1. 常用的焊接方法及其优缺点
焊接有三类:熔焊,压力焊和钎焊,三种焊接方法在不同的领域有不同的用处,都挺重要的。
在目前的工业领域,最常用的是熔化焊里面的二氧化碳气体保护焊,基本上在制造业的每个领域都要用到,点焊和凸焊是电阻焊里面常用的。
至于你提这个问题做什么用的,你应该表达清楚了才能得到更准确的答案,你说呢?
2. 焊接方法有哪些
常用焊接方法及特点 -------------------------------------------------------------------------------- 一、什么是钎焊?钎焊是如何分类的?钎焊的接头形式有何特点? 钎焊是利用熔点比母材低的金属作为钎料,加热后,钎料熔化,焊件不熔化,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散,将焊件牢固的连接在一起。 根据钎料熔点的不同,将钎焊分为软钎焊和硬钎焊。 (1)软钎焊:软钎焊的钎料熔点低于450°C,接头强度较低(小于70 MPa)。 (2)硬钎焊:硬钎焊的钎料熔点高于450°C,接头强度较高(大于200 MPa)。 钎焊接头的承载能力与接头连接面大小有关。因此,钎焊一般采用搭接接头和套件镶接,以弥补钎焊强度的不足。 二、电弧焊的分类有哪些,有什么优点? 利用电弧作为热源的熔焊方法,称为电弧焊。可分为手工电弧焊、埋弧自动焊和气体保护焊等三种。手工自动焊的最大优点是设备简单,应用灵活、方便,适用面广,可焊接各种焊接位置和直缝、环缝及各种曲线焊缝。尤其适用于操作不变的场合和短小焊缝的焊接;埋弧自动焊具有生产率高、焊缝质量好、劳动条件好等特点;气体保护焊具有保护效果好、电弧稳定、热量集中等特点。 三、焊条电弧焊时,低碳钢焊接接头的组成、各区域金属的组织与性能有何特点? (1)焊接接头由焊缝金属和热影响区组成。 1)焊缝金属:焊接加热时,焊缝处的温度在液相线以上,母材与填充金属形成共同熔池,冷凝后成为铸态组织。在冷却过程中,液态金属自熔合区向焊缝的中心方向结晶,形成柱状晶组织。由于焊条芯及药皮在焊接过程中具有合金化作用,焊缝金属的化学成分往往优于母材,只要焊条和焊接工艺参数选择合理,焊缝金属的强度一般不低于母材强度。 2)热影响区:在焊接过程中,焊缝两侧金属因焊接热作用而产生组织和性能变化的区域。 (2)低碳钢的热影响区分为熔合区、过热区、正火区和部分相变区。 1)熔合区 位于焊缝与基本金属之间,部分金属焙化部分未熔,也称半熔化区。加热温度约为1 490~1 530°C,此区成分及组织极不均匀,强度下降,塑性很差,是产生裂纹及局部脆性破坏的发源地。 2)过热区 紧靠着熔合区,加热温度约为1 100~1 490°C。由于温度大大超过Ac3,奥氏体晶粒急剧长大,形成过热组织,使塑性大大降低,冲击韧性值下降25%~75%左右。 3)正火区 加热温度约为850~1 100°C,属于正常的正火加热温度范围。冷却后得到均匀细小的铁素体和珠光体组织,其力学性能优于母材。 4)部分相变区 加热温度约为727~850°C。只有部分组织发生转变,冷却后组织不均匀,力学性能较差。 四、什么是电阻焊?电阻焊分为哪几种类型、分别用于何种场合? 电阻焊是利用电流通过工件及焊接接触面间所产生的电阻热,将焊件加热至塑性或局部熔化状态,再施加压力形成焊接接头的焊接方法。 电阻焊分为点焊、缝焊和对焊3种形式。 (1)点焊:将焊件压紧在两个柱状电极之间,通电加热,使焊件在接触处熔化形成熔核,然后断电,并在压力下凝固结晶,形成组织致密的焊点。 点焊适用于焊接4 mm以下的薄板(搭接)和钢筋,广泛用于汽车、飞机、电子、仪表和日常生活用品的生产。 (2)缝焊:缝焊与点焊相似,所不同的是用旋转的盘状电极代替柱状电极。叠合的工件在圆盘间受压通电,并随圆盘的转动而送进,形成连续焊缝。 缝焊适宜于焊接厚度在3 mm以下的薄板搭接,主要应用于生产密封性容器和管道等。 (3)对焊:根据焊接工艺过程不同,对焊可分为电阻对焊和闪光对焊。 1)电阻对焊 焊接过程是先施加顶锻压力(10~15 MPa),使工件接头紧密接触,通电加热至塑性状态,然后施加顶锻压力(30~50 MPa),同时断电,使焊件接触处在压力下产生塑性变形而焊合。 电阻对焊操作简便,接头外形光滑,但对焊件端面加工和清理要求较高,否则会造成接触面加热不均匀,产生氧化物夹杂、焊不透等缺陷,影响焊接质量。因此,电阻对焊一般只用于焊接直径小于20 mm、截面简单和受力不大的工件。 2)闪光对焊 焊接过程是先通电,再使两焊件轻微接触,由于焊件表面不平,使接触点通过的电流密度很大,金属迅速熔化、气化、爆破,飞溅出火花,造成闪光现象。继续移动焊件,产生新的接触点,闪光现象不断发生,待两焊件端面全部熔化时,迅速加压,随即断电并继续加压,使焊件焊合。 闪光对焊的接头质量好,对接头表面的焊前清理要求不高。常用于焊接受力较大的重要工件。闪光对焊不仅能焊接同种金属,也能焊接铝钢、铝铜等异种金属,可以焊接0.01 mm的金属丝,也可以焊接直径500 mm的管子及截面为20 000 mm2的板材。 五、激光焊的基本原理是什么?有何特点及用途? 激光焊利用聚焦的激光束作为能源轰击工件所产生的热量进行焊接。 激光焊具有如下特点: 1)激光束能量密度大,加热过程极短,焊点小,热影响区窄,焊接变形小,焊件尺寸精度高; 2)可以焊接常规焊接方法难以焊接的材料,如焊接钨、钼、钽、锆等难熔金属; 3)可以在空气中焊接有色金属,而不需外加保护气体; 4)激光焊设备较复杂,成本高。 激光焊可以焊接低合金高强度钢、不锈钢及铜、镍、钛合金等;异种金属以及非金属材料(如陶瓷、有机玻璃等);目前主要用于电子仪表、航空、航天、原子核反应堆等领域。 六、电子束焊的基本原理是什么?有何特点及用途? 电子束焊利用在真空中利用聚焦的高速电子束轰击焊接表面,使之瞬间熔化并形成焊接接头。 电子束焊具有以下特点: 1)能量密度大,电子穿透力强; 2)焊接速度快,热影响取消,焊接变形小; 3)真空保护好,焊缝质量高,特别适用于活波金属的焊接。 电子束焊用于焊接低合金钢、有色金属、难熔金属、复合材料、异种材料等,薄板、厚板均可。特别适用于焊接厚件及要求变形很小的焊件、真空中使用器件、精密微型器件等。
3. 目前焊接方法有哪几种
目前焊接有三种方法,分别为:熔焊、压焊、钎焊。
1、熔焊:加热欲接合的工件并使它的局部熔化形成熔池,熔池冷却凝固后便能接合,必要时可加入熔填物辅助。它是适合于各种金属和合金的焊接加工,整个过程不需要压力。
2、压焊:顾名思义,压焊的过程必须对焊件进行施加压力。适合于各种金属材料和部分金属材料的加工。
3、钎焊:钎料采用比母材熔点低的金属,使用液态钎料润湿母材,填充接头间隙,通过与母材互相扩散,来实现焊件的链接。
钎焊适合于各种材料的焊接加工,尤其适合于不同金属或异类材料的焊接加工。
(3)常用焊接方法扩展阅读:
