1. 琼脂糖凝胶电泳的原理什么
琼脂糖凝胶电泳的原理:琼脂糖凝胶电泳是常用的用于分离、鉴定DNA、RNA分子混合物的方法,这种电泳方法以琼脂凝胶作为支持物,利用DNA分子在泳动时的电荷效应和分子筛效应,达到分离混合物的目的。
DNA分子在高于其等电点的溶液中带负电,在电场中向阳极移动。在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即分子本身的大小和构型是主要的影响因素。DNA分子的迁移速度与其相对分子量成反比。
不同构型的DNA分子的迁移速度不同。如环形DNA分子样品,其中有三种构型的分子:共价闭合环状的超螺旋分子(cccDNA)、开环分子(ocDNA)、和线形DNA分子(IDNA)。这三种不同构型分子进行电泳时的迁移速度大小顺序为:cccDNA>IDNA>ocDNA
核酸分子是两性解离分子,pH3.5是碱基上的氨基解离,而三个磷酸基团中只有一个磷酸解离,所以分子带正电,在电场中向负极泳动;而 pH8.0-8.3时,碱基几乎不解离,而磷酸基团解离,所以核酸分子带负电,在电场中向正极泳动。
不同的核酸分子的电荷密度大致相同,因此对泳动速度影响不大。在中性或碱性时,单链DNA与等长的双链DNA的泳动率大致相同。
(1)常用于核酸分离鉴定的电泳方法扩展阅读
影响核酸分子泳动率的因素
1、样品的物理性状
即分子的大小、电荷数、颗粒形状和空间构型。一般而言,电荷密度愈大,泳动率越大。但是不同核酸分子的电荷密度大致相同,所以对泳动率的影响不明显。
对线形分子来说,分子量的常用对数与泳动率成反比,用此标准样品电泳并测定其泳动率,然后进行DNA分子长度(bp)的负对数——泳动距离作标准曲线图,可以用于测定未知分子的长度大小。
DNA分子的空间构型对泳动率的影响很大,比如质粒分子,泳动率的大小顺序为:cDNA>IDNA>ocDNA但是由于琼脂糖浓度、电场强度、离子强度和溴化乙锭等的影响,会出现相反的情况。
2、支持物介质
核酸电泳通常使用琼脂糖凝胶和聚丙烯酰胺凝胶两种介质,琼脂糖是一种聚合链线性分子。含有不同浓度的琼脂糖的凝胶构成的分子筛的网孔大小不同,是于分离不同浓度范围的核酸分子。聚丙烯酰胺凝胶由丙烯酰胺(Acr)在N,N,N′-四甲基乙四胺(TEMED)和过硫酸铵(AP)的催化下聚合形成长链,并通过交联剂N,N′-亚甲双丙烯酰胺(Bis)交叉连接而成,其网孔的大小由Acr与Bis的相对比例决定。
琼脂糖凝胶适合分离长度100至60的分子,而聚丙烯酰胺凝胶对于小片段(5bp-500bp)的分离效果最好。选择不同浓度的凝胶,可以分离不同大小范围的DNA分子。
3、电场强度
电场强度愈大,带点颗粒的泳动越快。但凝胶的有效分离范围随着电压增大而减小,所以电泳时一般采用低电压,不超过4V/cm。而对于大片段电泳,甚至用0.5-1.0V/cm电泳过夜。进行高压电泳时,只能使用聚丙烯酰胺凝胶。
4、缓冲液离子强度
核酸电泳常采用TAE、 TBE、TPE三种缓冲系统,但它们各有利弊。TAE价格低廉,但缓冲能力低,必须进行两极缓冲液的循环。TPE在进行DNA回收时,会使DNA污染磷酸盐,影响后续反应。所以多采用TBE缓冲液。
在缓冲液中加入EDTA,可以鳌合二价离子,抑制DNase,保护DNA。
缓冲液pH常偏碱性或中性,此时核酸分子带负电,向正极移动。
核酸电泳中常用的染色剂是溴化乙锭(ethidium bromide EB)。溴化乙锭是一种扁平分子,可以嵌入核酸双链的配对碱基之间。在紫外线照射BE-DNA复合物时,出现不同的效应。
254nm的紫外线照射时,灵敏度最高,但对DNA损伤严重;360nm紫外线照射时,虽然灵敏度较低,但对DNA损伤小,所以适合对DNA样品的观察和回收等操作。300nm紫外线照射的灵敏度较高,且对DNA损伤不是很大,所以也比较适用。
使用溴化乙锭对DNA样品进行染色,可以在凝胶中加入终浓度为0.5μg/ml的EB。EB掺入DNA分子中,可以在电泳过程中随时观察核酸的迁移情况,但是如果要测定核酸分子大小时,不宜使用以上方法,而是应该在电泳结束后,把凝胶浸泡在含0.5μg/mlEB的溶液中10~30min进行染色。BE见光分解,应在避光条件下4℃保存。
2. 1. 为什么琼脂糖凝胶电泳可以分离和鉴定核酸
可以,琼脂糖凝胶电泳可以通过限制性酶切多态性(rflp)或者扩增片断多态性(aflp)来鉴定检测的dna。就是不同dna被特定的限制性内切酶切出来的片断大小是不一样的,在琼脂糖凝胶电泳跑出来的条带也不一样,如果是相同的dna,结果就一样。
