导航:首页 > 使用方法 > 初中数学常用添线方法

初中数学常用添线方法

发布时间:2022-10-17 10:27:48

1. 数学初二上常见引辅助线的方法

一、见中点引中位线,见中线延长一倍
在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
二、
在比例线段证明中,常作平行线。
作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
三、对于梯形问题,常用的添加辅助线的方法有
1、过上底的两端点向下底作垂线
2、过上底的一个端点作一腰的平行线
3、过上底的一个端点作一对角线的平行线
4、过一腰的中点作另一腰的平行线
5、过上底一端点和一腰中点的直线与下底的延长线相交
6、作梯形的中位线
7、延长两腰使之相交
四、在解决圆的问题中
1、两圆相交连公共弦。
2、两圆相切,过切点引公切线。
3、见直径想直角
4、遇切线问题,连结过切点的半径是常用辅助线
5、解决有关弦的问题时,常常作弦心距

2. 初中数学一般的做辅助线的方法有那些

你好..
方法有很多
因题而异
一般的话
做几何题
要多尝试
总会试出来的..

3. 初中数学做辅助线方法

一.添辅助线有二种情况:
1按定义添辅助线:
如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:
每个几何定理都有与它相对应的几何图形,我们 把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下:
(1)平行线是个基本图形:
当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线
(2)等腰三角形是个简单的基本图形:
当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:
出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形
出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形
几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:
全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线
(7)相似三角形:
相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。
(8)特殊角直角三角形
当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明
(9)半圆上的圆周角
出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。
二.基本图形的辅助线的画法
1.三角形问题添加辅助线方法
方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形中常用辅助线的添法
平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:
(1)连对角线或平移对角线:
(2)过顶点作对边的垂线构造直角三角形
(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线
(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)过顶点作对角线的垂线,构成线段平行或三角形全等.
3.梯形中常用辅助线的添法
梯形是一种特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:
(1)在梯形内部平移一腰。
(2)梯形外平移一腰
(3)梯形内平移两腰
(4)延长两腰
(5)过梯形上底的两端点向下底作高
(6)平移对角线
(7)连接梯形一顶点及一腰的中点。
(8)过一腰的中点作另一腰的平行线。
(9)作中位线
当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。
4.圆中常用辅助线的添法
在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的。
(1)见弦作弦心距
有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。
(2)见直径作圆周角
在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。
(3)见切线作半径
命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。
(4)两圆相切作公切线
对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。
(5)两圆相交作公共弦
对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。
作辅助线的方法
一:中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。”
托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)
五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立。
如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立。
有时,圆周角,弦切角,圆心角,圆内角和圆外角也存在因果关系互相联想作辅助线。
九:面积找底高,多边变三边。
如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。
如遇多边形,想法割补成三角形;反之,亦成立。
另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。

4. 初中阶段数学各种图形的常用辅助线做法

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

5. 初三数学几何有没有好的辅助线添加方法(例如口诀之类的)

一、见中点引中位线,见中线延长一倍
二、在比例线段证明中,常作平行线
三、对于梯形问题,常用的添加辅助线的方法有
1、过上底的两端点向下底作垂线
2、过上底的一个端点作一腰的平行线
3、过上底的一个端点作一对角线的平行线
4、过一腰的中点作另一腰的平行线
5、过上底一端点和一腰中点的直线与下底的延长线相交
6、作梯形的中位线
7、延长两腰使之相交
四、在解决圆的问题中
1、两圆相交连公共弦
2、两圆相切,过切点引公切线
3、见直径想直角
4、遇切线问题,连结过切点的半径是常用辅助线
5、解决有关弦的问题时,常常作弦心距

关键是多做题、多总结、依具体题目来决定需不需要作辅助线和怎样作辅助线

6. 求初中数学辅助线口诀解释

如果你对初中几何中的定理、公理等不熟悉的话,给你一个解释也不会很明白的。其实你们老师也是很花了点功夫的,他已经全面地把初中几何中的常见添加辅助线的方法进行了归纳,很全面的哦。
我建议你先去把课本上的定理、公理、推论、图形性质等掌握好,然后就会明白的。比如:“图中有角平分线,可向两边作垂线。”涉及到的定理就是“角平分线上的点,到角两边的距离相等”由所作辅助线就可得到到相等的线段,在证明线段相等的几何问题时就很有用。又如“也可将图对折看,对称以后关系现。”利用的就是轴对称的性质,全等形的性质等,如果你对轴对称性质和全等形性质不熟悉,理解这句就困难点。总之,还是老实地去把课本上的东西掌握好。

7. 中考数学常用辅助线添法

我在网上搜到一个关于做辅助线的歌诀,现分享与你,希望对你有所帮助!!
初中几何常见辅助线作法歌诀汇编
人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
图中有角平分线,可向两边作垂线。
也可将图对着看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线加一倍。
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找相似很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
要想作个外接圆,各边作出中垂线。
还要作个内切圆,内角平分线梦园。
如果遇到相交圆,不要忘作公共弦。
若是添上连心线,切点肯定在上面。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。

8. 初中数学几何做辅助线技巧

辅助线一直都是解决几何问题中不可或缺的,通过辅助线的有效添加,不仅可以使得相应问题得到更好、更便捷的解答,也能够给学生留下更深刻的印象。下面是我为大家整理的关于初中数学几何做辅助线技巧,希望对您有所帮助。欢迎大家阅读参考学习!

