1. 混凝土的搅拌,应该遵循哪些规则
(1)搅拌时间
①混凝土的搅拌时间:从砂、石、水泥和水等全部材料投入搅拌筒起,到开始卸料为止所经历的时间。
②搅拌时间与混凝土的搅拌质量密切相关,随搅拌机类型和混凝土的和易性不同而变化。在一定范围内,随搅拌时间的延长,强度有所提高,但过长时间的搅拌既不经济,而且混凝土的和易性又将降低,影响混凝土的质量。
③加气混凝土还会因搅拌时间过长而使含气量下降。
④混凝土搅拌的最短时间可按表采用。
(2)投料顺序
①投料顺序应从提高搅拌质量,减少叶片、衬板的磨损,减少拌和物与搅拌筒的粘结,减少水泥飞扬,改善工作环境,提高混凝土强度及节约水泥等方面综合考虑确定。常用一次投料法和二次投料法。
②一次投料法是在上料斗中先装石子,再加水泥和砂,然后一次投入搅拌筒中进行搅拌。自落式搅拌机要在搅拌筒内先加部分水,投料时砂压住水泥,使水泥不飞扬,而且水泥和砂先进搅拌筒形成水泥砂浆,可缩短水泥包裹石子的时间。强制式搅拌机出料口在下部,不能先加水,应在投入原材料的同时,缓慢均匀分散地加水。
③二次投料法,是先向搅拌机内投入水和水泥(和砂),待其搅拌1min后再投入石子和砂继续搅拌到规定时间。这种投料方法,能改善混凝土性能,提高了混凝土的强度,在保证规定的混凝土强度的前提下节约了水泥。
目前常用的方法有两种:预拌水泥砂浆法和预拌水泥净浆法。预拌水泥砂浆法是指先将水泥、砂和水加入搅拌筒内进行充分搅拌,成为均匀的水泥砂浆后,再加入石子搅拌成均匀的混凝土。预拌水泥净浆法是先将水泥和水充分搅拌成均匀的水泥净浆后,再加入砂和石子搅拌成混凝土。
④与一次投料法相比,二次投料法可使混凝土强度提高10%~15%,节约水泥15%~20%。
⑤水泥裹砂石法混凝土搅拌工艺,用这种方法拌制的混凝土称为造壳混凝土(简称SEC混凝土)。
1’它是分两次加水,两次搅拌。
2’先将全部砂、石子和部分水倒入搅拌机拌和,使骨料湿润,称之为造壳搅拌。
3’搅拌时间以45~75s为宜,再倒入全部水泥搅拌20s,加入拌和水和外加剂进行第二次搅拌,60s左右完成,这种搅拌工艺称为水泥裹砂法。
(3)进料容量
①进料容量是将搅拌前各种材料的体积累积起来的容量,又称干料容量。
②进料容量与搅拌机搅拌筒的几何容量有一定比例关系。进料容量约为出料容量的1.4~1.8倍(通常取1.5倍),如任意超载(超载10%),就会使材料在搅拌筒内无充分的空间进行拌和,影响混凝土的和易性。反之,装料过少,又不能充分发挥搅拌机的效能。
2. 四类生活垃圾应按照怎样的规定分类处置
如今我国的生活垃圾一般可分为四大类:可回收垃圾、厨余垃圾、有害垃圾和其他垃圾。目前常用的垃圾处理方法主要有:综合利用、卫生填埋、焚烧发电、堆肥、资源返还。
可回收垃圾主要包括废纸、塑料、玻璃、金属和布料五大类。废纸主要包括报纸、期刊、图书、各种包装纸、办公用纸、广告纸、纸盒等等,但是要注意纸巾和厕所纸由于水溶性太强不可回收。塑料主要包括各种塑料袋、塑料包装物、一次性塑料餐盒和餐具、牙刷、杯子、矿泉水瓶、牙膏皮等。玻璃主要包括各种玻璃瓶、碎玻璃片、镜子、灯泡、暖瓶等。金属物主要包括易拉罐、罐头盒等。布料主要包括废弃衣服、桌布、洗脸巾、书包、鞋等。
厨余垃圾包括剩菜剩饭、骨头、菜根菜叶、果皮等食品类废物,经生物技术就地处理堆肥,每吨可生产约0.3吨有机肥料。
有害垃圾包括废电池、废日光灯管、废水银温度计、过期药品等,这些垃圾需要进行特殊处理。
其他垃圾包括除上述几类垃圾之外的砖瓦陶瓷、渣土、卫生间废纸、纸巾等难以回收的废弃物,采取卫生填埋可有效减少对地下水、地表水、土壤及空气的污染。
我们每个人每天都会扔出许多垃圾,你知道这些垃圾它们到哪里去了吗?它们通常是先被送到堆放场,然后再送去填埋。垃圾填埋的费用是非常高昂的,处理一吨垃圾的费用约为450元至600元人民币。人们大量地消耗资源,大规模生产,大量地消费,又大量地生产着垃圾。 难道,我们对待垃圾就束手无策了吗?其实,办法是有的,这就是垃圾分类。垃圾分类就是在源头将垃圾分类投放,并通过分类的清运和回收使之重新变成资源。 从国内外各城市对生活垃圾分类的方法来看,大致都是根据垃圾的成分构成、产生量,结合本地垃圾的资源利用和处理方式来进行分类。如德国一般分为纸、玻璃、金属、塑料等;澳大利亚一般分为可堆肥垃圾,可回收垃圾,不可回收垃圾;日本一般分为可燃垃圾,不可燃垃圾等等。 如今中国生活垃圾一般可分为四大类:可回收垃圾、厨余垃圾、有害垃圾和其他垃圾。目前常用的垃圾处理方法主要有:综合利用、卫生填埋、焚烧发电、堆肥、资源返还。
