导航:首页 > 使用方法 > 常用的聚类方法

常用的聚类方法

发布时间:2022-01-15 21:22:51

Ⅰ 聚类算法有哪几种

聚类分析计算方法主要有: 层次的方法(hierarchical method)、划分方法(partitioning method)、基于密度的方法(density-based method)、基于网格的方法(grid-based method)、基于模型的方法(model-based method)等。其中,前两种算法是利用统计学定义的距离进行度量。

k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然 后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。

其流程如下:

(1)从 n个数据对象任意选择 k 个对象作为初始聚类中心;

(2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;

(3)重新计算每个(有变化)聚类的均值(中心对象);

(4)循环(2)、(3)直到每个聚类不再发生变化为止(标准测量函数收敛)。

优点: 本算法确定的K个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为 O(NKt),其中N是数据对象的数目,t是迭代的次数。

缺点

1. K 是事先给定的,但非常难以选定;

2. 初始聚类中心的选择对聚类结果有较大的影响。

Ⅱ 常用的聚类方法有哪几种

聚类分析的算法可以分为划分法、层次法、基于密度的方法、基于网格的方法、基于模型的方法。

1、划分法,给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。

2、层次法,这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。

3、基于密度的方法,基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。

4、图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。

5、基于网格的方法,这种方法首先将数据空间划分成为有限个单元的网格结构,所有的处理都是以单个的单元为对象的。

6、基于模型的方法,基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。

(2)常用的聚类方法扩展阅读:

在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。

它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。

许多聚类算法在小于 200 个数据对象的小数据集合上工作得很好;但是,一个大规模数据库可能包含几百万个对象,在这样的大数据集合样本上进行聚类可能会导致有偏的结果。

许多聚类算法在聚类分析中要求用户输入一定的参数,例如希望产生的簇的数目。聚类结果对于输入参数十分敏感。参数通常很难确定,特别是对于包含高维对象的数据集来说。这样不仅加重了用户的负担,也使得聚类的质量难以控制。

Ⅲ 几种常用聚类方法的比较

1.k-mean聚类分析 适用于样本聚类;
2.分层聚类 适用于对变量聚类;
3.两步聚类 适用于分类变量和连续变量聚类;
4.基于密度的聚类算法;
5.基于网络的聚类;
6.机器学习中的聚类算法;
前3种,可用spss简单操作实现;

Ⅳ 分类和聚类的区别及各自的常见算法

1、分类和聚类的区别:
Classification (分类),对于一个classifier,通常需要你告诉它“这个东西被分为某某类”这样一些例子,理想情况下,一个 classifier 会从它得到的训练集中进行“学习”,从而具备对未知数据进行分类的能力,这种提供训练数据的过程通常叫做supervised learning (监督学习),
Clustering (聚类),简单地说就是把相似的东西分到一组,聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起。因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了,因此 clustering 通常并不需要使用训练数据进行学习,这在Machine Learning中被称作unsupervised learning (无监督学习).
2、常见的分类与聚类算法
所谓分类,简单来说,就是根据文本的特征或属性,划分到已有的类别中。如在自然语言处理NLP中,我们经常提到的文本分类便就是一个分类问题,一般的模式分类方法都可用于文本分类研究。常用的分类算法包括:决策树分类法,朴素贝叶斯分类算法(native Bayesian classifier)、基于支持向量机(SVM)的分类器,神经网络法,k-最近邻法(k-nearestneighbor,kNN),模糊分类法等等。
分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,这时候可以考虑使用聚类算法。
而K均值(K-mensclustering)聚类则是最典型的聚类算法(当然,除此之外,还有很多诸如属于划分法K中心点(K-MEDOIDS)算法、CLARANS算法;属于层次法的BIRCH算法、CURE算法、CHAMELEON算法等;基于密度的方法:DBSCAN算法、OPTICS算法、DENCLUE算法等;基于网格的方法:STING算法、CLIQUE算法、WAVE-CLUSTER算法;基于模型的方法)。

