种方案:
4.把变量映射到高维空间。比如性别,有男、女、缺失三种情况,则映射成3个变量:是否男、是否女、是否缺失。连续型变量也可以这样处理。比如Google、网络的CTR预估模型,预处理时会把所有变量都这样处理,达到几亿维。这样做的好处是完整保留了原始数据的全部信息、不用考虑缺失值、不用考虑线性不可分之类的问题。缺点是计算量大大提升。
而且只有在样本量非常大的时候效果才好,否则会因为过于稀疏,效果很差。
总结
大多数数据挖掘系统都是在数据挖掘之前的数据预处理阶段采用第一、第二类方法来对空缺数据进行处理。并不存在一种处理空值的方法可以适合于任何问题。无论哪种方式填充,都无法避免主观因素对原系统的影响,并且在空值过多的情形下将系统完备化是不可行的。从理论上来说,贝叶斯考虑了一切,但是只有当数据集较小或满足某些条件(如多元正态分布)时完全贝叶斯分析才是可行的。而现阶段人工神经网络方法在数据挖掘中的应用仍很有限。值得一提的是,采用不精确信息处理数据的不完备性已得到了广泛的研究。不完备数据的表达方法所依据的理论主要有可信度理论、概率论、模糊集合论、可能性理论,D-S的证据理论等。

⑵ 数据缺失值的4种处理方法

缺失值的处理方法

对于缺失值的处理,从总体上来说分为删除存在缺失值的个案和缺失值插补。对于主观数据,人将影响数据的真实性,存在缺失值的样本的其他属性的真实值不能保证,那么依赖于这些属性值的插补也是不可靠的,所以对于主观数据一般不推荐插补的方法。插补主要是针对客观数据,它的可靠性有保证。

1、删除含有缺失值的个案

主要有简单删除法和权重法。简单删除法是对缺失值进行处理的最原始方法。它将存在缺失值的个案删除。如果数据缺失问题可以通过简单的删除小部分样本来达到目标,那么这个方法是最有效的。当缺失值的类型为非完全随机缺失的时候,可以通过对完整的数据加权来减小偏差。把数据不完全的个案标记后,将完整的数据个案赋予不同的权重,个案的权重可以通过logistic或probit回归求得。如果解释变量中存在对权重估计起决定行因素的变量,那么这种方法可以有效减小偏差。如果解释变量和权重并不相关,它并不能减小偏差。对于存在多个属性缺失的情况,就需要对不同属性的缺失组合赋不同的权重,这将大大增加计算的难度,降低预测的准确性,这时权重法并不理想。

2、可能值插补缺失值

它的思想来源是以最可能的值来插补缺失值比全部删除不完全样本所产生的信息丢失要少。在数据挖掘中,面对的通常是大型的数据库,它的属性有几十个甚至几百个,因为一个属性值的缺失而放弃大量的其他属性值,这种删除是对信息的极大浪费,所以产生了以可能值对缺失值进行插补的思想与方法。