3. • 谁知道打排球的规则和垫球扣球等的标准姿势
1、垫球的准备姿势
比赛中应根据不同情况采用相应的准备姿势。初学垫球时,由于是垫击一般的轻球,故可采取一般准备姿势。上体稍前倾,两脚开立,两脚间的距离稍宽于肩,两臂微屈置于腹前,两肘稍内收,两眼注视来球。
2、击球手型、击球点和击球部位
垫击手型
目前常用的方法有两种
叠指法两手手指上下相叠,两拇指对齐平行相靠压在上面一手的中指第二指节上,掌根紧靠,两臂伸直相夹。注意手掌部分不能相叠
。
包拳法两手抱拳互握,两拇指平行放于上面,两掌根和两小臂外旋紧靠,手腕下压,使前臂形成一个垫击平面击球点、击球部位正面双手垫球的击球点,一般应尽量保持在腹前约一臂距离的位置。用腕上10厘米左右的两小臂挠骨内侧所构成平面击球
3、垫球的动作要领
插及时移动取位,降低重心,两臂前伸插至球下,使两前臂的垫击面对准来球,并初步取好手臂的角度。
夹是指两手掌根紧靠,手臂夹紧,手腕下压,用平整而稳定的击球面去迎击球。
提由下肢蹬地,提肩、顶肘、压腕的动作去迎击来球,身体重心要随球前移,两臂在全身协调动作的配合下伴送球。
正面双手垫球的动作规格与要领
1、垫球的准备姿势
比赛中应根据不同情况采用相应的准备姿势。初学垫球时,由于是垫击一般的轻球,故可采取一般准备姿势。上体稍前倾,两脚开立,两脚间的距离稍宽于肩,两臂微屈置于腹前,两肘稍内收,两眼注视来球。
2、击球手型、击球点和击球部位
垫击手型
目前常用的方法有两种
叠指法两手手指上下相叠,两拇指对齐平行相靠压在上面一手的中指第二指节上,掌根紧靠,两臂伸直相夹。注意手掌部分不能相叠
。
包拳法两手抱拳互握,两拇指平行放于上面,两掌根和两小臂外旋紧靠,手腕下压,使前臂形成一个垫击平面击球点、击球部位正面双手垫球的击球点,一般应尽量保持在腹前约一臂距离的位置。用腕上10厘米左右的两小臂挠骨内侧所构成平面击球
3、垫球的动作要领
插及时移动取位,降低重心,两臂前伸插至球下,使两前臂的垫击面对准来球,并初步取好手臂的角度。
夹是指两手掌根紧靠,手臂夹紧,手腕下压,用平整而稳定的击球面去迎击球。
提由下肢蹬地,提肩、顶肘、压腕的动作去迎击来球,身体重心要随球前移,两臂在全身协调动作的配合下伴送球。
4. 谁知道打排球的规则和垫球扣球等的标准姿势
正面双手垫球的动作规格与要领
1、垫球的准备姿势
比赛中应根据不同情况采用相应的准备姿势。初学垫球时,由于是垫击一般的轻球,故可采取一般准备姿势。上体稍前倾,两脚开立,两脚间的距离稍宽于肩,两臂微屈置于腹前,两肘稍内收,两眼注视来球。
2、击球手型、击球点和击球部位
垫击手型
目前常用的方法有两种
叠指法两手手指上下相叠,两拇指对齐平行相靠压在上面一手的中指第二指节上,掌根紧靠,两臂伸直相夹。注意手掌部分不能相叠
。
包拳法两手抱拳互握,两拇指平行放于上面,两掌根和两小臂外旋紧靠,手腕下压,使前臂形成一个垫击平面
击球点、击球部位
正面双手垫球的击球点,一般应尽量保持在腹前约一臂距离的位置。用腕上10厘米左右的两小臂挠骨内侧所构成平面击球
3、垫球的动作要领
插及时移动取位,降低重心,两臂前伸插至球下,使两前臂的垫击面对准来球,并初步取好手臂的角度。
夹是指两手掌根紧靠,手臂夹紧,手腕下压,用平整而稳定的击球面去迎击球。
提由下肢蹬地,提肩、顶肘、压腕的动作去迎击来球,身体重心要随球前移,两臂在全身协调动作的配合下伴送球。
5. 国际贸易的13条条款是指哪些
一)工厂交货( EXW) 本术语英文为“EX Works(… named place)”,即“工厂交货(……指定地点)”。它指卖方负有在其所在地即车间、工厂、仓库等把备妥的货物交付给买方的责任,但通常不负责将货物装上买方准备的车辆上或办理货物结关。买方承担自卖方的所在地将货物运至预期的目的地的全部费用和风险。
(二)货交承运人(FCA)
本术语英文为“Free Carrier(… named place)”,即“货物交承运人(……指定地点)”。它指卖方应负责将其移交的货物,办理出关后,在指定的地点交付给买方指定的承运入照管。根据商业惯例,当卖方被要求与承运人通过签订合同进行协作时,在买方承担风险和费用的情况下,卖方可以照此办理。本术语适用于任何运输方式。