焊接的能量来源:气体焰、电弧、激光、电子束、摩擦和超声波等。
焊接的使用场所:除了在工厂中使用外,焊接还可以在多种环境下进行,如野外、水下和太空。
焊接给人体可能造成的伤害包括:烧伤、触电、视力损害、吸入有毒气体、紫外线照射过度等。
无论在何处,焊接都可能给操作者带来危险,所以在进行焊接时必须采取适当的防护措施。
焊接技术的发展趋势 :
1、提高焊接生产率是推动焊接技术发展的重要驱动力。
2、提高准备车间的机械化,自动化水平是当前世界先进工业国家的重点发展方向。
3、焊接过程自动化,智能化是提高焊接质量稳定性,解决恶劣劳动条件的重要方向。
4、新兴工业的发展不断推动焊接技术的前进。
5、热源的研究与开发是推动焊接工艺发展的根本动力。
6、节能技术是普遍关注的问题。
参考资料:网络-焊接
4. 常用的焊接方法分为哪几类
焊接方法的分类很多,按照焊接过程中金属所处状态的不同,可以把焊接方法分为熔化焊、压力焊和钎焊三类。每类又分为各种不同的焊接方法。至于金属热切割、喷涂、碳弧气刨等均是跟焊接方法相近的金属加工方法,通常也属于焊接专业的技术范围。
⑴熔化焊
焊接过程中,将焊件接头加热至熔化状态,不加压力完成焊接的方法称为熔焊。常用的熔焊方法有电弧焊、气焊、电渣焊等。
⑵压力焊
焊接过程中,必须对焊件施加压力(加热或不加热),以完成焊接的方法称为压焊。常用的压焊方法有电阻焊(对焊、点焊、缝焊)、摩擦焊、旋转电弧焊、超声波焊等。
⑶钎焊
焊接过程中,采用比母材熔点低的金属材料作钎料,将焊件和钎料加热到高于钎料熔点、低于母材熔点的温度,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散实现连接焊件的方法称为钎焊。常用的钎焊方法有火焰钎焊、感应钎焊、炉中钎焊、盐浴钎焊和真空钎焊等。
5. 常用焊接方法分类
焊接是一种不可拆卸的连接方法;它通过加热,加压或两者兼施的方法使两个分离的零件结合在一起。
焊接的方法很多,按其焊接过程的特点,可把它们归纳为熔焊、压焊和钎焊三大类。
熔焊:一般来说,是将两个被焊的工件局部加热到熔化状态,同时加入(也可不加入)填充金属,形成共同的熔池,冷却后则形成牢固的接头。这是一种常用的焊接方法,它包括手工电弧焊和气焊等。
压焊:是利用焊接时施加一定的压力,使两焊接件接触处的金属结合在一起的连接方法。这种焊接根据焊接时是否加热又可分为两种形式:一种是将被焊金属接触处局部加热至塑性状态或局部熔化状态,然后施加一定的压力,使金属结合在一起;另一种形式是不进行加热,只是在金属的接触面上施加足够大的压力,借助于压力所引起的塑性变形,使原子间相互接近而获得牢固的压挤焊接点。属于前者的有锻焊、接触焊、摩擦焊;属于后者的有冷压焊、爆炸焊。
钎焊:是把熔点比焊件低的钎料和焊件共同加热,在焊件不熔化而钎料熔化的情况下,两种材料互相扩散形成钎焊接头。钎焊又有硬钎焊和软纤焊之分。钎焊加热温度低,变形小,接头光滑平整。
在地勘钻探施工中,通常使用的焊接方法是手工电弧焊(又称电焊)和气焊与气割。
(一)电焊
如图4-38所示为手工电弧焊焊接过程简图;1为电焊机,2为焊钳,3为焊条,4是被焊接的工件。工作时,金属电焊条夹在焊钳里和电源的一极相连接,工件则和电源的另一极相连。操作时,使焊条和工件瞬时接触以形成短路,随即提起焊条,使之与工件距离2~4mm,从而引燃电弧。被焊工件与焊条在电弧加热下熔化形成共同的熔池5,随着电弧沿着焊缝不断移动,新的熔池不断形成,原先熔池冷却凝固形成一条牢固的连接焊缝。图中箭头a表示随着焊条不断熔化而需要的焊条送进运动。
