⑴ c语言中排序方法
1、冒泡排序(最常用)
冒泡排序是最简单的排序方法:原理是:从左到右,相邻元素进行比较。每次比较一轮,就会找到序列中最大的一个或最小的一个。这个数就会从序列的最右边冒出来。(注意每一轮都是从a[0]开始比较的)
以从小到大排序为例,第一轮比较后,所有数中最大的那个数就会浮到最右边;第二轮比较后,所有数中第二大的那个数就会浮到倒数第二个位置……就这样一轮一轮地比较,最后实现从小到大排序。
2、鸡尾酒排序
鸡尾酒排序又称双向冒泡排序、鸡尾酒搅拌排序、搅拌排序、涟漪排序、来回排序或快乐小时排序, 是冒泡排序的一种变形。该算法与冒泡排序的不同处在于排序时是以双向在序列中进行排序。
原理:数组中的数字本是无规律的排放,先找到最小的数字,把他放到第一位,然后找到最大的数字放到最后一位。然后再找到第二小的数字放到第二位,再找到第二大的数字放到倒数第二位。以此类推,直到完成排序。
3、选择排序
思路是设有10个元素a[1]-a[10],将a[1]与a[2]-a[10]比较,若a[1]比a[2]-a[10]都小,则不进行交换。若a[2]-a[10]中有一个以上比a[1]小,则将其中最大的一个与a[1]交换,此时a[1]就存放了10个数中最小的一个。同理,第二轮拿a[2]与a[3]-a[10]比较,a[2]存放a[2]-a[10]中最小的数,以此类推。
4、插入排序
插入排序是在一个已经有序的小序列的基础上,一次插入一个元素*
一般来说,插入排序都采用in-place在数组上实现。
具体算法描述如下:
⒈ 从第一个元素开始,该元素可以认为已经被排序
⒉ 取出下一个元素,在已经排序的元素序列中从后向前扫描
⒊ 如果该元素(已排序)大于新元素,将该元素移到下一位置
⒋ 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
⒌ 将新元素插入到下一位置中
⒍ 重复步骤2~5
⑵ 几种排序方法
这两天复习了一下排序方面的知识,现将目前比较常见的整理一下。 选择排序选择排序的思想是首先先找到序列中最大元素并将它与序列中最后一个元素交换,然后找下一个最大元素并与倒数第二个元素交换,依次类推。此排序很简单,这不做多说,代码实现如下:View Code插入排序算法流程:1. 从第一个元素开始,该元素可以认为已经被排序 2. 取出下一个元素,在已经排序的元素序列中从后向前扫描 3. 如果该元素(已排序)大于新元素,将该元素移到下一位置 4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置 5. 将新元素插入到下一位置中 6. 重复步骤2View Code冒泡排序依次比较相邻的两个数,将小数放在前面,大数放在后面。即在第一趟:首先比较第1个和第2个数,将小数放前,大数放后。然后比较第2个数和第3个数,将小数放前,大数放后,如此继续,直至比较最后两个数,将小数放前,大数放后。至此第一趟结束,将最大的数放到了最后。在第二趟:仍从第一对数开始比较(因为可能由于第2个数和第3个数的交换,使得第1个数不再小于第2个数),将小数放前,大数放后,一直比较到倒数第二个数(倒数第一的位置上已经是最大的),第二趟结束,在倒数第二的位置上得到一个新的最大数(其实在整个数列中是第二大的数)。如此下去,重复以上过程,直至最终完成排序。 View Code合并排序在介绍合并排序之前,首先介绍下递归设计的技术,称为分治法。分治法的核心思想是:当问题比较小时,直接解决。当问题比较大时,将问题分为两个较小的子问题,每个子问题约为原来的一半。使用递归调用解决每个子问题。递归调用结束后,常常需要额外的处理,将较小的问题的结果合并,得到较大的问题的答案。 合并排序算法在接近数组中间的位置划分数组,然后使用递归运算对两个一半元素构成的数组进行排序,最后将两个子数组进行合并,形成一个新的已排好序的数组。 代码如下:View Code快速排序快速排序与合并排序有着很多相似性。将要排序的数组分成两个子数组,通过两次递归调用分别对两个数组进行排序,再将已经排好序的两个数组合并成一个独立的有序数组。但是,将数组一分为二的做法比合并排序中使用的简单方法复杂的多。它需要将所有小于或者等于基准元素的元素放置到基准元素前面的位置,将大于基准的元素放置到基准后面的位置。 View Code堆排序View Code大概常用的几种排序就这几种,希望大家多多指正。
⑶ 数据结构中常见的排序方式都有哪些比如冒泡排序,快速排序等。每种排序具体是怎么排的
1.直接插入:就是有一个已经排好的子序列,它是有序的。然后来一个插入一个仍是这个序列有序。比如a1本身就是有序的。a2来了,要和a1比较,a2大就插在a1之后,小就在a1之前,那么a1、a2就是新的有序子序列,然后a3来了,又要插入进来,逐个与a2、a1比较插在它的适当位置再次形成子序列,就按这样一步步进行,知道最后一个插入时,以前的都已经有序了。
