⑴ 几种常用的统计分析方法有哪几种
t检验 方差分析 卡方检验 回归
⑵ 常见的数据统计方法有什么
常见的数据统计方法有:表格、折线统计图、条形统计图、扇形统计图。举一个例子来具体分说明一下,比如说:我在淘宝开了个童装店,为了方便统计每半个月的销售额,现在用以上这四种统计方法来演示一下。
1.表格就是通过画格子的方式来统计数据,在这里可以画三行横线,得到两条细长的格子,再把这两行均匀的分为15个上下格子。横一为日期,横二为销售额,半个月下来都填进去就一目了然。
2.折线是通过画点,把15天的销售额都连成一条折线,通过上下起伏来看波动的数据。先画一“L”形,横线作日期,竖线作销售额,销售额可以自己写一个数,一直往上数与数之间相差一样。均匀的把横竖线分为15份,每个日期对应多少销售额,就在“L”的半框里,以对应的日期和销售画横线和竖线,交叉的位置取一点。然后每天如此,再用直线连接这15个点,就能清楚的看到这半个月哪一天销售最好,哪一天销售垫底。
3.条形统计图作出的是条状的数据统计图,和折线统计图一样,画“L”,横为日期竖为销售额。只不过这里不画点点,画倒立的长方形,然后通过高高低低的条形图来分析半个月的销售额。
4.扇形统计图就是把一个圆形,平均分为15份,一个月下来把所有的日销售额加起来,用当天的数据除以总数,乘以百分数。每一分里写上日期和当天销售额占总数的百分比,用这个百分数来统计半个月的数据。每个图的做法都不一样,但表达的意思都是同样的,这就是日常生活中最常见的几种数据统计。
⑶ 5种常用的统计学方法是什么
1、大量观察法
(3)常用的统计检验方法扩展阅读:
(一)大量观察法
这是统计活动过程中搜集数据资料阶段(即统计调查阶段)的基本方法:即要对所研究现象总体中的足够多数的个体进行观察和研究,以期认识具有规律性的总体数量特征。大量观察法的数理依据是大数定律,大数定律是指虽然每个个体受偶然因素的影响作用不同而在数量上几存有差异。
但对总体而言可以相互抵消而呈现出稳定的规律性,因此只有对足够多数的个体进行观察,观察值的综合结果才会趋向稳定,建立在大量观察法基础上的数据资料才会给出一般的结论。统计学的各种调查方法都属于大量观察法。
(二)、统计分组法
由于所研究现象本身的复杂性、差异性及多层次性,需要我们对所研究现象进行分组或分类研究,以期在同质的基础上探求不同组或类之间的差异性。统计分组在整个统计活动过程中都占有重要地位,在统计调查阶段可通过统计分组法来搜集不同类的资料,并可使抽样调查的样本代表性得以提高(即分层抽样方式);
在统计整理阶段可以通过统计分组法使各种数据资料得到分门别类的加工处理和储存,并为编制分布数列提供基础;在统计分析阶段则可以通过统计分组法来划分现象类型、研究总体内在结构、比较不同类或组之间的差异(显着性检验)和分析不同变量之间的相关关系。统计学中的统计分组法有传统分组法、判别分析法和聚类分析法等。
(三)、综合指标法
统计研究现象的数量方面的特征是通过统计综合指标来反映的。所谓综合指标,是指用来从总体上反映所研究现象数量特征和数量关系的范畴及其数值,常见的有总量指标、相对指标,平均指标和标志变异指标等。
综合指标法在统计学、尤其是社会经济统计学中占有十分重要的地位,是描述统计学的核心内容。如何最真实客观地记录、描述和反映所研究现象的数量特征和数量关系,是统计指标理论研究的一大课题。
⑷ 统计学检验方法有哪些
统计学 各种应用条件、校正条件
应用检验方法必须符合其适用条件,不同设计的数据应选用不同检验方法。 一、第五章 参数估计 P74 总体均数的置信区间 1.正态近似法:
总体标准差σ已知,或σ未知但n>50时 2. t分布法
总体标准差σ未知,且n≤50时
二、第六章 计量资料两组均数t检验P93、P99 (一)t 检验的应用条件
适用于计量资料(单样本、两配对样本、两独立样本),并要求: 1. 样本来自正态分布的总体。W检验(n≤50时),H0:样本来自正态总体,P>0.05时尚不能认为两组资料的分布非正态;
2. 两独立样本均数比较时,两总体方差齐性。Levene检验,H0:方差相等。P>0.05时尚不能认为两组资料方差不齐。
(二)方差不齐或非正态时,两计量资料均数的比较方法 方法1. 仅方差不齐时,可采用近似t检验,即 t′检验。 方法2. 变量变换:对数变换、平方根变换、倒数变换等