(三)船边交货(FAS)
本术语英文为“Free Alongside ship(… named port of shipment)”即“船边交货(……指定装运港)”。它指卖方在指定的装运港码头或驳船上把货物交至船边,从这时起买方须承担货物灭失或损坏的全部费用和风险,另外买方须办理出口结关手续。本术语适用于海运或内河运输。
(四)船上交货(FOB)
本术语英文为“ Free on Board(… named port of shipment)”,即“船上交货(……指定装运港)”。它指卖方在指定的装运港把货物送过船舷后交付,货过船舷后买方须承担货物的全部费用、风险、灭失或损坏,另外要求卖方办理货物的出口结关手续。本术语适用于海运或内河运输。
(五)成本加运费(CFR或 c&F) 本术语英文为“ Cost and Freight (named port of shipment)”,即“成本加运费(……指定目的港)”。它指卖方必须支付把货物运至指定目的港所需的开支和运费,但从货物交至船上甲板后,货物的风险、灭失或损坏以及发生事故后造成的额外开支,在货物越过指定港的船舷后,就由卖方转向买方负担.另外要求卖方办理货物的出口结关手续。本术语适用于海运或内河运输。
(六)成本、保险费加运费(CIF)
本术语英文为“Cost,Insurance and Freight(…named port of shipment)”,即“成本、保险费加运费(……指定目的港)”。它指卖方除负有与“成本加运费”术语相同的义务外,卖方还须办理货物在运输途中应由买方承担购货物灭失或损坏的海运保险并支付保险费。本术语适用于海运或内河运输。
(七)运费付至(CPT)
本术语英文为“Carriage Paid to):tid to(… named place of destination)”,即“运费付至(……指定目的地)”。本术语系指卖方支付货物运至指定目的地的运费。关于货物灭失或损坏的风险以及货物交至承运人后发生事件所产生的任何额外费用,自货物已交付给承运人照管之时起,从卖方转由买方承担。另外,卖方须办理货物出口的结关手续。本术语适用于各种运输方式,包括多式联运。
(八)运费及保险费付至(CIP)
本术语英文为“Carriage and Insurance Paid to(… named place of destination)”,即“运费及保险费付至(……指定目的地)。”它指卖方除负有与“运费付至(……指定目的地)”术语相同的义务外,卖方还须办理货物在运输途中应由买方承担的货物灭失或损坏风险的海运保险并支付保险费。本术语适用于任何运输方式。
(九)边境交货(DAF)
本术语的英文为“Delivered at Frontier(…named place)”,即“边境交货(……指定地点)”。它指卖方承担如下义务,将备妥的货物运至边境上的指定地点,办理货物出口结关手续,在毗邻国家海关关境前交货,本术语主要适用于通过铁路或公路运输的货物,也可用于其他运输方式。
(十)目的港船上交货(DES)
本术语的英文为“Delivered Ex Ship(… named port of destination)”,即“目的港船上交货(……指定目的港)”。它系指卖方履行如下义务,把备妥的货物,在指定目的港的船甲板上不办理货物进口结关手续的情况下,交给买方,故卖方须承担包括货物运至指定目的港的所有费用与风险。本术语只适用于海运或内河运输。
(十一)目的港码头交货(DEQ)
本术语的英文为 :“Delivered Ex Quay (Duty Paid)(…named port of destination)”,即“目的港码头交货(关税已付)(……指定目的港)”。本术语指卖方履行如下义务,将其备好的货物,在指定目的港的码头,办理进口结关后,交付给买方,而且卖方须承担所有风险和费用,包括关锐、捐税和其他交货中出现的费用。本术语适用于海运或内河运输。
(十二)未完税交货(DDU)
本术语的英文为“Delivered Duty Unpaid(… named place of destination)”,即“未完税交货(……指定目的地)”。它指卖方将备好的货物,在进口国指定的地点交付,而且须承担货物运至指定地点的一切费用和风险(不包括关税、捐税及进口时应支付的其他官方费用),另外须承担办理海关手续的费用和风险。买方须承担因未能及时办理货物进口结关而引起的额外费用和风险。本术语适用于各种运输方式。