Ⅳ 什么是聚类分析聚类算法有哪几种

聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于

分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行

定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识

难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又

将多元分析的技术引入到数值分类学形成了聚类分析。

聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论

聚类法、聚类预报法等。

聚类分析计算方法主要有如下几种:分裂法(partitioning methods):层次法(hierarchical

methods):基于密度的方法(density-based methods): 基于网格的方法(grid-based

methods): 基于模型的方法(model-based methods)。

Ⅵ 聚类分析法

聚类分析,亦称群分析或点分析,是研究多要素事物分类问题的数量方法。其基本原理是,根据样本自身的属性,用数学方法按照某些相似性或差异性指标,定量地确定样本之间的亲疏关系,并按亲疏关系的程度对样本进行聚类(徐建华,1994)。

聚类分析方法,应用在地下水中,是在各种指标和质量级别标准约束条件下,通过样品的各项指标监测值综合聚类,以判别地下水质量的级别。常见的聚类分析方法有系统聚类法、模糊聚类法和灰色聚类法等。

(一)系统聚类法

系统聚类法的主要步骤有:数据标准化、相似性统计量计算和聚类。

1.数据标准化

在聚类分析中,聚类要素的选择是十分重要的,它直接影响分类结果的准确性和可靠性。在地下水质量研究中,被聚类的对象常常是多个要素构成的。不同要素的数据差异可能很大,这会对分类结果产生影响。因此当分类要素的对象确定之后,在进行聚类分析之前,首先对聚类要素进行数据标准化处理。

假设把所考虑的水质分析点(G)作为聚类对象(有m个),用i表示(i=1,2,…,m);把影响水质的主要因素作为聚类指标(有n个),用j表示(j=1,2,…,n),它们所对应的要素数据可用表4-3给出。在聚类分析中,聚类要素的数据标准化的方法较多,一般采用标准差法和极差法。

表4-3 聚类对象与要素数据

对于第j个变量进行标准化,就是将xij变换为x′ij

(1)总和标准化

区域地下水功能可持续性评价理论与方法研究

这种标准化方法所得的新数据x′ij满足

区域地下水功能可持续性评价理论与方法研究

(2)标准差标准化

区域地下水功能可持续性评价理论与方法研究

式中:

由这种标准化方法所得的新数据x′ij,各要素的平均值为0,标准差为1,即有

区域地下水功能可持续性评价理论与方法研究

(3)极差标准化

区域地下水功能可持续性评价理论与方法研究

经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在[0,1]闭区间内。

上述式中:xij为j变量实测值;xj为j变量的样本平均值;sj为样本标准差。

2.相似性统计量

系统聚类法要求给出一个能反映样品间相似程度的一个数字指标,需要找到能量度相似关系的统计量,这是系统聚类法的关键。

相似性统计量一般使用距离系数和相似系数进行计算。距离系数是把样品看成多维空间的点,用点间的距离来表示研究对象的紧密关系,距离越小,表明关系越密切。相似系数值表明样本和变量间的相似程度。

(1)距离系数

常采用欧几里得绝对距离,其中i样品与j样品距离dij

区域地下水功能可持续性评价理论与方法研究

dij越小,表示i,j样品越相似。

(2)相似系数

常见的相似系数有夹角余弦和相关系数,计算公式为

1)夹角余弦

区域地下水功能可持续性评价理论与方法研究

在式(4-20)中:-1≤cosθij≤1。

2)相关系数

区域地下水功能可持续性评价理论与方法研究

式中:dij为i样品与j样品的欧几里得距离;cosθij为i样品与j样品的相似系数;rij为i样品与j样品的相关系数;xik为i样品第k个因子的实测值或标准化值;xjk为j样品第k个因子的实测值或标准化值;

为i样品第k个因子的均值,

为j样品第k个因子的均值,

;n为样品的数目;k为因子(变量)数。

3.聚类

在选定相似性统计量之后,根据计算结果构成距离或相似性系数矩阵(n×n),然后通过一定的方法把n个样品组合成不同等级的分类单位,对类进行并类,即将最相似的样品归为一组,然后,把次相似的样品归为分类级别较高的组。聚类主要有直接聚类法、距离聚类法(最短距离聚类法、最远距离聚类法)。

(1)直接聚类法

直接聚类法,是根据距离或相似系数矩阵的结构一次并类得到结果,是一种简便的聚类方法。它首先把各个分类对象单独视为一类,然后根据距离最小或相似系数最大的原则,依次选出一对分类对象,并成新类。如果一对分类对象正好属于已归的两类,则把这两类并为一类。每一次归并,都划去该对象所在的列与列序相同的行。经过n-1次把全部分类对象归为一类,最后根据归并的先后顺序作出聚类分析谱系图。