方法3. 非参数检验:Wilcoxon符号秩检验(两相关样本P142);Wilcoxon秩和检验、Mann-Whiney-U检验(两独立样本 P145)等
三、第七章 计量资料多组均数的比较-方差分析 (一)方差分析流程 P109
1、多个样本均数比较。若P<0.05,均数不全相等,则进行第2步;
2、作多重比较:LSD-t检验、Dunnett-t检验(多个实验组与一个对照组比较)、SNK-q检验(多个均数间全面比较)
(二)方差分析的应用条件 P114
1、各样本相互独立,服从正态分布;W检验 2、各样本方差齐性。Levene检验
四、分类资料(计数资料)的比较-
⑸ 常用统计分析方法
数据分析师针对不同业务问题可以制作各种具体的数据模型去分析问题,运用各种分析方法去探索数据,这里介绍最常用的三种分析方法,希望可以对您的工作有一定的的帮助
文中可视化图表均使用DataFocus数据分析工具制作。
1.相关分析
相关分析显示变量如何与另一个变量相关。例如,它显示了计件工资是否会带来更高的生产率。
2.回归分析
回归分析是对一个变量值与另一个变量值之间差异的定量预测。回归模拟依赖变量和解释变量之间的关系,这些变量通常绘制在散点图上。您还可以使用回归线来显示这些关系是强还是弱。
另请注意,散点图上的异常值非常重要。例如,外围数据点可能代表公司最关键供应商或畅销产品的输入。但是,回归线的性质通常会让您忽略这些异常值。
3.假设检验
假设检验是基于某些假设并从样本到人口的数理统计中的统计分析方法。主要是为了解决问题的需要,对整体研究提出一些假设。通常,比较两个统计数据集,或者将通过采样获得的数据集与来自理想化模型的合成数据集进行比较。提出了两个数据集之间统计关系的假设,并将其用作理想化零假设的替代方案。建议两个数据集之间没有关系。
在掌握了数据分析的基本图形和分析方法之后,数据分析师认为有一点需要注意:“在没有确认如何表达你想要解决的问题之前,不要开始进行数据分析。”简而言之,如果您无法解释您试图用数据分析解决的业务问题,那么没有数据分析可以解决问题。
⑹ 什么是统计检验怎么选择统计检验方法
统计检验的真核应该就是选取有代表性的样本,然后去节省人力、物力的前提下,去推断总体的一些性质、是否有差异的等。其余别的什么分布的,楼上回答的不错。其实重难点基础备考统计这部分写的很好。注意是正态分布,而不是Z分布。
⑺ 常用统计学方法
感知机 二分类
二分类的线性分类模型,也是判别模型。
目的是求出把训练数据进行线性划分的分离超平面。
感知机是神经网络和支持向量机的基础。
学习策略:极小化损失函数。损失函数对应于误分类点到分离超平面的总距离。
基于随机梯度下降法对损失函数的最优化算法,有原始形式和对偶形式。
K近邻法 K-nearest neighbor, K-NN 多分类和回归
是一种分类和回归方法,有监督学习。在训练数据集中找到和新的输入实例最接近的K个实例,这k个实例的多数类别就是这个新实例的类别。
三要素:K的选择,距离度量,分类决策规则。
实现方法:kd树(二叉树)快速搜索K个最近邻的点。
K值选择:反映了对近似误差和估计误差的权衡。交叉验证选择最优的K值,K小,模型复杂,K大,模型简答。
朴素贝叶斯法 多分类 用于NLP
朴素贝叶斯法是基于贝叶斯定理和特征条件独立假设的分类方法。首先学习输入输出的联合概率分布,然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。
后验概率最大等价于0-1损失函数的期望风险最小化。
是典型的生成学习方法,由训练数据求出联合概率分布,再求出条件概率分布(后验概率)。
概率估计方法是:极大似然估计或者贝叶斯估计。
基本假设是条件独立性
决策树 decision tree 多分类,回归
是一种分类和回归算法。包括三个步骤:特征选择,决策树生成和决策树的修剪,常用算法:ID3,C4.5,CART
逻辑斯地回归和最大熵模型 多分类
本质就是给线性回归添加了对数函数
它的核心思想是,如果线性回归的结果输出是一个连续值,而值的范围是无法限定的,那我们有没有办法把这个结果值映射为可以帮助我们判断的结果呢。