(十三)完税后交货(DDP)
本术语的英文为“Delivered Duty Paid(… named place ofdestination)”,即“完税后交货(……指定目的地)”。它是指卖方将备好的货物在进口国指定地点交付,而且承担将货物运至指定地点的一切费用和风险,并办理进口结关。本术语可适用于各种运输方式。
6. 数控学习
1数控编程及其发展
数控编程是目前CAD/CAPP/CAM系统中最能明显发挥效益的环节之一,其在实现设计加工自动化、提高加工精度和加工质量、缩短产品研制周期等方面发挥着重要作用。在诸如航空工业、汽车工业等领域有着大量的应用。由于生产实际的强烈需求,国内外都对数控编程技术进行了广泛的研究,并取得了丰硕成果。下面就对数控编程及其发展作一些介绍。
1.1数控编程的基本概念
数控编程是从零件图纸到获得数控加工程序的全过程。它的主要任务是计算加工走刀中的刀位点(cutterlocationpoint简称CL点)。刀位点一般取为刀具轴线与刀具表面的交点,多轴加工中还要给出刀轴矢量。
1.2数控编程技术的发展概况
为了解决数控加工中的程序编制问题,50年代,MIT设计了一种专门用于机械零件数控加工程序编制的语言,称为APT(AutomaticallyProgrammedTool)。其后,APT几经发展,形成了诸如APTII、APTIII(立体切削用)、APT(算法改进,增加多坐标曲面加工编程功能)、APTAC(Advancedcontouring)(增加切削数据库管理系统)和APT/SS(SculpturedSurface)(增加雕塑曲面加工编程功能)等先进版。
采用APT语言编制数控程序具有程序简炼,走刀控制灵活等优点,使数控加工编程从面向机床指令的“汇编语言”级,上升到面向几何元素.APT仍有许多不便之处:采用语言定义零件几何形状,难以描述复杂的几何形状,缺乏几何直观性;缺少对零件形状、刀具运动轨迹的直观图形显示和刀具轨迹的验证手段;难以和CAD数据库和CAPP系统有效连接;不容易作到高度的自动化,集成化。
针对APT语言的缺点,1978年,法国达索飞机公司开始开发集三维设计、分析、NC加工一体化的系统,称为为CATIA。随后很快出现了象EUCLID,UGII,INTERGRAPH,Pro/Engineering,MasterCAM及NPU/GNCP等系统,这些系统都有效的解决了几何造型、零件几何形状的显示,交互设计、修改及刀具轨迹生成,走刀过程的仿真显示、验证等问题,推动了CAD和CAM向一体化方向发展。到了80年代,在CAD/CAM一体化概念的基础上,逐步形成了计算机集成制造系统(CIMS)及并行工程(CE)的概念。目前,为了适应CIMS及CE发展的需要,数控编程系统正向集成化和智能化夫发展。
在集成化方面,以开发符合STEP()标准的参数化特征造型系统为主,目前已进行了大量卓有成效的工作,是国内外开发的热点;在智能化方面,工作刚刚开始,还有待我们去努力。
2 NC刀具轨迹生成方法研究发展现状
数控编程的核心工作是生成刀具轨迹,然后将其离散成刀位点,经后置处理产生数控加工程序。下面就刀具轨迹产生方法作一些介绍。
2.1基于点、线、面和体的NC刀轨生成方法
CAD技术从二维绘图起步,经历了三维线框、曲面和实体造型发展阶段,一直到现在的参数化特征造型。在二维绘图与三维线框阶段,数控加工主要以点、线为驱动对象,如孔加工,轮廓加工,平面区域加工等。这种加工要求操作人员的水平较高,交互复杂。在曲面和实体造型发展阶段,出现了基于实体的加工。实体加工的加工对象是一个实体(一般为CSG和BREP混合表示的),它由一些基本体素经集合运算(并、交、差运算)而得。实体加工不仅可用于零件的粗加工和半精加工,大面积切削掉余量,提高加工效率,而且可用于基于特征的数控编程系统的研究与开发,是特征加工的基础。
实体加工一般有实体轮廓加工和实体区域加工两种。实体加工的实现方法为层切法(SLICE),即用一组水平面去切被加工实体,然后对得到的交线产生等距线作为走刀轨迹。本文从系统需要角度出发,在ACIS几何造型平台上实现了这种基于点、线、面和实体的数控加工。