⑶ 几种常见的缺失数据插补方法

(一)个案剔除法(Listwise Deletion)
最常见、最简单的处理缺失数据的方法是用个案剔除法(listwise
deletion),也是很多统计软件(如SPSS和SAS)默认的缺失值处理方法。在这种方法中如果任何一个变量含有缺失数据的话,就把相对应的个案从分析中剔除。如果缺失值所占比例比较小的话,这一方法十分有效。至于具体多大的缺失比例算是“小”比例,专家们意见也存在较大的差距。有学者认为应在5%以下,也有学者认为20%以下即可。然而,这种方法却有很大的局限性。它是以减少样本量来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。在样本量较小的情况下,删除少量对象就足以严重影响到数据的客观性和结果的正确性。因此,当缺失数据所占比例较大,特别是当缺数据非随机分布时,这种方法可能导致数据发生偏离,从而得出错误的结论。
(二)均值替换法(Mean Imputation)
在变量十分重要而所缺失的数据量又较为庞大的时候,个案剔除法就遇到了困难,因为许多有用的数据也同时被剔除。围绕着这一问题,研究者尝试了各种各样的办法。其中的一个方法是均值替换法(mean
imputation)。我们将变量的属性分为数值型和非数值型来分别进行处理。如果缺失值是数值型的,就根据该变量在其他所有对象的取值的平均值来填充该缺失的变量值;如果缺失值是非数值型的,就根据统计学中的众数原理,用该变量在其他所有对象的取值次数最多的值来补齐该缺失的变量值。但这种方法会产生有偏估计,所以并不被推崇。均值替换法也是一种简便、快速的缺失数据处理方法。使用均值替换法插补缺失数据,对该变量的均值估计不会产生影响。但这种方法是建立在完全随机缺失(MCAR)的假设之上的,而且会造成变量的方差和标准差变小。
(三)热卡填充法(Hotdecking)
对于一个包含缺失值的变量,热卡填充法在数据库中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。不同的问题可能会选用不同的标准来对相似进行判定。最常见的是使用相关系数矩阵来确定哪个变量(如变量Y)与缺失值所在变量(如变量X)最相关。然后把所有个案按Y的取值大小进行排序。那么变量X的缺失值就可以用排在缺失值前的那个个案的数据来代替了。与均值替换法相比,利用热卡填充法插补数据后,其变量的标准差与插补前比较接近。但在回归方程中,使用热卡填充法容易使得回归方程的误差增大,参数估计变得不稳定,而且这种方法使用不便,比较耗时。
(四)回归替换法(Regression Imputation)
回归替换法首先需要选择若干个预测缺失值的自变量,然后建立回归方程估计缺失值,即用缺失数据的条件期望值对缺失值进行替换。与前述几种插补方法比较,该方法利用了数据库中尽量多的信息,而且一些统计软件(如Stata)也已经能够直接执行该功能。但该方法也有诸多弊端,第一,这虽然是一个无偏估计,但是却容易忽视随机误差,低估标准差和其他未知性质的测量值,而且这一问题会随着缺失信息的增多而变得更加严重。第二,研究者必须假设存在缺失值所在的变量与其他变量存在线性关系,很多时候这种关系是不存在的。
(五)多重替代法(Multiple Imputation)
多重估算是由Rubin等人于1987年建立起来的一种数据扩充和统计分析方法,作为简单估算的改进产物。首先,多重估算技术用一系列可能的值来替换每一个缺失值,以反映被替换的缺失数据的不确定性。然后,用标准的统计分析过程对多次替换后产生的若干个数据集进行分析。最后,把来自于各个数据集的统计结果进行综合,得到总体参数的估计值。由于多重估算技术并不是用单一的值来替换缺失值,而是试图产生缺失值的一个随机样本,这种方法反映出了由于数据缺失而导致的不确定性,能够产生更加有效的统计推断。结合这种方法,研究者可以比较容易地,在不舍弃任何数据的情况下对缺失数据的未知性质进行推断。NORM统计软件可以较为简便地操作该方法

⑷ 数据分析中缺失值的处理

数据缺失在许多研究领域都是一个复杂的问题,对数据挖掘来说,缺失值的存在,造成了以下影响:
1.系统丢失了大量的有用信息
2.系统中所表现出的不确定性更加显着,系统中蕴涵的确定性成分更难把握
3.包含空值的数据会使挖掘过程陷入混乱,导致不可靠的输出

数据挖掘算法本身更致力于避免数据过分拟合所建的模型,这一特性使得它难以通过自身的算法去很好地处理不完整数据。因此,缺失值需要通过专门的方法进行推导、填充等,以减少数据挖掘算法与实际应用之间的差距。

1.列表显示缺失值 mice包 md.pattern( )

2.图形探究缺失值 VIM包

3.用相关性探索缺失值

1.人工填写
由于最了解数据的还是用户自己,因此这个方法产生数据偏离最小,可能是填充效果最好的一种。然而一般来说,该方法很费时,当数据规模很大、空值很多的时候,该方法是不可行的。

2.特殊值填充
将空值作为一种特殊的属性值来处理,它不同于其他的任何属性值。如所有的空值都用“unknown”填充。这样将形成另一个有趣的概念,可能导致严重的数据偏离,一般不推荐使用。