1初中数学几何做辅助线技巧

辅助线在三角形中的科学运用

对于三角形中辅助线的添加来讲,主要是结合问题特点与需求来进行辅助线的科学运用。例如,在无法利用现有条件将三角形三边关系直接证明出来时,可以将其中一边延长,也可以通过将其两点连接来构成三角形,以此来得出其线段在一个或是多个三角形中的结论,然后再利用三角形三边的不等关系来进行证明;又如:在无法利用现有条件将三角形外角大于任何不与其相邻的内角这一定义直接证明出来时,就可以引导学生将某一边延长,或者是通过连接其中两点构成三角形,以此来让其小角位于其图形的内角,之后再证明出其大角处于其三角形的外角位置,在此基础上再运用相应外角定理来最终解答。此外,若题目中给出了平分线时,通常都是在其角的两边取相同的线段来构成全等三角形等。

上述只是 总结 了三角形辅助线比较常见的添加方式,但是对于数学辅助线的应用来讲,通常都是法无定法的,因此,要想将辅助线的积极作用充分发挥出来,并在解题中实现科学灵活运用,往往还是需要在实践解题练习中不断归纳与总结,不仅可以单独添加,也可以结合实际情况,进行恰当的组合运用,也只有这样在解答相应题目过程中才能够真正做到有的放矢,才能够引导学生真正掌握其运用规律与技巧,因此,出了总结、归纳外,其数学教师还应结合学生实际认知需求,积极为学生设计针对性较强的练习活动。

辅助线在平行四边形中的恰当运用

平行四边形主要包括正方形、菱形,以及矩形,这些图形的两组对边、对角等具有的性质都有一定的相似之处,所以,辅助线在这些图形中的添加 方法 一般都具有较大的相似性,往往都是为了实现线段的垂直与平行,在此基础上构成相应的全等、相似三角形。通常情况下,都是平移、连接图形对角线,或者是结合实际情况连接其中一边的中点与顶点等方式,从而将平行四边形巧妙转化成相应的矩形、三角形等图形,这样再分析解决其该题目则更加便捷。

例如,在解答下面这道题目时:已知AB与CD平行,BC平行于AD,证明,CD=AB。 在解答这道题目时,教师就可以通过添加辅助线AC来将图形分割成两个三角形进行证明。解答如下: 证明:连接AC。因为AB与CD平行,BC与AD平行,结合两直线平行、内错角相等的定理,所以∠1=∠2,∠3=∠4。在△ABC与△CDA中,因为∠1=∠2,∠4=∠3,CA=AC,所以根据角边角定理可以得出△ABC≌三角形CDA,在结合全等三角形的对应边相等定理可以得出AB=CD。通过指导学生将平行四边形分割成两个三角形,学生就可以轻松点运用三角形的相关知识来证明其对边相等,让其在此过程中掌握较为典型的辅助线添加方法,也更便捷的解答此题目。

2基本图形的辅助线的画法

三角形问题添加辅助线方法

方法1:有关三角形中线的题目,常将中线加倍.含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题. 方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题. 方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理.

平行四边形中常用辅助线的添法

平行四边形(包括矩形、正方形、菱形)辅助线通常是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法包括连对角线或平移对角线、过顶点作对边的垂线构造直角三角形、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线、过顶点作对角线的垂线,构成线段平行或三角形全等.

圆中常用辅助线的添法

在平面几何中,解决与圆有关的问题时,常常需要添加辅助线的方法包括见弦作弦心距、见直径作圆周角、见切线作半径、两圆相切作公切线、两圆相交作公共弦等方法.

梯形中常用辅助线的添法

梯形是一种特殊的四边形.它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决.辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰;(2)梯形外平移一腰;(3)梯形内平移两腰;(4)延长两腰;(5)过梯形上底的两端点向下底作高;(6)平移对角线;(7)作中位线等.

3数学初中证明题技巧

读题要细心

有些学生一看到某一题前面部分有似曾相识的感觉,就直接写答案,这种还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取,我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置.?

要引申

难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论,然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习.?

要记.

这里的记有两层意思.第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来.如给出对边相等,就用边相等的符号来表示;第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来.?