2.希尔排序:由于有时候数据量大,用直接插入就不太合适。于是把你的一组待排序数据按如8、4、2、1的一组增量数来分组,即第一次,a1和a9和a17甚至还有更多间隔为八的数分为一组进行直接插入排序,第二次则是新的a1和a5、a9、a13……依次知道最后比较数据之间的间隔数为1,每次都进行插入排序
3.直接选择:n个数逐个比较,谁大的谁放最后(n的位置),比较范围减一;然后又从n-1个数中找最大的,又放最后(n-1的位置),依次这样进行就可以。
4.冒泡:比较的时候如果前者比后者大就要进行值的交换。那么最大的每次都会沉到底下。比较范围减一。
5、快速排序:要采用分划控制。比较复杂。
⑷ 几种常用的排序算法比较
排序,从小大,0坐标的在下面,即排序后小的在下面,大的在上面。
1,冒泡Bubble:从第0个开始,一直往上,与相邻的元素比较,如果下面的大,则交换。
Analysis:
Implementation:
void BubbleSort(int *pData, int iNum)
2,插入Insertion:与打扑克牌时整理牌很想象,假定第一张牌是有序的,从第二张牌开始,拿出这张牌来,往下比较,如果有比这张牌大的,则把它拨到上一个位置,直到找到比手上的这张更小的(或到顶了),
则把手上的这张牌插入到这张更小的牌的后面。
Analysis:
Implementation:
void InsertionSort(int *list, int length)
{
int i, j, temp;
for (i = 1; i < length; i++)
{
temp = list[i];
j = i - 1;
while ((j >= 0) && (list[j] > temp))
{
list[j+1] = list[j];
j--;
}
list[j+1] = temp;
}
}
3,选择Selection:从所有元素中找到最小的放在0号位置,从其它元素(除了0号元素)中再找到最小的,放到1号位置,......。
Analysis:
Implementation:
void SelectionSort(int data[], int count)
{
int i, j, min, temp;
for (i = 0; i < count - 1; i++)
{
/* find the minimum */
min = i;
for (j = i+1; j < count; j++)
{
if (data[j] < data[min])
{
min = j;
}
}
/* swap data[i] and data[min] */
temp = data[i];
data[i] = data[min];
data[min] = temp;
}
}
4,快速Quick:先拿出中间的元素来(值保存到temp里),设置两个索引(index or pointer),一个从0号位置开始往最大位置寻找比temp大的元素;一个从最大号位置开始往最小位置寻找比temp小的元素,找到了或到顶了,则将两个索引所指向的元素
互换,如此一直寻找交换下去,直到两个索引交叉了位置,这个时候,从0号位置到第二个索引的所有元素就都比temp小,从第一个索引到最大位置的所有元素就都比temp大,这样就把所有元素分为了两块,然后采用前面的办法分别排序这两个部分。总的来
说,就是随机找一个元素(通常是中间的元素),然后把小的放在它的左边,大的放右边,对左右两边的数据继续采用同样的办法。只是为了节省空间,上面采用了左右交换的方法来达到目的。
Analysis:
Implementation:
void QuickSort(int *pData, int left, int right)
{
int i, j;
int middle, iTemp;
i = left;
j = right;
middle = pData[(left + right) / 2]; //求中间值
do
{
while ((pData[i] < middle) && (i < right)) //从左扫描大于中值的数
i++;
while ((pData[j] > middle) && (j > left)) //从右扫描小于中值的数
j--;
if (i <= j) //找到了一对值
{
//交换
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
i++;
j--;
}
} while (i <= j); //如果两边扫描的下标交错,就停止(完成一次)
//当左边部分有值(left<j),递归左半边
if(left < j)
QuickSort(pData, left, j);
//当右边部分有值(right>i),递归右半边
if(right > i)
QuickSort(pData, i, right);
}
5,希尔Shell:是对Insertion Sort的一种改进,在Insertion Sort中,从第2个位置开始取出数据,每次都是与前一个(step/gap==1)进行比较。Shell Sort修改为,在开始时采用较大的步长step,