2.2基于特征的NC刀轨生成方法
参数化特征造型已有了一定的发展时期,但基于特征的刀具轨迹生成方法的研究才刚刚开始。特征加工使数控编程人员不在对那些低层次的几何信息(如:点、线、面、实体)进行操作,而转变为直接对符合工程技术人员习惯的特征进行数控编程,大大提高了编程效率。
W.R.Mail和A.J.Mcleod在他们的研究中给出了一个基于特征的NC代码生成子系统,这个系统的工作原理是:零件的每个加工过程都可以看成对组成该零件的形状特征组进行加工的总和。那么对整个形状特征或形状特征组分别加工后即完成了零件的加工。而每一形状特征或形状特征组的NC代码可自动生成。目前开发的系统只适用于2.5D零件的加工。
LeeandChang开发了一种用虚拟边界的方法自动产生凸自由曲面特征刀具轨迹的系统。这个系统的工作原理是:在凸自由曲面内嵌入一个最小的长方块,这样凸自由曲面特征就被转换成一个凹特征。最小的长方块与最终产品模型的合并就构成了被称为虚拟模型的一种间接产品模型。刀具轨迹的生成方法分成三步完成:(1)、切削多面体特征;(2)、切削自由曲面特征;(3)、切削相交特征。
JongYunJung研究了基于特征的非切削刀具轨迹生成问题。文章把基于特征的加工轨迹分成轮廓加工和内区域加工两类,并定义了这两类加工的切削方向,通过减少切削刀具轨迹达到整体优化刀具轨迹的目的。文章主要针对几种基本特征(孔、内凹、台阶、槽),讨论了这些基本特征的典型走刀路径、刀具选择和加工顺序等,并通过IP(InterProgramming)技术避免重复走刀,以优化非切削刀具轨迹。另外,JongYunJong还在他1991年的博士论文中研究了制造特征提取和基于特征的刀具及刀具路径。
特征加工的基础是实体加工,当然也可认为是更高级的实体加工。但特征加工不同于实体加工,实体加工有它自身的局限性。特征加工与实体加工主要有以下几点不同:
从概念上讲,特征是组成零件的功能要素,符合工程技术人员的操作习惯,为工程技术人员所熟知;实体是低层的几何对象,是经过一系列布尔运算而得到的一个几何体,不带有任何功能语义信息;实体加工往往是对整个零件(实体)的一次性加工。但实际上一个零件不太可能仅用一把刀一次加工完,往往要经过粗加工、半精加工、精加工等一系列工步,零件不同的部位一般要用不同的刀具进行加工;有时一个零件既要用到车削,也要用到铣削。因此实体加工主要用于零件的粗加工及半精加工。而特征加工则从本质上解决了上述问题;特征加工具有更多的智能。对于特定的特征可规定某几种固定的加工方法,特别是那些已在STEP标准规定的特征更是如此。如果我们对所有的标准特征都制定了特定的加工方法,那么对那些由标准特征够成的零件的加工其方便性就可想而知了。倘若CAPP系统能提供相应的工艺特征,那么NCP系统就可以大大减少交互输入,具有更多的智能。而这些实体加工是无法实现的;
特征加工有利于实现从CAD、CAPP、NCP及CNC系统的全面集成,实现信息的双向流动,为CIMS乃至并行工程(CE)奠定良好的基础;而实体加工对这些是无能为力的。
2.3现役几个主要CAD/CAM系统中的NC刀轨生成方法分析
现役CAM的构成及主要功能
目前比较成熟的CAM系统主要以两种形式实现CAD/CAM系统集成:一体化的CAD/CAM系统(如:UGII、Euclid、Pro/ENGINEER等)和相对独立的CAM系统(如:Mastercam、Surfcam等)。前者以内部统一的数据格式直接从CAD系统获取产品几何模型,而后者主要通过中性文件从其它CAD系统获取产品几何模型。然而,无论是哪种形式的CAM系统,都由五个模块组成,即交互工艺参数输入模块、刀具轨迹生成模块、刀具轨迹编辑模块、三维加工动态仿真模块和后置处理模块。下面仅就一些着名的CAD/CAM系统的NC加工方法进行讨论。
UGII加工方法分析
一般认为UGII是业界中最好,最具代表性的数控软件。其最具特点的是其功能强大的刀具轨迹生成方法。包括车削、铣削、线切割等完善的加工方法。其中铣削主要有以下功能:
、PointtoPoint:完成各种孔加工;
、PanarMill:平面铣削。包括单向行切,双向行切,环切以及轮廓加工等;
、FixedContour:固定多轴投影加工。用投影方法控制刀具在单张曲面上或多张曲面上的移动,控制刀具移动的可以是已生成的刀具轨迹,一系列点或一组曲线;
