导航:首页 > 使用方法 > 数列通项公式的常用方法

数列通项公式的常用方法

发布时间:2022-01-14 01:33:42

❶ 求数列通项公式的几种常见方法

一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。
例:在数列{an}中,若a1=1,an
1=an
2(n1),求该数列的通项公式an。
解:由an
1=an
2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。
二、已知数列的前n项和,用公式
s1
(n=1)
sn-sn-1
(n2)
例:已知数列{an}的前n项和sn=n2-9n,第k项满足5
(a)
9
(b)
8
(c)
7
(d)
6
解:∵an=sn-sn-1=2n-10,∴5<2k-10<8
∴k=8

(b)
此类题在解时要注意考虑n=1的情况。
三、已知an与sn的关系时,通常用转化的方法,先求出sn与n的关系,再由上面的(二)方法求通项公式。
例:已知数列{an}的前n项和sn满足an=snsn-1(n2),且a1=-,求数列{an}的通项公式。
解:∵an=snsn-1(n2),而an=sn-sn-1,snsn-1=sn-sn-1,两边同除以snsn-1,得---=-1(n2),而-=-=-,∴{-}
是以-为首项,-1为公差的等差数列,∴-=
-,sn=
-,
再用(二)的方法:当n2时,an=sn-sn-1=-,当n=1时不适合此式,所以,
-
(n=1)
-
(n2)
四、用累加、累积的方法求通项公式
对于题中给出an与an
1、an-1的递推式子,常用累加、累积的方法求通项公式。
例:设数列{an}是首项为1的正项数列,且满足(n
1)an
12-nan2
an
1an=0,求数列{an}的通项公式
解:∵(n
1)an
12-nan2
an
1an=0,可分解为[(n
1)an
1-nan](an
1
an)=0
又∵{an}是首项为1的正项数列,∴an
1
an
≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴
-=-,
又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈n*)
五、用构造数列方法求通项公式
题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有
an(或sn)的式子,使其成为等比或等差数列,从而求出an(或sn)与n的关系,这是近一、二年来的高考热点,因此既是重点也是难点。
例:已知数列{an}中,a1=2,an
1=(--1)(an
2),n=1,2,3,……
(1)求{an}通项公式
(2)略
解:由an
1=(--1)(an
2)得到an
1--=
(--1)(an--)
∴{an--}是首项为a1--,公比为--1的等比数列。
由a1=2得an--=(--1)n-1(2--)
,于是an=(--1)n-1(2--)
-
又例:在数列{an}中,a1=2,an
1=4an-3n
1(n∈n*),证明数列{an-n}是等比数列。
证明:本题即证an
1-(n
1)=q(an-n)
(q为非0常数)
由an
1=4an-3n
1,可变形为an
1-(n
1)=4(an-n),又∵a1-1=1,
所以数列{an-n}是首项为1,公比为4的等比数列。
若将此问改为求an的通项公式,则仍可以通过求出{an-n}的通项公式,再转化到an的通项公式上来。
又例:设数列{an}的首项a1∈(0,1),an=-,n=2,3,4……(1)求{an}通项公式。(2)略
解:由an=-,n=2,3,4,……,整理为1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首项为1-a1,公比为--的等比数列,得an=1-(1-a1)(--)n-1

❷ 求数列通项公式的方法,越多越好谢谢

一、 直接法
如果已知数列为等差(或等比)数列,可直接根据等差(或等比)数列的通项公式,求得 ,d(或q),从而直接写出通项公式。
例1. 等差数列 是递减数列,且 =48, =12,则数列的通项公式是( )
(A) (B) (C) (D)
解析:设等差数列的公差位d,由已知 ,
解得 ,又 是递减数列, ∴ , ,
∴ ,故选(D)。
例2. 已知等比数列 的首项 ,公比 ,设数列 的通项为 ,求数列 的通项公式。
解析:由题意, ,又 是等比数列,公比为
∴ ,故数列 是等比数列, ,