从第step位置开始取数据,每次都与它的前step个位置上的数据进行比较(如果有8个数据,初始step==4,那么pos(4)与pos(0)比较,pos(0)与pos(-4),pos(5)与pos(1),pos(1)与pos(-3),
...... pos(7)与pos(3),pos(3)与pos(-1)),然后逐渐地减小step,直到step==1。step==1时,排序过程与Insertion Sort一样,但因为有前面的排序,这次排序将减少比较和交换的次数。
Shell Sort的时间复杂度与步长step的选择有很大的关系。Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合
于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。
Analysis:
Implementation:
template<typename RandomIter, typename Compare>
void ShellSort(RandomIter begin, RandomIter end, Compare cmp)
{
typedef typename std::iterator_traits<RandomIter>::value_type value_type;
typedef typename std::iterator_traits<RandomIter>::difference_type diff_t;
diff_t size = std::distance(begin, end);
diff_t step = size / 2;
while (step >= 1)
{
for (diff_t i = step; i < size; ++i)
{
value_type key = *(begin+i);
diff_t ins = i; // current position
while (ins >= step && cmp(key, *(begin+ins-step)))
{
*(begin+ins) = *(begin+ins-step);
ins -= step;
}
*(begin+ins) = key;
}
if(step == 2)
step = 1;
else
step = static_cast<diff_t>(step / 2.2);
}
}
template<typename RandomIter>
void ShellSort(RandomIter begin, RandomIter end)
{
typedef typename std::iterator_traits<RandomIter>::value_type value_type;
ShellSort(begin, end, std::less<value_type>());
}
6,归并Merge:先将所有数据分割成单个的元素,这个时候单个元素都是有序的,然后前后相邻的两个两两有序地合并,合并后的这两个数据再与后面的两个合并后的数据再次合并,充分前面的过程直到所有的数据都合并到一块。
通常在合并的时候需要分配新的内存。
Analysis:
Implementation:
void Merge(int array[], int low, int mid, int high)
{
int k;
int *temp = (int *) malloc((high-low+1) * sizeof(int)); //申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
int begin1 = low;
int end1 = mid;
int begin2 = mid + 1;
int end2 = high;
for (k = 0; begin1 <= end1 && begin2 <= end2; ++k) //比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
{
if(array[begin1]<=array[begin2])
{
temp[k] = array[begin1++];
}
else
{
temp[k] = array[begin2++];
}
}
if(begin1 <= end1) //若第一个序列有剩余,直接拷贝出来粘到合并序列尾
{
memcpy(temp+k, array+begin1, (end1-begin1+1)*sizeof(int));
}
if(begin2 <= end2) //若第二个序列有剩余,直接拷贝出来粘到合并序列尾
{
memcpy(temp+k, array+begin2, (end2-begin2+1)*sizeof(int));
}
memcpy(array+low, temp, (high-low+1)*sizeof(int));//将排序好的序列拷贝回数组中