、VariableContour:可变轴投影加工;
、Parameterline:等参数线加工。可对单张曲面或多张曲面连续加工;
、ZigZagSurface:裁剪面加工;
、RoughtoDepth:粗加工。将毛坯粗加工到指定深度;
、CavityMill:多级深度型腔加工。特别适用于凸模和凹模的粗加工;
、SequentialSurface:曲面交加工。按照零件面、导动面和检查面的思路对刀具的移动提供最大程度的控制。
EDSUnigraphics还包括大量的其它方面的功能,这里就不一一列举了。
STRATA加工方法分析
STRATA是一个数控编程系统开发环境,它是建立在ACIS几何建模平台上的。
它为用户提供两种编程开发环境,即NC命令语言接口和NC操作C++类库。它可支持三轴铣削,车削和线切割NC加工,并可支持线框、曲面和实体几何建模。其NC刀具轨迹生成方法是基于实体模型。STRATA基于实体的NC刀具轨迹生成类库提供的加工方法包括:
ProfileToolpath:轮廓加工;
AreaClearToolpath:平面区域加工;
SolidProfileToolpath:实体轮廓加工;
SolidAreaClearToolpath:实体平面区域加工;
SolidFaceToolPath:实体表面加工;
SolidSliceToolPath:实体截平面加工;
LanguagebasedToolpath:基于语言的刀具轨迹生成。
其它的CAD/CAM软件,如Euclid,Cimitron,CV,CATIA等的NC功能各有千秋,但其基本内容大同小异,没有本质区别。
2.4现役CAM系统刀轨生成方法的主要问题
按照传统的CAD/CAM系统和CNC系统的工作方式,CAM系统以直接或间接(通过中性文件)的方式从CAD系统获取产品的几何数据模型。CAM系统以三维几何模型中的点、线、面、或实体为驱动对象,生成加工刀具轨迹,并以刀具定位文件的形式经后置处理,以NC代码的形式提供给CNC机床,在整个CAD/CAM及CNC系统的运行过程中存在以下几方面的问题:
CAM系统只能从CAD系统获取产品的低层几何信息,无法自动捕捉产品的几何形状信息和产品高层的功能和语义信息。因此,整个CAM过程必须在经验丰富的制造工程师的参与下,通过图形交互来完成。如:制造工程师必须选择加工对象(点、线、面或实体)、约束条件(装夹、干涉和碰撞等)、刀具、加工参数(切削方向、切深、进给量、进给速度等)。整个系统的自动化程度较低。
在CAM系统生成的刀具轨迹中,同样也只包含低层的几何信息(直线和圆弧的几何定位信息),以及少量的过程控制信息(如进给率、主轴转速、换刀等)。因此,下游的CNC系统既无法获取更高层的设计要求(如公差、表面光洁度等),也无法得到与生成刀具轨迹有关的加工工艺参数。
CAM系统各个模块之间的产品数据不统一,各模块相对独立。例如刀具定位文件只记录刀具轨迹而不记录相应的加工工艺参数,三维动态仿真只记录刀具轨迹的干涉与碰撞,而不记录与其发生干涉和碰撞的加工对象及相关的加工工艺参数。
CAM系统是一个独立的系统。CAD系统与CAM系统之间没有统一的产品数据模型,即使是在一体化的集成CAD/CAM系统中,信息的共享也只是单向的和单一的。CAM系统不能充分理解和利用CAD系统有关产品的全部信息,尤其是与加工有关的特征信息,同样CAD系统也无法获取CAM系统产生的加工数据信息。这就给并行工程的实施带来了困难 。
3数控仿真技术
3.1计算机仿真的概念及应用
从工程的角度来看,仿真就是通过对系统模型的实验去研究一个已有的或设计中的系统。分析复杂的动态对象,仿真是一种有效的方法,可以减少风险,缩短设计和制造的周期,并节约投资。计算机仿真就是借助计算机,利用系统模型对实际系统进行实验研究的过程。它随着计算机技术的发展而迅速地发展,在仿真中占有越来越重要的地位。计算机仿真的过程可通过图1所示的要素间的三个基本活动来描述:
建模活动是通过对实际系统的观测或检测,在忽略次要因素及不可检测变量的基础上,用物理或数学的方法进行描述,从而获得实际系统的简化近似模型。这里的模型同实际系统的功能与参数之间应具有相似性和对应性。
仿真模型是对系统的数学模型(简化模型)进行一定的算法处理,使其成为合适的形式(如将数值积分变为迭代运算模型)之后,成为能被计算机接受的“可计算模型”。仿真模型对实际系统来讲是一个二次简化的模型。