二、 归纳法
如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
例3.(2002年北京春季高考)已知点的序列 ,其中 , , 是线段 的中点, 是线段 的中点,…, 是线段 的中点,…
(1) 写出 与 之间的关系式( )。
(2) 设 ,计算 ,由此推测 的通项公式,并加以证明。
(3) 略
解析:(1)∵ 是线段 的中点, ∴
(2) ,
= ,
= ,
猜想 ,下面用数学归纳法证明
当n=1时, 显然成立;
假设n=k时命题成立,即
则n=k+1时, =
=
∴ 当n=k+1时命题也成立,
∴ 命题对任意 都成立。
三、 累加(乘)法
对于形如 型或形如 型的数列,我们可以根据递推公式,写出n取1到n时的所有的递推关系式,然后将它们分别相加(或相乘)即可得到通项公式。
例4. 若在数列 中, , ,求通项 。
解析:由 得 ,所以
, ,…, ,
将以上各式相加得: ,又
所以 =
例5. 在数列 中, , ( ),求通项 。
解析:由已知 , , ,…, ,又 ,
所以 = … = … =
四、 构造法
有些数列本身并不是等差或等比数列,但可以经过适当的变形,构造出一个新的数列为等差或等比数列,从而利用这个数列求其通项公式。
例6. 在数列 中, , , ,求 。
解析:在 两边减去 ,得
∴ 是以 为首项,以 为公比的等比数列,
∴ ,由累加法得
=
= … = =
=
例7. (2003年全国高考题)设 为常数,且 ( ),
证明:对任意n≥1,
证明:设,
用 代入可得
∴ 是公比为 ,首项为 的等比数列,
∴ ( ),
即:
五、 公式法
公式法即利用公式 求数列通项公式的一种方法。
例8. 在数列 中, +2 +3 +…+ = ,求 。
解析:令 = +2 +3 +…+ = ,
则 = +2 +3 +…+ = ,
则 - = = - ,
∴ = - =
例9. 设数列 的前n项和 = ,求 。
解析:由 = ,得 = ,
∴ = - = - +( )
∴ = + ,两边同乘以 ,得 = +2,
∴ 是首项为1公差为2的等差数列,
∴ =2+ = , ∴ =
六、 代换法
例10. 已知数列 满足 , ,求 。
解析:设 ,∵ ,
∴ , ,…,
总之,求数列的通项公式,就是将已知数列转化成等差(或等比)数列,从而利用等差(或等比)数列的通项公式求其通项。

❸ 求数列通项公式的几种常见类型及方法

数列的通项公式是指,如果数列{an}的第n项an与n之间的关系可以用一个公式an=f(n)来表示,那么an=f(n)叫数列的通项公式。数列的通项公式是数列的核心之一,它如同函数中的解析式一样,有通项公式便可研究数列的其它性质。现将总结如下。

❹ 求数列通项公式的方法有哪些

有以下四种基本方法:

1
)直接法.就是由已知数列的项直接写出,或通过对已知数列的项进行代数运算写出.

2
)观察分析法.根据数列构成的规律,观察数列的各项与它所对应的项数之间的内在联系,经过适当变形,进而写出第n项a
n
的表达式即通项公式.

3
)待定系数法.求通项公式的问题,就是当n=
1

2


时求f(n),使f(n)依次等于a
1
,a
2


的问题.因此我们可以先设出第n项a
n
关于变数n的表达式,再分别令n=
1

2


,并取a
n
分别等于a
1
,a
2


,然后通过解方程组确定待定系数的值,从而得出符合条件的通项公式.

4
)递推归纳法.根据已知数列的初始条件及递推公式,归纳出通项公式.
希望可以帮到你
o(∩_∩)o

❺ 求数列an的通项公式有哪些方法

①等差数列和等比数列有通项公式。

②累加法:用于递推公式为an+1=an+f(n),且f(n)可以求和。

③累乘法:用于递推公式为an+1/an=f(n) 且f(n)可求积。

④构造法:将非等差数列、等比数列,转换成相关的等差等比数列。

⑤错位相减法:用于形如数列由等差×等比构成:如an=n·2^n。

按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an项的值。而数列通项公式的求法,通常是由其递推公式经过若干变换得到。

(5)数列通项公式的常用方法扩展阅读

等差数列的其他推论:

① 和=(首项+末项)×项数÷2;

②项数=(末项-首项)÷公差+1;

③首项=2x和÷项数-末项或末项-公差×(项数-1);

④末项=2x和÷项数-首项;

⑤末项=首项+(项数-1)×公差;

⑥2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。

❻ 你熟悉求数列通项公式的常用方法吗 例如:(1)求差(商)法

可以把{1/2^nan}看做一个新数列,令bn=1/2^nan,sn=1/2a1+1/2^2a2+........+1/2^nan=2n+5
n=1时,an=14
n>=2时,bn=sn-s(n-1)=2n+5-[2(n-1)+5]=2
即1/2^nan=2
由此得到an=14
(n=1)
an=2^(n+1)
(n>1且属于n+)
不知道我的回答是不是你想要的。