3.平均值填充
将信息表中的属性分为数值属性和非数值属性来分别进行处理。如果空值是数值型的,就根据该属性在其他所有对象的取值的平均值来填充该缺失的属性值;如果空值是非数值型的,就根据统计学中的众数原理,用该属性在其他所有对象的取值次数最多的值(即出现频率最高的值)来补齐该缺失的属性值。另外有一种与其相似的方法叫条件平均值填充法(Conditional Mean Completer)。在该方法中,缺失属性值的补齐同样是靠该属性在其他对象中的取值求平均得到,但不同的是用于求平均的值并不是从信息表所有对象中取,而是从与该对象具有相同决策属性值的对象中取得。这两种数据的补齐方法,其基本的出发点都是一样的,以最大概率可能的取值来补充缺失的属性值,只是在具体方法上有一点不同。与其他方法相比,它是用现存数据的多数信息来推测缺失值。

4.热卡填充
对于一个包含空值的对象,热卡填充法在完整数据中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。不同的问题可能会选用不同的标准来对相似进行判定。该方法概念上很简单,且利用了数据间的关系来进行空值估计。这个方法的缺点在于难以定义相似标准,主观因素较多。

5.K最近距离邻法
先根据欧式距离或相关分析来确定距离具有缺失数据样本最近的K个样本,将这K个值加权平均来估计该样本的缺失数据。
同均值插补的方法都属于单值插补,不同的是,它用层次聚类模型预测缺失变量的类型,再以该类型的均值插补。假设X=(X1,X2…Xp)为信息完全的变量,Y为存在缺失值的变量,那么首先对X或其子集行聚类,然后按缺失个案所属类来插补不同类的均值。如果在以后统计分析中还需以引入的解释变量和Y做分析,那么这种插补方法将在模型中引入自相关,给分析造成障碍。

6.使用所有可能的值填充
用空缺属性值的所有可能的属性取值来填充,能够得到较好的补齐效果。但是,当数据量很大或者遗漏的属性值较多时,其计算的代价很大,可能的测试方案很多。

7.组合完整化方法
用空缺属性值的所有可能的属性取值来试,并从最终属性的约简结果中选择最好的一个作为填补的属性值。这是以约简为目的的数据补齐方法,能够得到好的约简结果;但是,当数据量很大或者遗漏的属性值较多时,其计算的代价很大。

8.回归
基于完整的数据集,建立回归方程(模型)。对于包含空值的对象,将已知属性值代入方程来估计未知属性值,以此估计值来进行填充,当变量不是线性相关或预测变量高度相关时会导致有偏差的估计(SPSS菜单里有这种方法)

9.期望值最大化方法
EM算法是一种在不完全数据情况下计算极大似然估计或者后验分布的迭代算法。在每一迭代循环过程中交替执行两个步骤:E步(Excepctaion step,期望步),在给定完全数据和前一次迭代所得到的参数估计的情况下计算完全数据对应的对数似然函数的条件期望;M步(Maximzation step,极大化步),用极大化对数似然函数以确定参数的值,并用于下步的迭代。算法在E步和M步之间不断迭代直至收敛,即两次迭代之间的参数变化小于一个预先给定的阈值时结束。该方法可能会陷入局部极值,收敛速度也不是很快,并且计算很复杂。(SPSS菜单里有这种方法)

10.1多重插补原理
多值插补的思想来源于贝叶斯估计,认为待插补的值是随机的,它的值来自于已观测到的值。具体实践上通常是估计出待插补的值,然后再加上不同的噪声,形成多组可选插补值。根据某种选择依据,选取最合适的插补值。

10.2多重填补在SPSS中的实现
10.2.1缺失模式分析
分析>多重归因>分析模式

10.2.2缺失值的多重填充
分析>多重归因>归因缺失数据值

10.2.3采用填充后的数据建模

10.3多重填补在R中的实现(基于mice包)

实例:

11.C4.5方法
通过寻找属性间的关系来对遗失值填充。它寻找之间具有最大相关性的两个属性,其中没有遗失值的一个称为代理属性,另一个称为原始属性,用代理属性决定原始属性中的遗失值。这种基于规则归纳的方法只能处理基数较小的名词型属性。