仿真实验是指将系统的仿真模型在计算机上运行的过程。仿真是通过实验来研究实际系统的一种技术,通过仿真技术可以弄清系统内在结构变量和环境条件的影响。
计算机仿真技术的发展趋势主要表现在两个方面:应用领域的扩大和仿真计算机的智能化。计算机仿真技术不仅在传统的工程技术领域(航空、航天、化工等方面)继续发展,而且扩大到社会经济、生物等许多非工程领域,此外,并行处理、人工智能、知识库和专家系统等技术的发展正影响着仿真计算机的发展。
数控加工仿真利用计算机来模拟实际的加工过程,是验证数控加工程序的可靠性和预测切削过程的有力工具,以减少工件的试切,提高生产效率。
3.2数控仿真技术的研究现状
数控机床加工零件是靠数控指令程序控制完成的。为确保数控程序的正确性,防止加工过程中干涉和碰撞的发生,在实际生产中,常采用试切的方法进行检验。但这种方法费工费料,代价昂贵,使生产成本上升,增加了产品加工时间和生产周期。后来又采用轨迹显示法,即以划针或笔代替刀具,以着色板或纸代替工件来仿真刀具运动轨迹的二维图形(也可以显示二维半的加工轨迹),有相当大的局限性。对于工件的三维和多维加工,也有用易切削的材料代替工件(如,石蜡、木料、改性树脂和塑料等)来检验加工的切削轨迹。但是,试切要占用数控机床和加工现场。为此,人们一直在研究能逐步代替试切的计算机仿真方法,并在试切环境的模型化、仿真计算和图形显示等方面取得了重要的进展,目前正向提高模型的精确度、仿真计算实时化和改善图形显示的真实感等方向发展。
从试切环境的模型特点来看,目前NC切削过程仿真分几何仿真和力学仿真两个方面。几何仿真不考虑切削参数、切削力及其它物理因素的影响,只仿真刀具工件几何体的运动,以验证NC程序的正确性。它可以减少或消除因程序错误而导致的机床损伤、夹具破坏或刀具折断、零件报废等问题;同时可以减少从产品设计到制造的时间,降低生产成本。切削过程的力学仿真属于物理仿真范畴,它通过仿真切削过程的动态力学特性来预测刀具破损、刀具振动、控制切削参数,从而达到优化切削过程的目的。
几何仿真技术的发展是随着几何建模技术的发展而发展的,包括定性图形显示和定量干涉验证两方面。目前常用的方法有直接实体造型法,基于图像空间的方法和离散矢量求交法。
3.3直接实体造型法
这种方法是指工件体与刀具运动所形成的包络体进行实体布尔差运算,工件体的三维模型随着切削过程被不断更新。
Sungurtekin和Velcker开发了一个铣床的模拟系统。该系统采用CSG法来记录毛坯的三维模型,利用一些基本图元如长方体、圆柱体、圆锥体等,和集合运算,特别是并运算,将毛坯和一系列刀具扫描过的区域记录下来,然后应用集合差运算从毛坯中顺序除去扫描过的区域。所谓被扫过的区域是指切削刀具沿某一轨迹运动时所走过的区域。在扫描了每段NC代码后显示变化了的毛坯形状。
Kawashima等的接合树法将毛坯和切削区域用接合树(graftree)表示,即除了空和满两种结点,边界结点也作为八叉树(octtree)的叶结点。边界结点包含半空间,结点物体利用在这些半空间上的CSG操作来表示。接合树细分的层次由边界结点允许的半空间个数决定。逐步的切削仿真利用毛坯和切削区域的差运算来实现。毛坯的显示采用了深度缓冲区算法,将毛坯划分为多边形实现毛坯的可视化。
用基于实体造型的方法实现连续更新的毛坯的实时可视化,耗时太长,于是一些基于观察的方法被提出来。
3.4基于图像空间的方法
这种方法用图像空间的消隐算法来实现实体布尔运算。VanHook采用图象空间离散法实现了加工过程的动态图形仿真。他使用类似图形消隐的zbuffer思想,沿视线方向将毛坯和刀具离散,在每个屏幕象素上毛坯和刀具表示为沿z轴的一个长方体,称为Dexel结构。刀具切削毛坯的过程简化为沿视线方向上的一维布尔运算,见图3,切削过程就变成两者Dexel结构的比较:
CASE1:只有毛坯,显示毛坯,break;
CASE2:毛坯完全在刀具之后,显示刀具,break;
CASE3:刀具切削毛坯前部,更新毛坯的dexel结构,显示刀具,break;
CASE4:刀具切削毛坯内部,删除毛坯的dexel结构,显示刀具,break;
CASE5:刀具切削毛坯内部,创建新的毛坯dexel结构,显示毛坯,break;
CASE6:刀具切削毛坯后部,更新毛坯的dexel结构,显示毛坯,break;