free(temp);
}
void MergeSort(int array[], unsigned int first, unsigned int last)
{
int mid = 0;
if (first < last)
{
mid = (first+last)/2;
MergeSort(array, first, mid);
MergeSort(array, mid+1,last);
Merge(array,first,mid,last);
}
}
⑸ 常用的排序算法都有哪些
排序算法 所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
分类
在计算机科学所使用的排序算法通常被分类为:
计算的复杂度(最差、平均、和最好表现),依据串行(list)的大小(n)。一般而言,好的表现是O。(n log n),且坏的行为是Ω(n2)。对于一个排序理想的表现是O(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。
记忆体使用量(以及其他电脑资源的使用)
稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串行中R出现在S之前,在排序过的串行中R也将会是在S之前。
一般的方法:插入、交换、选择、合并等等。交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。选择排序包含shaker排序和堆排序(heapsort)。
当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。
(4, 1) (3, 1) (3, 7) (5, 6)
在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:
(3, 1) (3, 7) (4, 1) (5, 6) (维持次序)
(3, 7) (3, 1) (4, 1) (5, 6) (次序被改变)
不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地时作为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。
排列算法列表
在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。
稳定的
冒泡排序(bubble sort) — O(n2)
鸡尾酒排序 (Cocktail sort, 双向的冒泡排序) — O(n2)
插入排序 (insertion sort)— O(n2)
桶排序 (bucket sort)— O(n); 需要 O(k) 额外 记忆体
计数排序 (counting sort) — O(n+k); 需要 O(n+k) 额外 记忆体
归并排序 (merge sort)— O(n log n); 需要 O(n) 额外记忆体
原地归并排序 — O(n2)
二叉树排序 (Binary tree sort) — O(n log n); 需要 O(n) 额外记忆体
鸽巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 额外记忆体
基数排序 (radix sort)— O(n·k); 需要 O(n) 额外记忆体
Gnome sort — O(n2)
Library sort — O(n log n) with high probability, 需要 (1+ε)n 额外记忆体
不稳定
选择排序 (selection sort)— O(n2)
希尔排序 (shell sort)— O(n log n) 如果使用最佳的现在版本
Comb sort — O(n log n)
堆排序 (heapsort)— O(n log n)
Smoothsort — O(n log n)
快速排序 (quicksort)— O(n log n) 期望时间, O(n2) 最坏情况; 对于大的、乱数串行一般相信是最快的已知排序
Introsort — O(n log n)
Patience sorting — O(n log n + k) 最外情况时间, 需要 额外的 O(n + k) 空间, 也需要找到最长的递增子序列(longest increasing subsequence)
不实用的排序算法
Bogo排序 — O(n × n!) 期望时间, 无穷的最坏情况。
Stupid sort — O(n3); 递回版本需要 O(n2) 额外记忆体
Bead sort — O(n) or O(√n), 但需要特别的硬体
Pancake sorting — O(n), 但需要特别的硬体
排序的算法
