‘壹’ 高中立体几何中证明线线平行常用的有哪几种方法
1.垂直于同一平面的两条直线平行
2.平行于同一直线的两条直线平行
3.一个平面与另外两个平行平面相交,那么2条交线也平行
4.两条直线的方向向量共线,则两条直线平行
‘贰’ 求高中数学立体几何的证明
高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):
Ⅰ.平行关系:
线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。
线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。
面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。
Ⅱ.垂直关系:
线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。
线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。
面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直。
‘叁’ 高中数学…几何证明
(1)证明:以D为原点O,以射线DA、DE、DC分别为x、y、z轴,建立空间直角坐标系;作标点A(2,0,0); B(2,0,2),C(0,0,4),E(0,Ey,0); 向量BC={-2,0,2}, BE={-2,0,-2};
BC·BE={-2,0,2}·{-2,Ey,-2}=(-2)(-2)+0*Ey+2(-2)=0; 所以有:BC⊥BE。证毕。
(2)四棱锥体积:V=(1/3)(1/2)(AB+CD)*AD*DE=(1/6)(2+4)*2*DE=2DE=4/3; DE=2/3。连结BD,连结EF;则BC⊥BD;BE=√[(2√2)^2+(2/3)^2]=2√7/3; AE=√[2^2+(2/3)^2]=4/3;
E-ABCD的侧面积:S=(1/2)[(4+2)*(2/3)+2*(4/3)+2√7/3*2√2]=2+4/3+2√14/3=(10+2√14)/3。
‘肆’ 高中数学三点共线证明方法是什么
三点共线证明
方法一:取两点确立一条直线,计算该直线的解析式,代入第三点坐标看是否满足该解析式。
方法二:设三点为A、B、C,利用向量证明:a倍AB向量=AC向量。
三点共线证明方法
方法一:取两点确立一条直线,计算该直线的解析式。代入第三点坐标看是否满足该解析式(直线与方程)。
方法二:设三点为A、B、C。利用向量证明:λAB=AC(其中λ为非零实数)。
方法三:利用点差法求出AB斜率和AC斜率,相等即三点共线。
方法四:用梅涅劳斯定理。
方法五:利用几何中的公理“如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线”。可知:如果三点同属于两个相交的平面则三点共线。
方法六:运用公(定)理“过直线外一点有且只有一条直线与已知直线平行(垂直)”。其实就是同一法。
‘伍’ 高中数学常用证明方法有哪些
高考试题主要从以下几个方面对数学思想方法进行考查: 常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; 数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; 数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等; 常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。 http://www.2jiaoyu.com/
‘陆’ 高中数学几何知识点总结
几何是高中的一个重要学习知识点。知识点你都掌握了吗?接下来我为你整理了高中数学几何知识点总结,一起来看看吧。
1. 经过不在同一条直线上的三点确定一个面.
注:两两相交且不过同一点的四条直线必在同一平面内.
2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)
3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)
[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.
4. 三个平面最多可把空间分成 8 部分.(X、Y、Z三个方向)
⒈平面的基本性质 ⑴三个公理及公理三的三个推论和它们的用途.⑵斜二测画法.
⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.
⑴公理四(平行线的传递性).等角定理.
⑵异面直线的判定:判定定理、反证法.
⑶异面直线所成的角:定义(求法)、范围.
⒊直线和平面平行 直线和平面的位置关系、直线和平面平行的判定与性质.
⒋直线和平面垂直
⑴直线和平面垂直:定义、判定定理.
⑵三垂线定理及逆定理.
5.平面和平面平行
两个平面的位置关系、两个平面平行的判定与性质.
6.平面和平面垂直
互相垂直的平面及其判定定理、性质定理.
(二)直线与平面的平行和垂直的证明思路(见附图)
(三)夹角与距离
7.直线和平面所成的角与二面角
⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平
面所成的角、直线和平面所成的角.
⑵二面角:①定义、范围、二面角的平面角、直二面角.
②互相垂直的平面及其判定定理、性质定理.
8.距离
⑴点到平面的距离.
⑵直线到与它平行平面的距离.
⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段.
⑷异面直线的距离:异面直线的公垂线及其性质、公垂线段.
(四)简单多面体与球
9.棱柱与棱锥
⑴多面体.
⑵棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.
⑶平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、
正方体;平行六面体的性质、长方体的性质.
⑷棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质.
⑸直棱柱和正棱锥的直观图的画法.
10.多面体欧拉定理的发现
⑴简单多面体的欧拉公式.