(2)距离聚类法

距离聚类法包括最短距离聚类法和最远距离聚类法。最短距离聚类法具有空间压缩性,而最远距离聚类法具有空间扩张性。这两种聚类方法关于类之间的距离计算可以用一个统一的公式表示:

区域地下水功能可持续性评价理论与方法研究

当γ=-0.5时,式(4-22)计算类之间的距离最短;当γ=0.5时,式(4-22)计算类之间的距离最远。

最短、最远距离法,是在原来的n×n距离矩阵的非对角元素中找出dpq=min(dij)或dpq=max(dij),把分类对象Gp和Gq归并为一新类Gr,然后按计算公式:

dpq=min(dpk,dqk)(k≠ p,q) (4-23)

dpq=max(dpk,dqk)(k≠ p,q) (4-24)

计算原来各类与新类之间的距离,这样就得到一个新的(n-1)阶的距离矩阵;再从新的距离矩阵中选出最小或最大的dij,把Gi和Gj归并成新类;再计算各类与新类的距离,直至各分类对象被归为一类为止。最后综合整个聚类过程,作出最短距离或最远距离聚类谱系图(图4-1)。

图4-1 地下水质量评价的聚类谱系图

(二)模糊聚类法

模糊聚类法是普通聚类方法的一种拓展,它是在聚类方法中引入模糊概念形成的。该方法评价地下水质量的主要步骤,包括数据标准化、标定和聚类3个方面(付雁鹏等,1987)。

1.数据标准化

在进行聚类过程中,由于所研究的各个变量绝对值不一样,所以直接使用原始数据进行计算就会突出绝对值大的变量,而降低绝对值小的变量作用,特别是在进行模糊聚类分析中,模糊运算要求必须将数据压缩在[0,1]之间。因此,模糊聚类计算的首要工作是解决数据标准化问题。数据标准化的方法见系统聚类分析法。

2.标定与聚类

所谓标定就是计算出被分类对象间的相似系数rij,从而确定论域集U上的模糊相似关系Rij。相似系数的求取,与系统聚类分析法相同。

聚类就是在已建立的模糊关系矩阵Rij上,给出不同的置信水平λ(λ∈[0,1])进行截取,进而得到不同的分类。

聚类方法较多,主要有基于模糊等价关系基础上的聚类与基于最大树的聚类。

(1)模糊等价关系方法

所谓模糊等价关系,是指具有自反性(rii=1)、对称性(rij=rji)与传递性(R·R⊆R)的模糊关系。

基于模糊等价关系的模糊聚类分析方法的基本思想是:由于模糊等价关系R是论域集U与自己的直积U×U上的一个模糊子集,因此可以对R进行分解,当用λ-水平对R作截集时,截得的U×U的普通子集Rλ就是U上的一个普通等价关系,也就是得到了关于U中被分类对象元素的一种。当λ由1下降到0时,所得的分类由细变粗,逐渐归并,从而形成一个动态聚类谱系图(徐建华,1994)。此类分析方法的具体步骤如下。

第一步:模糊相似关系的建立,即计算各分类对象之间相似性统计量。

第二步:将模糊相似关系R改造为模糊等价关系R′。模糊等价关系要求满足自反性、对称性与传递性。一般而言,模糊相似关系满足自反性和对称性,但不满足传递性。因此,需要采用传递闭合的性质将模糊相似关系改造为模糊等价关系。改造的方法是将相似关系R自乘,即

R2=R·R

R4=R2·R2

这样计算下去,直到:R2k=Rk·Rk=Rk,则R′=Rk便是一个模糊等价关系。

第三步:在不同的截集水平下进行聚类。

(2)最大树聚类方法

基于最大树的模糊聚类分析方法的基本思路是:最大树是一个不包含回路的连通图(图4-2);选取λ水平对树枝进行截取,砍去权重低于λ 的枝,形成几个孤立的子树,每一棵子树就是一个类的集合。此类分析方法的具体步骤如下。