就几种基于统计的方法而言,删除元组法和平均值填充法差于热卡填充法、期望值最大化方法和多重填充法;回归是比较好的一种方法,但仍比不上热卡填充和期望值最大化方法;期望值最大化方法缺少多重填补包含的不确定成分。值得注意的是,这些方法直接处理的是模型参数的估计而不是空缺值预测本身。它们合适于处理无监督学习的问题,而对有监督学习来说,情况就不尽相同了。譬如,你可以删除包含空值的对象用完整的数据集来进行训练,但预测时你却不能忽略包含空值的对象。另外,C4.5和使用所有可能的值填充方法也有较好的补齐效果,人工填写和特殊值填充则是一般不推荐使用的。

补齐处理只是将未知值补以我们的主观估计值,不一定完全符合客观事实,在对不完备信息进行补齐处理的同时,我们或多或少地改变了原始的信息系统。而且,对空值不正确的填充往往将新的噪声引入数据中,使挖掘任务产生错误的结果。因此,在许多情况下,我们还是希望在保持原始信息不发生变化的前提下对信息系统进行处理。
直接在包含空值的数据上进行数据挖掘,这类方法包括贝叶斯网络和人工神经网络等。

贝叶斯网络是用来表示变量间连接概率的图形模式,它提供了一种自然的表示因果信息的方法,用来发现数据间的潜在关系。在这个网络中,用节点表示变量,有向边表示变量间的依赖关系。贝叶斯网络仅适合于对领域知识具有一定了解的情况,至少对变量间的依赖关系较清楚的情况。否则直接从数据中学习贝叶斯网的结构不但复杂性较高(随着变量的增加,指数级增加),网络维护代价昂贵,而且它的估计参数较多,为系统带来了高方差,影响了它的预测精度。当在任何一个对象中的缺失值数量很大时,存在指数爆炸的危险。人工神经网络可以有效的对付空值,但人工神经网络在这方面的研究还有待进一步深入展开。人工神经网络方法在数据挖掘应用中的局限性。

多数统计方法都假设输入数据是完整的且不包含缺失值,但现实生活中大多数数据集都包含了缺失值。因此,在进行下一步分析前,你要么删除,要么用合理的数值代理它们,SPSS、R、Python、SAS等统计软件都会提供一些默认的处理缺失值方法,但这些方法可能不是最优的,因此,学习各种各样的方法和他们的分支就显得非常重要。Little和Rubin的《Sstatistical Analysis With Missing Data 》是缺失值领域里经典的读本,值得一看。

⑸ 如何处理数据中的缺失值

一、常用方法 1. 删除
最简单的方法是删除,删除属性或者删除样本。如果大部分样本该属性都缺失,这个属性能提供的信息有限,可以选择放弃使用该维属性;如果一个样本大部分属性缺失,可以选择放弃该样本。虽然这种方法简单,但只适用于数据集中缺失较少的情况。

2. 统计填充
对于缺失值的属性,尤其是数值类型的属性,根据所有样本关于这维属性的统计值对其进行填充,如使用平均数、中位数、众数、最大值、最小值等,具体选择哪种统计值需要具体问题具体分析。另外,如果有可用类别信息,还可以进行类内统计,比如身高,男性和女性的统计填充应该是不同的。

3. 统一填充
对于含缺失值的属性,把所有缺失值统一填充为自定义值,如何选择自定义值也需要具体问题具体分析。当然,如果有可用类别信息,也可以为不同类别分别进行统一填充。常用的统一填充值有:“空”、“0”、“正无穷”、“负无穷”等。

4. 预测填充
我们可以通过预测模型利用不存在缺失值的属性来预测缺失值,也就是先用预测模型把数据填充后再做进一步的工作,如统计、学习等。虽然这种方法比较复杂,但是最后得到的结果比较好。

二、具体分析
上面两次提到具体问题具体分析,为什么要具体问题具体分析呢?因为属性缺失有时并不意味着数据缺失,缺失本身是包含信息的,所以需要根据不同应用场景下缺失值可能包含的信息进行合理填充。下面通过一些例子来说明如何具体问题具体分析,仁者见仁智者见智,仅供参考:

“年收入”:商品推荐场景下填充平均值,借贷额度场景下填充最小值; “行为时间点”:填充众数; “价格”:商品推荐场景下填充最小值,商品匹配场景下填充平均值; “人体寿命”:保险费用估计场景下填充最大值,人口估计场景下填充平均值; “驾龄”:没有填写这一项的用户可能是没有车,为它填充为0较为合理; ”本科毕业时间”:没有填写这一项的用户可能是没有上大学,为它填充正无穷比较合理; “婚姻状态”:没有填写这一项的用户可能对自己的隐私比较敏感,应单独设为一个分类,如已婚1、未婚0、未填-1。

⑹ 几种常见的缺失数据插补方法

()案剔除(Listwise
Deletion)
见、简单处理缺失数据用案剔除(listwise
deletion)统计软件(SPSSSAS)默认缺失值处理种任何变量含缺失数据相应案析剔除缺失值所占比例比较十效至于具体缺失比例算比例专家意见存较差距者认应5%者认20%即种却局限性减少本量换取信息完备造资源量浪费丢弃量隐藏些象信息本量较情况删除少量象足严重影响数据客观性结确性缺失数据所占比例较特别缺数据非随机布种能导致数据发偏离错误结论
(二)均值替换(Mean
Imputation)
变量十重要所缺失数据量较庞候案剔除遇困难许用数据同剔除围绕着问题研究者尝试各种各办其均值替换(mean
imputation)我变量属性数值型非数值型别进行处理缺失值数值型根据该变量其所象取值平均值填充该缺失变量值;缺失值非数值型根据统计众数原理用该变量其所象取值数值补齐该缺失变量值种产偏估计所并推崇均值替换种简便、快速缺失数据处理使用均值替换插补缺失数据该变量均值估计产影响种建立完全随机缺失(MCAR)假设且造变量差标准差变
(三)热卡填充(Hotdecking)
于包含缺失值变量热卡填充数据库找与相似象用相似象值进行填充同问题能选用同标准相似进行判定见使用相关系数矩阵确定哪变量(变量Y)与缺失值所变量(变量X)相关所案按Y取值进行排序变量X缺失值用排缺失值前案数据代替与均值替换相比利用热卡填充插补数据其变量标准差与插补前比较接近归程使用热卡填充容易使归程误差增参数估计变稳定且种使用便比较耗
(四)归替换(Regression
Imputation)
归替换首先需要选择若干预测缺失值自变量建立归程估计缺失值即用缺失数据条件期望值缺失值进行替换与前述几种插补比较该利用数据库尽量信息且些统计软件(Stata)已经能够直接执行该功能该诸弊端第虽偏估计却容易忽视随机误差低估标准差其未知性质测量值且问题随着缺失信息增变更加严重第二研究者必须假设存缺失值所变量与其变量存线性关系候种关系存
(五)重替代(Multiple
Imputation)
重估算由Rubin等于1987建立起种数据扩充统计析作简单估算改进产物首先重估算技术用系列能值替换每缺失值反映替换缺失数据确定性用标准统计析程替换产若干数据集进行析自于各数据集统计结进行综合总体参数估计值由于重估算技术并用单值替换缺失值试图产缺失值随机本种反映由于数据缺失导致确定性能够产更加效统计推断结合种研究者比较容易舍弃任何数据情况缺失数据未知性质进行推断NORM统计软件较简便操作该

⑺ 数据清理中,处理缺失值的方法有哪些

由于调查、编码和录入误差,数据中可能存在一些无效值和缺失值,需要给予适当的处理。常用的处理方法有:估算,整例删除,变量删除和成对删除。

计算机俗称电脑,是一种用于高速计算的电子计算机器,可以进行数值计算,又可以进行逻辑计算,还具有存储记忆功能。是能够按照程序运行,自动、高速处理海量数据的现代化智能电子设备。由硬件系统和软件系统所组成,没有安装任何软件的计算机称为裸机。