⑵正多面体.
11.球
⑴球和它的性质:球体、球面、球的大圆、小圆、球面距离.
⑵球的体积公式和表面积公式.
1.异面直线所成角的求法:
(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;
(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;
2.直线与平面所成的角
斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。通常通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线,是产生线面角的关键;
3.二面角的求法
(1)定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;
(2)三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;
(3)垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;
(4)射影法:利用面积射影公式S射=S原cos,其中为平面角的大小,此法不必在图形中画出平面角;
特别:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。
4.空间距离的求法
(1)两异面直线间的距离,高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算;
(2)求点到直线的距离,一般用三垂线定理作出垂线再求解;
‘柒’ 对于高中数学立体几何,我们应该如何去证明,点共面,线共点,对于这些我很没有思路,希望明白的人帮一下
一、共线问题
证明点共线,常常采用以下两种方法:①转化为证明这些点是某两个平面的公共点,然后根据公理3证得这些点都在这两个平面的交线上;②证明多点共线问题时,通常是过其中两点作一直线,然后证明其他的点都在这条直线上.
二、共点问题
证明线共点,就是要证明这些直线都过其中两条直线的交点.解决此类问题的一般方法是:先证其中两条直线交于一点,再证该点也在其他直线上.
三、共面问题
证明空间的点、线共面问题,通常采用以下两种方法:①根据已知条件先确定一个平面,再证明其他点或直线也在这个平面内;②分别过某些点或直线作两个平面,证明这两个平面重合.
‘捌’ 高中数学空间几何证明怎么学
答:对于空间几何证明题方法有两种:1、建立空间直角坐标系,这种方法简单易行,但有一定的局限性(有时候不好建立坐标系)对于空间想象能力有现的同学和文科生可以采用;2、观察图形的结构结合已知条件和问题直接根据已知条件和有关的定理推论等不用建立坐标系即可得解,但此方法针对有些题目要求有比较好的空间想象能力。所以什么方法都既有优点又有缺点,唯一的办法就是在熟悉了课本知识之后多练习多总结方可学好!望楼主学习蒸蒸日上!谢谢采纳!
‘玖’ 立体几何常用证明定理 高中的。
有六种:
1.定义法。
2.垂面法。
3.射影定理。
4.三垂线定理。
5.向量法。
6.转化法。
(9)高中数学几何常用证明的方法扩展阅读:
三垂线定理:
在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果和穿过这个平面的一条斜线垂直,那么它也和这条斜线在平面的射影垂直。
1、三垂线定理描述的是PO(斜线),AO(射影),a(直线)之间的垂直关系。
2、a与PO可以相交,也可以异面。
3、三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理。
关于三垂线定理的应用,关键是找出平面(基准面)的垂线。至于射影则是由垂足,斜足来确定的,因而是第二位的。从三垂线定理的证明得到证明a⊥b的一个程序:一垂,二射,三证。即几何模型
第一,找平面(基准面)及平面垂线;
第二,找射影线,这时a,b便成平面上的一条直线与一条斜线;
第三,证明射影线与直线a垂直,从而得出a与b垂直。
1.定理中四条线均针对同一平面而言;
2.应用定理关键是找"基准面"这个参照系。
用向量证明三垂线定理。
1.已知:PO,PA分别是平面a的垂线,斜线,OA是PA在a内的射影,b属于a,且b垂直OA,求证:b垂直PA
证明:因为PO垂直a,所以PO垂直b,又因为OA垂直b 向量PA=(向量PO+向量OA)
所以向量PA乘以b=(向量PO+向量OA)乘以b=(向量PO 乘以 b) 加 (向量OA 乘以 b )=O,
所以PA垂直b。
2.已知:PO,PA分别是平面a的垂线,斜线,OA是PA在a内的射影,b属于a,且b垂直PA,求证:b垂直OA
证明:因为PO垂直a,所以PO垂直b,又因为PA垂直b, 向量OA=(向量PA-向量PO)
所以向量OA乘以b==(向量PA-向量PO)乘以b=(向量PA 乘以 b )减 (向量PO 乘以 b )=0,
所以OA垂直b。
3.已知三个平面OAB,OBC,OAC相交于一点O,角AOB=角BOC=角COA=60度,求交线OA于平面OBC所成的角。
向量OA=(向量OB+向量AB),O是内心,又因为AB=BC=CA,所以OA于平面OBC所成的角是30度。
‘拾’ 高中数学证明题思考方法
高中数学证明题思考方法:
1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法:
(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;
(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;
(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。