3. 琼脂糖电泳有何优缺点
琼脂糖凝胶电泳是用琼脂或琼脂糖作支持介质的一种电泳方法。对于分子量较大的样品,如大分子核酸、病毒等,一般可采用孔径较大的琼脂糖凝胶进行电泳分离。
琼脂糖凝胶约可区分相差100bp的DNA片段,其分辨率虽比聚丙烯酰胺凝胶低,但它制备容易,分离范围广,尤其适于分离大片段DNA。普通琼脂糖凝胶分离DNA的范围为0.2-20kb,利用脉冲电泳,可分离高达10^7bp的DNA片段。
琼脂糖凝胶的特点
天然琼脂(agar)是一种多聚糖,主要由琼脂糖(agarose,约占80%)及琼脂胶(agaropectin)组成。琼脂糖是由半乳糖及其衍生物构成的中性物质,不带电荷,而琼脂胶是一种含硫酸根和羧基的强酸性多糖,由于这些基团带有电荷,在电场作用下能产生较强的电渗现象,加之硫酸根可与某些蛋白质作用而影响电泳速度及分离效果。因此,目前多用琼脂糖为电泳支持物进行平板电泳,其优点如下。
(1)琼脂糖凝胶电泳操作简单,电泳速度快,样品不需事先处理就可以进行电泳。
(2)琼脂糖凝胶结构均匀,含水量大(约占98%~99%),近似自由电泳,样品扩散较自由电流,对样品吸附极微,因此电泳图谱清晰,分辨率高,重复性好。
(3)琼脂糖透明无紫外吸收,电泳过程和结果可直接用紫外光灯检测及定量测定。
(4)电泳后区带易染色,样品极易洗脱,便于定量测定。制成干膜可长期保存。
目前,常用琼脂糖作为电泳支持物,分离蛋白质和同工酶。将琼脂糖电泳与免疫化学相结合,发展成免疫电泳技术,能鉴别其他方法不能鉴别的复杂体系,由于建立了超微量技术,0.1ug蛋白质就可检出。
琼脂糖凝胶电泳也常用于分离、鉴定核酸,如DNA鉴定,DNA限制性内切核酸酶图谱制作等。由于这种方法操作方便,设备简单,需样品量少,分辨能力高,已成为基因工程研究中常用实验方法之一。
4. 常见的电泳方法
实验室中常见的电泳方法有以下几种:
一、纸电泳
指用滤纸作为支持载体的电泳方法。是最早使用的区带电泳。
将滤纸条水平地架设在两个装有缓冲溶液的容器之间,样品点于滤纸中央。当滤纸条被缓冲液润湿后,再盖上绝缘密封罩,即可由电泳电源输入直流电压(100V~1000V)进行电泳。
二、醋酸纤维素薄膜电泳
电泳时经过膜的预处理、加样、电泳、染色、脱色与透明即可得到满意的分离效果。此电泳的特点是分离速度快、电泳时间短、样品用量少。因此特别适合于病理情况下微量异常蛋白的检测。
三、凝胶电泳
由区带电泳中派生出的一种用凝胶物质作支持物进行电泳的方式。
凝胶电泳中的琼脂糖凝胶电泳和聚丙烯酰胺凝胶电泳是普通电泳中应用最多的两种形式。
目前,这种办法被广泛用来分析蛋白质和核酸。
四、等电聚焦电泳
1.等电聚焦电泳过程
一种利用有pH值梯度的介质,分离等电点不同的蛋白质的电泳技术。
在一个稳定连续的线性pH梯度的溶液(两性载体电解质)中进行分离,每一种被分离的两性物质都移向与它的等电点相一致的pH位置,在那里不再移动(称为聚焦)。
2.等电聚焦电泳的特点
使用两性载体电解质,在电极之间形成稳定、连续、线性的pH梯度;
由于“聚焦效应”,即使很小的样品也能获得清晰、鲜明的区带界面;
电泳速度快;分辨率高;
加入样品的位置可任意选择;
可用于测定蛋白质类物质的等电点;
适用于中、大分子量(如蛋白质、肽类、同工酶等)生物组分的分离分析。
五、等速电泳
采用两种不同浓度的电解质,一种为前导电解质,充满整个毛细管柱;另一种为尾随电解质,置于一端的电泳槽中。前导电解质的迁移率高于任何样品组分,尾随电解质则低于任何样品组分,被分离的组分按其不同的迁移率夹在中间,在强电场的作用下,各被分离组分在前导电解质与尾随电解质之间的空隙中移动,实现分离。
六、双向凝胶电泳(二维电泳)
第一向采用等电聚焦 根据复杂的蛋白质成分中各个蛋白质的PI的不同,将蛋白质进行分离。
第二向采用了十二烷基硫酸钠一聚丙烯酰胺凝胶电泳 (SDS-PAGE)就是按蛋白质分子量的大小使其在垂直方向进行分离。其结果不再是条带状,而是呈现为斑点状。
七、免疫电泳
免疫电泳是琼脂平板电泳和双相免疫扩散两种方法的结合。将抗原样品在琼脂平板上先进行电泳,使其中的各种成分因电泳迁移率的不同而彼此分开;然后加入抗体做双相免疫扩散,把已分离的各抗原成分与抗体在琼脂中扩散而相遇,在二者比例适当的地方,形成肉眼可见的沉淀弧。
5. 核酸电泳的简介
凝胶电泳操作简便、快速,可以分辨用其它方法(如密度梯度离心)所无法分离的核酸片段,是分离、鉴定和纯化核酸的一种常用方法。