排序的算法有很多,对空间的要求及其时间效率也不尽相同。下面列出了一些常见的排序算法。这里面插入排序和冒泡排序又被称作简单排序,他们对空间的要求不高,但是时间效率却不稳定;而后面三种排序相对于简单排序对空间的要求稍高一点,但时间效率却能稳定在很高的水平。基数排序是针对关键字在一个较小范围内的排序算法。
插入排序
冒泡排序
选择排序
快速排序
堆排序
归并排序
基数排序
希尔排序
插入排序
插入排序是这样实现的:
首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。
从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。
重复2号步骤,直至原数列为空。
插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。
冒泡排序
冒泡排序是这样实现的:
首先将所有待排序的数字放入工作列表中。
从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。
重复2号步骤,直至再也不能交换。
冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。
选择排序
选择排序是这样实现的:
设数组内存放了n个待排数字,数组下标从1开始,到n结束。
i=1
从数组的第i个元素开始到第n个元素,寻找最小的元素。
将上一步找到的最小元素和第i位元素交换。
如果i=n-1算法结束,否则回到第3步
选择排序的平均时间复杂度也是O(n²)的。
快速排序
现在开始,我们要接触高效排序算法了。实践证明,快速排序是所有排序算法中最高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。这是一种先进的思想,也是它高效的原因。因为在排序算法中,算法的高效与否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。
堆排序
堆排序与前面的算法都不同,它是这样的:
首先新建一个空列表,作用与插入排序中的"有序列表"相同。
找到数列中最大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。
重复2号步骤,直至原数列为空。
堆排序的平均时间复杂度为nlogn,效率高(因为有堆这种数据结构以及它奇妙的特征,使得"找到数列中最大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。
看起来似乎堆排序与插入排序有些相像,但他们其实是本质不同的算法。至少,他们的时间复杂度差了一个数量级,一个是平方级的,一个是对数级的。
平均时间复杂度
插入排序 O(n2)
冒泡排序 O(n2)
选择排序 O(n2)
快速排序 O(n log n)
堆排序 O(n log n)
归并排序 O(n log n)
基数排序 O(n)
希尔排序 O(n1.25)
冒泡排序
654
比如说这个,我想让它从小到大排序,怎么做呢?
第一步:6跟5比,发现比它大,则交换。564
第二步:5跟4比,发现比它大,则交换。465
第三步:6跟5比,发现比它大,则交换。456
⑹ 常见的排序方法有哪些
一、直接插入排序(插入排序)。二、希尔排序(插入排序)三、冒泡排序(交换排序)四、快速排序(交换排序)五、直接选择排序(选择排序)六、堆排序七、归并排序
八、
基数排序
⑺ Excel表格中常用的排序方法有哪些
制作Excel表格的过程中,对其中的内容进行排序是大家经常会遇到的情况,下面小编介绍几种最为常用但是很多人却不知道的排序方法。
01
首先就是按照笔划来排序,我们经常会看到课本或者花名册上都有按照姓氏笔画来排序的提示,也就是说按照笔划的多少进行排列的,如何设置这种排序呢?首先我们选中需要排序的那一列,比如下图中的B列;
02
然后依次点击工具栏中的“数据”-“排序”,如图一所示...然后在弹出的排序提醒对话框勾选下方的“以当前选定区域排序”;
03
接下来点击排序对话框右上角的“选项”,然后勾选排序选项对话框最下方的“笔划排序”;
04
点击确定返回到表格以后,我们就会发现这一列的所有文字全部按照首个文字的笔划多少来进行排序了;此外如果有时候不知道应该按照何种规则来排序的话,那么就可以用到下面小编介绍的随机排序方法了,在表格的最后一列输入公式“=RAND()”,见图二...
05
点击回车键以后,该单元格中就会弹出一个随机数字,将其下拉拖动应用到所有列,最终效果如图一所示...然后依次点击“数据”-“升序”或者“降序”,这样表格里面的内容就会随机排序了;
06
最后我们还能按照表格中文字的颜色来排序,比如下图的表格中既有红色文字,也有蓝色文字...
07
依旧按照以上的方法将排序对话框打开,然后勾选排序依旧中的“字体颜色”,并且自定义每种颜色文字的次序,我们以红色文字在顶端,蓝色文字在底端为例做介绍;
08
同样点击对话框中的确定,返回到表格以后,我们就会发现红色的文字内容在表格最顶端,而蓝色的文字则被排序到了最底端,如下图所示...