图4-2 最大聚类支撑树图

第一步:计算分类对象之间的模糊相似性统计量rij,构建最大树。

以所有被分类的对象为顶点,当两点间rij不等于0时,两点间可以用树干连接,这种连接是按rij从大到小的顺序依次进行的,从而构成最大树。

第二步:由最大树进行聚类分析。

选择某一λ值作截集,将树中小于λ值的树干砍断,使相连的结点构成一类,即子树,当λ由1到0时,所得到的分类由细变粗,各结点所代表的分类对象逐渐归并,从而形成一个动态聚类谱系图。

在聚类方法中,模糊聚类法比普通聚类法有较大的突破,简化了运算过程,使聚类法更易于掌握。

(三)灰色聚类法

灰色聚类是根据不同聚类指标所拥有的白化数,按几个灰类将聚类对象进行归纳,以判断该聚类对象属于哪一类。

灰色聚类应用于地下水水质评价中,是把所考虑的水质分析点作为聚类对象,用i表示(i=1,2,…,n);把影响水质的主要因素作为聚类指标,用j表示(j=1,2,…,m),把水质级别作为聚类灰数(灰类),用k表示(k=1,2,3)即一级、二级、三级3个灰类(罗定贵等,1995)。

灰色聚类的主要步骤:确定聚类白化数、确定各灰色白化函数fjk、求标定聚类权重ηjk、求聚类系数和按最大原则确定聚类对象分类。

1.确定聚类白化数

当各灰类白化数在数量上相差悬殊时,为保证各指标间的可比性与等效性,必须进行白化数的无量纲化处理。即给出第i个聚类对象中第j个聚类指标所拥有的白化数,i=1,2,…,n;j=1,2,…,m。

2.确定各灰色白化函数

建立满足各指标、级别区间为最大白化函数值(等于1),偏离此区间愈远,白化函数愈小(趋于0)的功效函数fij(x)。根据监测值Cki,可在图上(图4-3)解析出相应的白化函数值fjk(Cik),j=1,2,…,m;k=1,2,3。

3.求标定聚类权重

根据式(4-25),计算得出聚类权重ηjk的矩阵(n×m)。

区域地下水功能可持续性评价理论与方法研究

式中:ηjk为第j个指标对第k个灰类的权重;λjk为白化函数的阈值(根据标准浓度而定)。

图4-3 白化函数图

注:图4-3白化函数f(x)∈[0,1],具有下述特点:①平顶部分,表示该量的最佳程度。这部分的值为最佳值,即系数(权)为1,f(x)=max=1(峰值),x∈[x2,x3]。②白化函数是单调变化的,左边部分f(x)=L(x),单调增,x∈(x1,x2],称为白化的左支函数;右边部分f(x)=R(x),单调减,x∈[x3,x4),称为白化的右支函数。③白化函数左右支函数对称。④白化函数,为了简便,一般是直线。⑤白化函数的起点和终点,一般来说是人为凭经验确定。

4.求聚类系数

σik=∑fjk(dij)ηjk (4-26)