可分为超级计算机、工业控制计算机、网络计算机、个人计算机、嵌入式计算机五类,较先进的计算机有生物计算机、光子计算机、量子计算机、神经网络计算机。蛋白质计算机等。

当今计算机系统的运算速度已达到每秒万亿次,微机也可达每秒几亿次以上,使大量复杂的科学计算问题得以解决。例如:卫星轨道的计算、大型水坝的计算、24小时天气预报的计算等,过去人工计算需要几年、几十年,而现在用计算机只需几天甚至几分钟就可完成。

科学技术的发展特别是尖端科学技术的发展,需要高度精确的计算。计算机控制的导弹之所以能准确地击中预定的目标,是与计算机的精确计算分不开的。一般计算机可以有十几位甚至几十位(二进制)有效数字,计算精度可由千分之几到百万分之几,是任何计算工具所望尘莫及的。

随着计算机存储容量的不断增大,可存储记忆的信息越来越多。计算机不仅能进行计算,而且能把参加运算的数据、程序以及中间结果和最后结果保存起来,以供用户随时调用;还可以对各种信息(如视频、语言、文字、图形、图像、音乐等)通过编码技术进行算术运算和逻辑运算,甚至进行推理和证明。

计算机内部操作是根据人们事先编好的程序自动控制进行的。用户根据解题需要,事先设计好运行步骤与程序,计算机十分严格地按程序规定的步骤操作,整个过程不需人工干预,自动执行,已达到用户的预期结果。

超级计算机(supercomputers)通常是指由数百数千甚至更多的处理器(机)组成的、能计算普通PC机和服务器不能完成的大型复杂课题的计算机。超级计算机是计算机中功能最强、运算速度最快、存储容量最大的一类计算机,是国家科技发展水平和综合国力的重要标志。

超级计算机拥有最强的并行计算能力,主要用于科学计算。在气象、军事、能源、航天、探矿等领域承担大规模、高速度的计算任务。

在结构上,虽然超级计算机和服务器都可能是多处理器系统,二者并无实质区别,但是现代超级计算机较多采用集群系统,更注重浮点运算的性能,可看着是一种专注于科学计算的高性能服务器,而且价格非常昂贵。

一般的超级计算器耗电量相当大,一秒钟电费就要上千,超级计算器的CPU至少50核也就是说是家用电脑的10倍左右,处理速度也是相当的快,但是这种CPU是无法购买的,而且价格要上千万。

⑻ 数据缺失想要补齐有什么方法,用spss的替换缺失值和缺失值分析完全不会用

1、均值插补。数据的属性分为定距型和非定距型。如果缺失值是定距型的,就以该属性存在值的平均值来插补缺失的值;如果缺失值是非定距型的,就根据统计学中的众数原理,用该属性的众数(即出现频率最高的值)来补齐缺失的值。

2、利用同类均值插补。同均值插补的方法都属于单值插补,不同的是,它用层次聚类模型预测缺失变量的类型,再以该类型的均值插补。假设X=(X1,X2...Xp)为信息完全的变量,Y为存在缺失值的变量。

那么首先对X或其子集行聚类,然后按缺失个案所属类来插补不同类的均值。如果在以后统计分析中还需以引入的解释变量和Y做分析,那么这种插补方法将在模型中引入自相关,给分析造成障碍。

3、极大似然估计(Max Likelihood ,ML)。在缺失类型为随机缺失的条件下,假设模型对于完整的样本是正确的,那么通过观测数据的边际分布可以对未知参数进行极大似然估计(Little and Rubin)。

这种方法也被称为忽略缺失值的极大似然估计,对于极大似然的参数估计实际中常采用的计算方法是期望值最大化(Expectation Maximization,EM)。

4、多重插补(Multiple Imputation,MI)。多值插补的思想来源于贝叶斯估计,认为待插补的值是随机的,它的值来自于已观测到的值。具体实践上通常是估计出待插补的值,然后再加上不同的噪声,形成多组可选插补值。根据某种选择依据,选取最合适的插补值。



(8)补缺失数据常用的方法扩展阅读

缺失值产生的原因很多,装备故障、无法获取信息、与其他字段不一致、历史原因等都可能产生缺失值。一种典型的处理方法是插值,插值之后的数据可看作服从特定概率分布。另外,也可以删除所有含缺失值的记录,但这个操作也从侧面变动了原始数据的分布特征。