⑻ JAVA中有哪几种常用的排序方法
最主要的是冒泡排序、选择排序、插入排序以及快速排序
1、冒泡排序
冒泡排序是一个比较简单的排序方法。在待排序的数列基本有序的情况下排序速度较快。若要排序的数有n个,则需要n-1轮排序,第j轮排序中,从第一个数开始,相邻两数比较,若不符合所要求的顺序,则交换两者的位置;直到第n+1-j个数为止,第一个数与第二个数比较,第二个数与第三个数比较,......,第n-j个与第n+1-j个比较,共比较n-1次。此时第n+1-j个位置上的数已经按要求排好,所以不参加以后的比较和交换操作。
例如:第一轮排序:第一个数与第二个数进行比较,若不符合要求的顺序,则交换两者的位置,否则继续进行二个数与第三个数比较......。直到完成第n-1个数与第n个数的比较。此时第n个位置上的数已经按要求排好,它不参与以后的比较和交换操作;第二轮排序:第一个数与第二个数进行比较,......直到完成第n-2个数与第n-1个数的比较;......第n-1轮排序:第一个数与第二个数进行比较,若符合所要求的顺序,则结束冒泡法排序;若不符合要求的顺序,则交换两者的位置,然后结束冒泡法排序。
共n-1轮排序处理,第j轮进行n-j次比较和至多n-j次交换。
从以上排序过程可以看出,较大的数像气泡一样向上冒,而较小的数往下沉,故称冒泡法。
public void bubbleSort(int a[])
{
int n = a.length;
for(int i=0;i<n-1;i++)
{
for(int j=0;j<n-i-1;j++)
{
if(a[j] > a[j+1])
{
int temp = a[j];
a[j] = a[j + 1];
a[j + 1] = temp;
}
}
}
}
2、选择排序
选择法的原理是先将第一个数与后面的每一个数依次比较,不断将将小的赋给第一个数,从而找出最小的,然后第二个数与后面的每一个数依次比较,从而找出第二小的,然后第三个数与后面的每一个数依次比较,从而找出第三小的.....直到找到最后一个数。
public void sort(int x[])
{
int n=x.length;
int k,t;
for(int i=0;i<n-1;i++)
{
k=i;
for(int j=i+1;j=n;j++)
{
if(x[j]>x[k])k=j;
if(k!=i)
{
t=x[i];
x[i]=x[k];
x[k]=t;
}
}
}
}
3、插入排序
插入排序的原理是对数组中的第i个元素,认为它前面的i-1个已经排序好,然后将它插入到前面的i-1个元素中。插入排序对少量元素的排序较为有效.
public void sort(int obj[])
{
for(int j=1;j<obj.length;j++)
{
int key=obj[j];
int i=j-1;
while(i>=0&&obj[i]>key)
{
obj[i+1]=obj[i];
i--;
}
obj[i+1]=key;
}
}
4、快速排序
快速排序是对冒泡排序的一种改进。它的基本思想是:通过一次排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此大道整个数据变成有序序列。
public void quickSort(int obj[],int low,int high)
{
int i=low;
int j=high;
int keyValue=obj[i];
while(i<j)
{
int temp=0;
while(i<j&&obj[j]>=keyValue)
{
j=j-1;
}
temp=obj[j];
obj[j]=obj[i];
obj[i]=temp;
while(i<j&&obj[i]<=keyValue)
{
i=i+1;
}
temp=obj[j];
obj[j]=ojb[i];
obj[i]=temp;
}
obj[i]=keyValue;
if(low<i-1)
{
quickSort(obj,low,i-1);
}
if(high>i+1)
{
quickSort(obj,i+1,high);
}
}
⑼ C语言中最常用的排序方法有哪些
选择排序法,冒泡排序法等,书上关于冒泡法有个例子。
⑽ 常用排序方法的应用
排序简介