式中:σik为第i个聚类对象属于第k个灰类的系数,i=1,2,…,n;k=1,2,3。

5.按最大原则确定聚类对象分类

由σik构造聚类向量矩阵,行向量最大者,确定k样品属于j级对应的级别。

用灰色聚类方法进行地下水水质评价,能最大限度地避免因人为因素而造成的“失真、失效”现象。

聚类方法计算相对复杂,但是计算结果与地下水质量标准级别对应性明显,能够较全面反映地下水质量状况,也是较高层次定量研究地下水质量的重要方法。

Ⅶ 未知分类数目的聚类方法有哪些

给定一个数组 --> @x 做聚类分析,现在不知道它能分成多少类,是要做 fuzzy C-means clustering么?如何在实现未知分类数目的聚类分析?-------------------------------------------------------------------------------------------------------我现在的数据都是正整数,如下:492, 500, 490, 486, 490, 491, 493, 480, 461, 504, 476, 434, 500, 470, 495, 3116, 3805, 3142, 12836, 12692, 3062, 3091, 3141, 3177, 3685, 3150, 3114, 3149, 12658, 3134, 3143, 3156, 3119, 3172, 3113, 12307, 12338, 3162, 2679, 3177, 3111, 3115, 3136, 3156, 12394, 3129, 3176, 3134, 3108, 12657, 506, 473, 495, 494, 434, 459, 445, 475, 476, 3146, 2009, 3132, 3155, 2704, 3125, 3170, 3187具体分类的话,我查到了这个: http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/cmeans.html 使得Jm 最小。-------------------------------------------------------------------------------------------------------然后是详细的对所面临的数据的手工分类过程: 理论上数据可以分成1类,或者2类,这个在每行数据里是不固定的。即某些行可以分成一类,有些行可以分成两类,但是哪些行分成1类那些行分成两类不固定 但是,由于有实验误差的问题,有些数据需要抛弃,比如,如果一组数据是 23,24,25,332,334,336,2000; 那么这个2000是实验误差,需要摒弃。一般来讲这个误差会是非常大的,比如这里是2000,或者更大,30000;同时误差的个数不固定,有时候是一个2000,有时候是一个2000,一个30000。这里取决于这一行包含数据的个数。数据个数越多,其中包含错误的个数便越多。 如果让我来手工分类,基本上就是按照上面的方式;首先确定是一个cluster或者是两个clusters,然后再摒弃掉距离cluster距离非常远的数字。 这里如果是一个cluster,则这个cluster附近的数字符合正态分布;如果是两个cluster,那么在这两个cluster附近的数字分别符合正态分布

Ⅷ 聚类方法选择

聚类结果的好坏取决于该聚类方法采用的相似性比较方法,选择的聚类方法应能再现内在的分类组,且对一个数据组内的错误或异常值比较敏感。

系统聚类的相似性(类与类之间的距离)比较方法有许多种,例如最长距离法(两类之间的距离用两类间最远样本的距离来表示,它是空间扩张的)、最短距离法(两类之间的距离以两类间的最近样本的距离来表示,它是空间压缩的)、重心距离法(两类间的距离以重心之间的距离表示,具有非单调性)、类平均法(两类间的距离以各类元素两两之间的平均平方距离来表示,具有空间保持及单调性)和离差平方和法(两类之间的平方距离用两类归类后所增加的离差平方和表示,聚类过程中使类内各指标的方差最小,类间的方差尽可能大,也具有单调性)等。

据研究,类平均法和离差平方和法能充分利用个样本的信息,是类型合并和区划中较好的方法,因而作为分区的主要方法。通过比较分析,本研究中采用离差平方和法。

Ⅸ 聚类分析方法应用于哪些问题的研究

1.聚类分析的特点
聚类分析(cluster analysis)是根据事物本身的特性研究个体的一种方法,目的在于将相似的事物归类.它的原则是同一类中的个体有较大的相似性,不同类的个体差异性很大.这种方法有三个特征:适用于没有先验知识的分类.如果没有这些事先的经验或一些国际、国内、行业标准,分类便会显得随意和主观.这时只要设定比较完善的分类变量,就可以通过聚类分析法得到较为科学合理的类别;可以处理多个变量决定的分类.例如,要根据消费者购买量的大小进行分类比较容易,但如果在进行数据挖掘时,要求根据消费者的购买量、家庭收入、家庭支出、年龄等多个指标进行分类通常比较复杂,而聚类分析法可以解决这类问题;聚类分析法是一种探索性分析方法,能够分析事物的内在特点和规律,并根据相似性原则对事物进行分组,是数据挖掘中常用的一种技术.
这种较成熟的统计学方法如果在市场分析中得到恰当的应用,必将改善市场营销的效果,为企业决策提供有益的参考.其应用的步骤为:将市场分析中的问题转化为聚类分析可以解决的问题,利用相关软件(如SPSS、SAS等)求得结果,由专家解读结果,并转换为实际操作措施,从而提高企业利润,降低企业成本.
2.应用范围
聚类分析在客户细分中的应用