对于缺失值的处理,从总体上来说分为删除存在缺失值的个案和缺失值插补。对于主观数据,人将影响数据的真实性,存在缺失值的样本的其他属性的真实值不能保证,那么依赖于这些属性值的插补也是不可靠的,所以对于主观数据一般不推荐插补的方法。插补主要是针对客观数据,它的可靠性有保证。

⑼ 在线监测仪器缺失数据的处理方法

删除观察样本
2)删除变量:当某个变量缺失值较多且对研究目标影响不大时,可以将整个变量整体删除
3)使用完整原始数据分析:当数据存在较多缺失而其原始数据完整时,可以使用原始数据替代现有数据进行分析
4)改变权重:当删除缺失数据会改变数据结构时,通过对完整数据按照不同的权重进行加权,可以降低删除缺失数据带来的偏差
查补法:均值插补、回归插补、抽样填补等
成对删除与改变权重为一类
估算与查补法为一类
2、常用的处理方法有:估算,整例删除,变量删除和成对删除。
由于调查、编码和录入误差,数据中可能存在一些无效值和缺失值,需要给予适当的处理。
估算(estimation)。最简单的办法就是用某个变量的样本均值、中位数或众数代替无效值和缺失值。这种办法简单,但没有充分考虑数据中已有的信息,误差可能较大。另一种办法就是根据调查对象对其他问题的答案,通过变量之间的相关分析或逻辑推论进行估计。例如,某一产品的拥有情况可能与家庭收入有关,可以根据调查对象的家庭收入推算拥有这一产品的可能性。
整例删除(casewise deletion)是剔除含有缺失值的样本。由于很多问卷都可能存在缺失值,这种做法的结果可能导致有效样本量大大减少,无法充分利用已经收集到的数据。因此,只适合关键变量缺失,或者含有无效值或缺失值的样本比重很小的情况。
变量删除(variable deletion)。如果某一变量的无效值和缺失值很多,而且该变量对于所研究的问题不是特别重要,则可以考虑将该变量删除。这种做法减少了供分析用的变量数目,但没有改变样本量。
成对删除(pairwise deletion)是用一个特殊码(通常是9、99、999等)代表无效值和缺失值,同时保留数据集中的全部变量和样本。但是,在具体计算时只采用有完整答案的样本,因而不同的分析因涉及的变量不同,其有效样本量也会有所不同。这是一种保守的处理方法,最大限度地保留了数据集中的可用信息。
采用不同的处理方法可能对分析结果产生影响,尤其是当缺失值的出现并非随机且变量之间明显相关时。因此,在调查中应当尽量避免出现无效值和缺失值,保证数据的完整性。

⑽ 数据清理中,处理缺失值的方法有哪些

1.
删除含有缺失值的个案
2.
可能值插补缺失值
(1)均值插补
(2)利用同类均值插补。
(3)极大似然估计(Max
Likelihood
,ML)
(4)多重插补(Multiple
Imputation,MI)

阅读全文

与补缺失数据常用的方法相关的资料

热点内容
眼镜片卡槽拉丝与镜架安装方法 浏览:459
有什么方法可以矫正近视眼 浏览:540
亿万台电脑列数字说明方法 浏览:34
初中生高考题解决方法 浏览:439
特殊测量技术方法特点 浏览:539
用化学方法鉴别真金和假金子黄铜 浏览:7
羊五号病怎么治疗土方法 浏览:484
增强手指肌力的训练方法 浏览:182
擦车的正确方法 浏览:213
民间治疗失眠的方法 浏览:502
断奶后正确的回奶方法 浏览:362
联想电脑打开麦克风在哪里设置方法 浏览:971
如何测量水温传感器方法 浏览:444
桥梁钢腹板的安装方法 浏览:746
中式棉袄制作方法图片 浏览:71
五菱p1171故障码解决方法 浏览:866
男士修护膏使用方法 浏览:554
电脑图标修改方法 浏览:609
湿气怎么用科学的方法解释 浏览:545
910除以26的简便计算方法 浏览:813