排序是数据处理中经常使用的一种重要运算,在计算机及其应用系统中,花费在排序上的时间在系统运行时间中占有很大比重;并且排序本身对推动算法分析的发展也起很大作用。目前已有上百种排序方法,但尚未有一个最理想的尽如人意的方法,本章介绍常用的如下排序方法,并对它们进行分析和比较。
1、插入排序(直接插入排序、折半插入排序、希尔排序);
2、交换排序(起泡排序、快速排序);
3、选择排序(直接选择排序、堆排序);
4、归并排序;
5、基数排序;
学习重点
1、掌握排序的基本概念和各种排序方法的特点,并能加以灵活应用;
2、掌握插入排序(直接插入排序、折半插入排序、希尔排序)、交换排序(起泡排序、快速排序)、选择排序(直接选择排序、堆排序)、二路归并排序的方法及其性能分析方法;
3、了解基数排序方法及其性能分析方法。
排序(sort)或分类
所谓排序,就是要整理文件中的记录,使之按关键字递增(或递减)次序排列起来。其确切定义如下:
输入:n个记录R1,R2,…,Rn,其相应的关键字分别为K1,K2,…,Kn。
输出:Ril,Ri2,…,Rin,使得Ki1≤Ki2≤…≤Kin。(或Ki1≥Ki2≥…≥Kin)。
1.被排序对象--文件
被排序的对象--文件由一组记录组成。
记录则由若干个数据项(或域)组成。其中有一项可用来标识一个记录,称为关键字项。该数据项的值称为关键字(Key)。
注意:
在不易产生混淆时,将关键字项简称为关键字。
2.排序运算的依据--关键字
用来作排序运算依据的关键字,可以是数字类型,也可以是字符类型。
关键字的选取应根据问题的要求而定。
【例】在高考成绩统计中将每个考生作为一个记录。每条记录包含准考证号、姓名、各科的分数和总分数等项内容。若要惟一地标识一个考生的记录,则必须用"准考证号"作为关键字。若要按照考生的总分数排名次,则需用"总分数"作为关键字。
排序的稳定性
当待排序记录的关键字均不相同时,排序结果是惟一的,否则排序结果不唯一。
在待排序的文件中,若存在多个关键字相同的记录,经过排序后这些具有相同关键字的记录之间的相对次序保持不变,该排序方法是稳定的;若具有相同关键字的记录之间的相对次序发生变化,则称这种排序方法是不稳定的。
注意:
排序算法的稳定性是针对所有输入实例而言的。即在所有可能的输入实例中,只要有一个实例使得算法不满足稳定性要求,则该排序算法就是不稳定的。
排序方法的分类
1.按是否涉及数据的内、外存交换分
在排序过程中,若整个文件都是放在内存中处理,排序时不涉及数据的内、外存交换,则称之为内部排序(简称内排序);反之,若排序过程中要进行数据的内、外存交换,则称之为外部排序。
注意:
① 内排序适用于记录个数不很多的小文件
② 外排序则适用于记录个数太多,不能一次将其全部记录放人内存的大文件。
2.按策略划分内部排序方法
可以分为五类:插入排序、选择排序、交换排序、归并排序和分配排序。
排序算法分析
1.排序算法的基本操作
大多数排序算法都有两个基本的操作:
(1) 比较两个关键字的大小;
(2) 改变指向记录的指针或移动记录本身。
注意:
第(2)种基本操作的实现依赖于待排序记录的存储方式。
2.待排文件的常用存储方式
(1) 以顺序表(或直接用向量)作为存储结构
排序过程:对记录本身进行物理重排(即通过关键字之间的比较判定,将记录移到合适的位置)
(2) 以链表作为存储结构
排序过程:无须移动记录,仅需修改指针。通常将这类排序称为链表(或链式)排序;
(3) 用顺序的方式存储待排序的记录,但同时建立一个辅助表(如包括关键字和指向记录位置的指针组成的索引表)
排序过程:只需对辅助表的表目进行物理重排(即只移动辅助表的表目,而不移动记录本身)。适用于难于在链表上实现,仍需避免排序过程中移动记录的排序方法。
3.排序算法性能评价
(1) 评价排序算法好坏的标准
评价排序算法好坏的标准主要有两条:
① 执行时间和所需的辅助空间
② 算法本身的复杂程度
(2) 排序算法的空间复杂度
若排序算法所需的辅助空间并不依赖于问题的规模n,即辅助空间是O(1),则称之为就地排序(In-PlaceSou)。
非就地排序一般要求的辅助空间为O(n)。
(3) 排序算法的时间开销
大多数排序算法的时间开销主要是关键字之间的比较和记录的移动。有的排序算法其执行时间不仅依赖于问题的规模,还取决于输入实例中数据的状态。