消费同一种类的商品或服务时,不同的客户有不同的消费特点,通过研究这些特点,企业可以制定出不同的营销组合,从而获取最大的消费者剩余,这就是客户细分的主要目的.常用的客户分类方法主要有三类:经验描述法,由决策者根据经验对客户进行类别划分;传统统计法,根据客户属性特征的简单统计来划分客户类别;非传统统计方法,即基于人工智能技术的非数值方法.聚类分析法兼有后两类方法的特点,能够有效完成客户细分的过程.
例如,客户的购买动机一般由需要、认知、学习等内因和文化、社会、家庭、小群体、参考群体等外因共同决定.要按购买动机的不同来划分客户时,可以把前述因素作为分析变量,并将所有目标客户每一个分析变量的指标值量化出来,再运用聚类分析法进行分类.在指标值量化时如果遇到一些定性的指标值,可以用一些定性数据定量化的方法加以转化,如模糊评价法等.除此之外,可以将客户满意度水平和重复购买机会大小作为属性进行分类;还可以在区分客户之间差异性的问题上纳入一套新的分类法,将客户的差异性变量划分为五类:产品利益、客户之间的相互作用力、选择障碍、议价能力和收益率,依据这些分析变量聚类得到的归类,可以为企业制定营销决策提供有益参考.
以上分析的共同点在于都是依据多个变量进行分类,这正好符合聚类分析法解决问题的特点;不同点在于从不同的角度寻求分析变量,为某一方面的决策提供参考,这正是聚类分析法在客户细分问题中运用范围广的体现.

聚类分析在实验市场选择中的应用

实验调查法是市场调查中一种有效的一手资料收集方法,主要用于市场销售实验,即所谓的市场测试.通过小规模的实验性改变,以观察客户对产品或服务的反应,从而分析该改变是否值得在大范围内推广.
实验调查法最常用的领域有:市场饱和度测试.市场饱和度反映市场的潜在购买力,是市场营销战略和策略决策的重要参考指标.企业通常通过将消费者购买产品或服务的各种决定因素(如价格等)降到最低限度的方法来测试市场饱和度.或者在出现滞销时,企业投放类似的新产品或服务到特定的市场,以测试市场是否真正达到饱和,是否具有潜在的购买力.前述两种措施由于利益和风险的原因,不可能在企业覆盖的所有市场中实施,只能选择合适的实验市场和对照市场加以测试,得到近似的市场饱和度;产品的价格实验.这种实验往往将新定价的产品投放市场,对顾客的态度和反应进行测试,了解顾客对这种价格的是否接受或接受程度;新产品上市实验.波士顿矩阵研究的企业产品生命周期图表明,企业为了生存和发展往往要不断开发新产品,并使之向明星产品和金牛产品顺利过渡.然而新产品投放市场后的失败率却很高,大致为66%到90%.因而为了降低新产品的失败率,在产品大规模上市前,运用实验调查法对新产品的各方面(外观设计、性能、广告和推广营销组合等)进行实验是非常有必要的.
在实验调查方法中,最常用的是前后单组对比实验、对照组对比实验和前后对照组对比实验.这些方法要求科学的选择实验和非实验单位,即随机选择出的实验单位和非实验单位之间必须具备一定的可比性,两类单位的主客观条件应基本相同.
通过聚类分析,可将待选的实验市场(商场、居民区、城市等)分成同质的几类小组,在同一组内选择实验单位和非实验单位,这样便保证了这两个单位之间具有了一定的可比性.聚类时,商店的规模、类型、设备状况、所处的地段、管理水平等就是聚类的分析变量

阅读全文

与常用的聚类方法相关的资料

热点内容
简便叠衣服阔腿裤的方法省空间 浏览:493
议论文要写解决方法吗 浏览:920
雨伞怎么折是最简单的方法 浏览:848
vlookup函数查找出错解决方法 浏览:683
经纬仪测绘法测地图的方法步骤 浏览:727
多种方法测量微小长度的变化量 浏览:25
手机号算年龄方法用的什么基数 浏览:939
柠檬汁最简单的方法怎么做 浏览:494
18米高散热器安装连接方法 浏览:430
家里养猫最佳方法 浏览:134
保险费率厘定方法中最常用的方法 浏览:883
堆堆的制作方法视频 浏览:660
移民的解决方法 浏览:912
藏手机游戏方法 浏览:615
清理手机灰尘的好方法视频 浏览:388
烟草花叶病毒解决方法 浏览:839
供水器水压低解决方法 浏览:489
马兰头食用方法 浏览:832
贵州污泥的检测方法 浏览:303
腰椎锻炼飞燕方法 浏览:883