❼ 高考求数列通项公式要求掌握几种方法

数列求和常用:错位相减法,裂项相消法:1/[n(n+k)]=1/k[(1/n)-1/(n+k)],倒序相加法,累加法:a下标(n+1)=[a下标(n)]+f(n)型可用,累积法:a下标(n+1)=f(n)[a下标(n)]可用注意解大题时常用an=a1(n=1),an=Sn-S下标(n-1),(n>=2)还有一个重点就是
一个数列很多时候能拆成
如(a下标n)+x=k(a下标(n+1)+x),k为给出原数列a下标(n+1)的系数,
然后用等比公式求解即可凡是数列不懂做的题目,用数学归纳法,一定能做出来望采纳
谢谢
有任何不懂
请加好友
一一解答

❽ 计算数列通项公式有哪些方法

求数列通项公式常用以下几种方法:
一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。
二、已知数列的前n项和,用公式
三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。
四、用累加、累积的方法求通项公式
一般后面两种常用,要熟悉,前面两种一般解决简单的问题

❾ 求递推数列通项公式的常用方法

形如:a(n+1)=(aan+b)/(can+d),a,c不为0的分式递推式都可用不动点法求。
当f(x)=x时,x的取值称为不动点,不动点是我们在竞赛中解决递推式的基本方法。
典型例子:
a(n+1)=(a(an)+b)/(c(an)+d)
简单地说就是在递推中令an=x
代入
a(n+1)也等于x
然后构造数列.
(但要注意,不动点法不是万能的,有的递推式没有不动点,但可以用其他的构造法求出通项;有的就不能求出)
令x=(ax+b)/(cx+d)

cx2+(d-a)x-b=0
令此方程的两个根为x1,x2,
若x1=x2
则有1/(a(n+1)-x1)=1/(an-x1)+p
其中p可以用待定系数法求解,然后再利用等差数列通项公式求解。
若x1≠x2
则有(a(n+1)-x1)/(a(n+1)-x2)=q((an-x1)/(an-x2)
其中q可以用待定系数法求解,然后再利用等比数列通项公式求解。
【注】形如:a(n+1)=(aan+b)/(can+d),a,c不为0的分式递推式都可用不动点法求。
让a(n+1)=an=x,
代入化为关于x的二次方程
(1)若两根x1不等于x2,有{(an-x1)/(an-x2)}为等比数列,公比由两项商求出
(2)若两根x1等于x2,有{1/(an-x1)}为等差数列,公差由两项差求出
若无解,就只有再找其他方法了。
并且不动点一般只用于分式型上下都是一次的情况,如果有二次可能就不行了。
例1:在数列{an}中,a(n+1)=(2an+8)/an,a1=2,求通项
【解】a(n+1)=(2an+8)/an,
a(n+1)=2+8/an令an=x,a(n+1)=x
x=2+8/x
x^2-2x-8=0
x1=-2,x2=4
{(an-4)/(an+2)}为等比数列
令(an-4)/(an+2)=bn
b(n+1)/bn=[(a(n+1)-4)/(a(n+1)+2)]/[(an-4)/(an+2)]
=-1/2
b(n+1)=(-1/2)bn
b1=-1/2
bn=(-1/2)^n=(an-4)/(an+2)
an=[4+2*(-1/2)^n]/[1-(-1/2)^n],n>=1
例2:a1=1,a2=1,a(n+2)=
5a(n+1)-6an,
【解】特征方程为:y²=
5y-6
那么,m=3,n=2,或者m=2,n=3
于是,a(n+2)-3a(n+1)=2[a(n+1)-3an]
(1)
a(n+2)-2a(n+1)=3[a(n+1)-2an]
(2)
所以,a(n+1)-3a(n)=
-
2
^
n
(3)
a(n+1)-2a(n)=
-
3
^
(n-1)
(4)
消元消去a(n+1),就是an,an=-
3
^
(n-1)
+2
^
n.

阅读全文

与数列通项公式的常用方法相关的资料

热点内容
教学测量的基本方法 浏览:923
ddp的分配方法包括哪些 浏览:516
设计师面试的问题及解决方法 浏览:740
船橹使用方法 浏览:174
家里有书虱子怎么去除最快方法 浏览:205
设计兴利库容的常用方法 浏览:420
我是怎么帮人涨粉的方法 浏览:257
中医贴耳朵治疗方法 浏览:92
机构养老金计算方法 浏览:406
力学有哪些研究方法 浏览:713
请说明假币识别的主要方法有哪些 浏览:352
瘦肚子的最快方法懒人图片 浏览:726
如何教小朋友认识响板的使用方法 浏览:185
简答题如何培养科学的记忆方法 浏览:111
女性排卵期怎么计算方法 浏览:364
角120度角下料计算方法 浏览:157
检测汽车玻璃结冰的最好方法 浏览:730
云南棉柔卫生巾鉴别真假方法 浏览:642
小学画图解决问题的步骤和方法 浏览:639
求职面试正确方法与错误方法 浏览:917