对于读题这一环节,我们之所以要求这么复杂,是因为在实际证题的过程中,学生找不到证明的思路或方法,很多时候就是由于漏掉了题中某些已知条件或将题中某些已知条件记错或想当然地添上一些已知条件,而将已知记在心里并能复述出来就可以很好地避免这些情况的发生.

4初中数学几何证明题技巧

牢记几何语言

几何证明题,要使用几何语言,这对于刚学几何的学生来说,仅当又学一门“外语”,并努力尽快地掌握这门“外语”的语言使用和表达能力。

首先,从几何第一课起,就应该特别注意几何语言的规范性,要让学生理解并掌握一些规范性的几何语句。如:“延长线段AB到点C,使AC=2AB”,“过点C作CD⊥AB,垂足为点D”,“过点A作l∥CD”等,每一句通过上课的教学,课后的辅导,手把手的作图,表达几何语言;表达几何语言后作图,反复多次,让学生理解每一句话,看得懂题意。

其次,要注意对几何语言的理解,几何语言表达要确切。例如:钝角的意义是“大于直角而小于平角的叫钝角”,“大于直角或小于平角的角叫钝角”,把“而”字说成了“或”字,这就是学习对几何语言理解不佳,造成的表达不确切。“一字之差”意思各异,在辅导时,注重语言的准确性,对其犯的错误反复更正,做到学习之初要严谨。

规范推理格式

数学中推理证明的书写格式有许多种,但最基本的是演绎法,也就是从已知条件出发,根据已经学过的数学概念、公理、定理等知识,顺着推理,由“已知”得“推知”,由“推知”得“未知”,逐步地推出求证的结论来。这种证题格式一般叫“演绎法”,课本上的定理证明,例题的证明,多数是采用这种格式。它的书写形式表达常用语言是“因为…,所以…”特别是一开始学习几何证明,首先要掌握好这种推理格式,做到规范化。

积累证明思路

“几何证明难”最难莫过于没有思路。怎样积累证明思路呢?这主要靠听讲,看书时积极思考,不仅弄明白题目是“如何证明?”,还要进一步追究一下,“证明题方法是如何想出来的?”。只有经常这样独立思考,才会使自己的思路开阔灵活。随着证明题难度的增加,还要教会学生用“两头凑”的方法,即在同一个证明题的分析过程中,分析法与综合法并用,来缩短已知与未知之间的距离,在教学安排时,要给其足够的时间思考,而且重复证明思路,提高对解题思路的理解和应用能力。


初中数学几何做辅助线技巧相关 文章 :

1. 初中数学的解题技巧

2. 初二数学的重要性, 几何常见辅助线口诀

3. 几何大题的初中数学做题思路

4. 初二数学压轴题答题技巧

5. 初中数学学习的一般误区,数学学习十大技巧

6. 怎样提高初二数学

7. 初中数学解题技巧与方法

8. 简单高效的初中数学学习方法

9. 初中数学高效学习与解题方法

9. 数学辅助线做法技巧初中

数学辅助线做法技巧初中
(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与两条平行线都相交的第三条直线。
(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的两条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形:出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系、且倍线段是直角三角形的斜边,则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形:几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明,当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个相等角关于某一直线成轴对称就可以添加轴对称形成全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线

10. 初中数学各种常见几何图形的添辅助线的方法

添加中线,在等腰三角形中,一般添加一种就可以得出很多,添加中线,可得角平分等,这是最常用的,可以根据公式,选择添加的,但添加之后要知道可得出什么结论,一般证全等,就要找出全等三角形,根据这个来找全等的条件,这样比较好做,遇上难题,我们可拆出简单图形,来找以前做过的基本图形,可先不想添加辅助线的方法,找出基本图形是很好的方法,根据需要来添加辅助线,不要盲目添加,否则越想越难,有角平分一定想垂直,在等腰中,要想三线合一

阅读全文

与初中数学常用添线方法相关的资料

热点内容
偏瘫的稳定训练方法 浏览:817
架点分析与使用方法 浏览:608
菜鸟写作技巧和方法 浏览:762
闲置快速卖出去的方法 浏览:549
电脑用电压力锅做蛋糕的方法 浏览:5
建行随芯用使用方法 浏览:282
眼角的皱纹用什么方法可以弄掉 浏览:930
汽车螺纹测量方法 浏览:396
分析企业财务数据的方法 浏览:844
解决好三农问题的方法 浏览:775
小弹力带的腿部训练方法 浏览:872
eminence使用方法 浏览:185
统计方法与资料分析课 浏览:419
如何挤奶方法视频教程 浏览:81
荣耀6电量提醒设置在哪里设置方法 浏览:111
黄褐斑国外治疗方法 浏览:618
煎包机的制作方法视频 浏览:840
电脑怎么清理桌面垃圾最快方法 浏览:608
轿车轮胎性能检测方法及其标准 浏览:439
pc肌锻炼方法教学视频 浏览:999