而如果输出结果是 (0,1) 的一个概率值,这个问题就很清楚了。我们在数学上找了一圈,还真就找着这样一个简单的函数了,就是很神奇的sigmoid函数(如下):
逻辑回归用于二分类和多分类
逻辑斯地分布是S型曲线
最大熵模型:熵最大的模型是最好的模型。
X服从均匀分布时候,熵最大
最大熵模型的学习等价于约束最优化问题。
对偶函数的极大化等价于最大熵模型的极大似然估计。
模型学习的最优化算法有:改进的迭代尺度法IIS,梯度下降法,牛顿法,或者拟牛顿法
支持向量机 二分类
线性可分支持向量机利用间隔最大化求最优分离超平面。
函数间隔
⑻ 常用统计分析方法有哪些
1、对比分析法
对比分析法指通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。常见的对比有横向对比和纵向对比。
横向对比指的是不同事物在固定时间上的对比,例如,不同等级的用户在同一时间购买商品的价格对比,不同商品在同一时间的销量、利润率等的对比。
纵向对比指的是同一事物在时间维度上的变化,例如,环比、同比和定基比,也就是本月销售额与上月销售额的对比,本年度1月份销售额与上一年度1月份销售额的对比,本年度每月销售额分别与上一年度平均销售额的对比等。利用对比分析法可以对数据规模大小、水平高低、速度快慢等做出有效的判断和评价。
2、分组分析法
分组分析法是指根据数据的性质、特征,按照一定的指标,将数据总体划分为不同的部分,分析其内部结构和相互关系,从而了解事物的发展规律。
根据指标的性质,分组分析法分为属性指标分组和数量指标分组。所谓属性指标代表的是事物的性质、特征等,如姓名、性别、文化程度等,这些指标无法进行运算;而数据指标代表的数据能够进行运算,如人的年龄、工资收入等。分组分析法一般都和对比分析法结合使用。
3、预测分析法
预测分析法主要基于当前的数据,对未来的数据变化趋势进行判断和预测。预测分析一般分为两种:一种是基于时间序列的预测,例如,依据以往的销售业绩,预测未来3个月的销售额;另一种是回归类预测,即根据指标之间相互影响的因果关系进行预测,例如,根据用户网页浏览行为,预测用户可能购买的商品。
4、漏斗分析法
漏斗分析法也叫流程分析法,它的主要目的是专注于某个事件在重要环节上的转化率,在互联网行业的应用较普遍。比如,对于信用卡申请的流程,用户从浏览卡片信息,到填写信用卡资料、提交申请、银行审核与批卡。
最后用户激活并使用信用卡,中间有很多重要的环节,每个环节的用户量都是越来越少的,从而形成一个漏斗。使用漏斗分析法,能使业务方关注各个环节的转化率,并加以监控和管理,当某个环节的转换率发生异常时,可以有针对性地优化流程,采取适当的措施来提升业务指标。
5、AB测试分析法
AB 测试分析法其实是一种对比分析法,但它侧重于对比A、B两组结构相似的样本,并基于样本指标值来分析各自的差异。
例如,对于某个App的同一功能,设计了不同的样式风格和页面布局,将两种风格的页面随机分配给使用者,最后根据用户在该页面的浏览转化率来评估不同样式的优劣,了解用户的喜好,从而进一步优化产品。
除此之外,要想做好数据分析,读者还需掌握一定的数学基础,例如,基本统计量的概念(均值、方差、众数、中位数等),分散性和变异性的度量指标(极差、四分位数、四分位距、百分位数等),数据分布(几何分布、二项分布等),以及概率论基础、统计抽样、置信区间和假设检验等内容,通过相关指标和概念的应用,让数据分析结果更具专业性。
⑼ 统计法常用的方法包括什么等
分析计量资料的统计分析方法可分为参数检验法和非参数检验法。
参数检验法主要为t检验和方差分析(ANOVN,即F检验)等,两组间均数比较时常用t检验和u检验,两组以上均数比较时常用方差分析;非参数检验法主要包括秩和检验等。t检验可分为单组设计资料的t检验、配对设计资料的t检验和成组设计资料的t检验;当两个小样本比较时要求两总体分布为正态分布且方差齐性,若不能满足以上要求,宜用t 检验或非参数方法(秩和检验)。
方差分析可用于两个以上样本均数的比较,应用该方法时,要求各个样本是相互独立的随机样本,各样本来自正态总体且各处理组总体方差齐性。根据设计类型不同,方差分析中又包含了多种不同的方法。对于定量资料,应根据所采用的设计类型、资料所具备的条件和分析目的,选用合适的统计分析方法,不应盲目套用t检验和单因素方差分析。