CASE7:刀具完全在毛坯之后,显示毛坯,break;
CASE8:只有刀具,显示刀具,break。
这种方法将实体布尔运算和图形显示过程合为一体,使仿真图形显示有很好的实时性。
Hsu和Yang提出了一种有效的三轴铣削的实时仿真方法。他们使用zmap作为基本数据结构,记录一个二维网格的每个方块处的毛坯高度,即z向值。这种数据结构只适用于刀轴z向的三轴铣削仿真。对每个铣削操作通过改变刀具运动每一点的深度值,很容易更新zmap值,并更新工件的图形显示。
3.5离散矢量求交法
由于现有的实体造型技术未涉及公差和曲面的偏置表示,而像素空间布尔运算并不精确,使仿真验证有很大的局限性。为此Chappel提出了一种基于曲面技术的“点矢量”(pointvector)法。这种方法将曲面按一定精度离散,用这些离散点来表示该曲面。以每个离散点的法矢为该点的矢量方向,延长与工件的外表面相交。通过仿真刀具的切削过程,计算各个离散点沿法矢到刀具的距离s。
设sg和sm分别为曲面加工的内、外偏差,如果sg< S < SM说明加工处在误差范围内,S < SG则过切,S>sm则漏切。该方法分为被切削曲面的离散(discretization)、检测点的定位(location)和离散点矢量与工件实体的求交(intersection)三个过程。采用图像映射的方法显示加工误差图形;零件表面的加工误差可以精确地描写出来。
总体来说,基于实体造型的方法中几何模型的表达与实际加工过程相一致,使得仿真的最终结果与设计产品间的精确比较成为可能;但实体造型的技术要求高,计算量大,在目前的计算机实用环境下较难应用于实时检测和动态模拟。基于图像空间的方法速度快得多,能够实现实时仿真,但由于原始数据都已转化为像素值,不易进行精确的检测。离散矢量求交法基于零件的表面处理,能精确描述零件面的加工误差,主要用于曲面加工的误差检测。
7. 常见的存货管理的方法有哪些
方法:
严格执行财务制度规定,使账、物、卡三相符。(卡是指物料购买卡,领用卡、存货卡)。
2.采用ABC控制法,降低存货库存量,加速资金周转。
3.加强存货采购管理,合理运作采购资金,控制采购成本。
存货管理是将厂商的存货政策和价值链的存货政策进行作业化的综合过程。反应方法或称拉式存货方法,是利用顾客需求,通过配送渠道来拉动产品的配送。另一种管理理念是计划方法,它是按照需求量和产品可得性,主动排定产品在渠道内的运输和分配。
第三种方法,或称混合方法,即用逻辑推理将前两种方法进行结合,形成对产品和市场环境作出反应的存货管理理念。一项综合的存货管理战略将详细说明各种政策,并用于确定何处安排存货、何时启动补给装运和分配多少存货等过程。
网络 存货管理
8. 医疗垃圾的处理方法是什么
1.直接产生者:做一级处理,既简单处理。如:用消毒水浸泡等。
2.医院指定责任人:做二级处理。如:分装打包等。
3.专职人员:可以是环卫部门或卫生部门指定人员,其职责是做彻底无害化处理。
专用物品
1.专门的塑料袋:黄色的,禁止装生活垃圾,只能装医用垃圾,如敷料等
装医用废物的物品(2张)
2.专门的垃圾桶:黄色的,禁止扔生活垃圾,只能扔医用垃圾,如注射器等
3.专门的容器:禁止存放其他物品,只能盛装医用垃圾,如化学试剂等
9. 品质机动幅度的规定品质机动幅度的方法
品质机动幅度是指允许卖方所教货物的质量指标在一定幅度内有所灵活。规定品质机动幅度的方法有三:
1.规定范围:对某项货物的品质指标规定允许有一定差异范围。例如:漂布,幅阔35/36英寸,即布的幅阔只要在35英寸到36英寸的范围内,均作为合格。
2.规定极限:对有些货物的品质规格,规定上下极限。规定极限的表示方法,常用的有:最大;最高;最多(Maximum,缩写Max.);最小;最低;最少(Minimum,缩写为Min.)。例如:大米碎粒35%(最高)Rice,long shaped Broken grains 35%(max.);水分15%(最高)Mois-ture 15%(max.);杂质1%(最高)Admixtures 1%(max.)。
3.规定上下差异:规定上下差异也是使货物的品质规格具有必要的灵活性的有效方法,如:灰鸭毛,含绒量18%,上下1% Grey Duck Feather,Down content 18%,1% more or less。