图4-38 手工电弧焊
1—电焊机;2—焊钳;3—焊条;4—焊件;5—熔池
1.手工电弧焊工艺
手工电弧焊工艺包括焊接接头、焊缝在空间的位置和焊接规范三个方面。
(1)焊接接头
用焊接方法把两块钢板连接在一起的地方叫作焊接接头。
焊接接头由焊缝、熔合区和热影响区组成。焊缝是指焊件经焊接后所形成的结合部分。热影响区是指焊件受热的影响(但未熔化)而发生金相组织和力学性能变化的区域。熔合区则是由焊缝向热影响区过渡的区域。为了保证焊缝可靠熔透和成形良好,熔池有良好的结晶条件;在焊前将焊件的待焊部位加工成一定几何形状的沟槽,这就叫开坡口。
根据被焊工件的结构形状、厚度及工作条件对接头质量的要求不同,焊接接头有对接、搭接、T形接、角接和卷边接等形式。
1)对接接头。如图4-39所示的形式;两焊件端面相对平行的接头称为对接接头。它的受力情况较好,应力集中程度较小,是各种结构中采用最多的一种接头形式。接头的坡口形式很多,常用的有:①I形坡口。如图4-39a所示形式。一般适用于厚度小于6mm钢板的对接。采用单面焊或双面焊即可焊透,为了使电弧能深入金属进行加热,保证焊透,接边之间可留0~2.5mm间隙。被焊工件厚度增大时,间隙也需相应增大,否则可能引起未焊透。这种接头的接边制备和装配较方便,需用焊条量少,焊接生产率较高。②Y形坡口。如图4-39b所示形式。适用于板厚为3~26mm。③双Y形坡口。如图4-39c所示。适用于板厚12~60mm。④带钝边U形坡口。如图4-39d所示形式。适用于板厚20~60mm。⑤带钝边双U形坡口。如图4-39e所示形式。适用于板厚大于30mm。各种坡口的坡口角度、根部间隙、钝边(接边直边部分高度)、根部半径R等尺寸(图4-39)。
图4-39 对接接头(单位:mm)
a—I形坡口;b—Y形坡口;c—双Y形坡口;d—带钝边U形坡口;e—带钝边双U形坡口
2)搭接接头。如图4-40所示的形式。由两块钢板部分搭叠,沿着一块板或两块板的边缘进行焊接,或在上面一块钢板上开孔,采用塞焊把两块钢板焊在一起的接头称为搭接接头。图4-40中,l、c和塞焊点间距由设计确定。搭接接头一般用于厚度为10~20mm的板料焊接,搭接的长度一般为板厚的3~5倍。必须两面施焊,一般承载能力不高。这种接头消耗钢板较多,增加了结构的自重,在受外力作用时,因两工件不在同一平面上,能产生很大的力矩,使焊缝应力复杂,所以接头承载能力低,在结构设计中应尽量避免采用搭接接头。
图4-40 搭接接头(单位:mm)
3)T形接头。如图4-41所示的形式。由两块钢板成T字形结合的接头称为T形接头。有的又把它称为丁字接头。T形接头也可开I形、带钝边单边V形、带钝边双单边V形以及带钝边双J形坡口等形式。T形接头钢板厚度在2~30mm时,可采用I形坡口(图4-41a);它通常是不需要焊透的,但需要保证两边焊脚K等于工件厚度。当立板较厚或对于重要焊接而又需要焊透时,应采用如图4-41b、图4-41c、图4-41d所示形式的坡口。
图4-41 T形接头(单位:mm)
4)角接接头。如图4-42所示的形式。它是在两块钢板的端部组成30~150°角度的连接接头。同样根据工件厚度和强度要求可分为I形坡口的平接或错接,带钝边的单边V形和双单边V形、Y形坡口等形式。一般焊接件可采用如图4-42a所示的形式。若工件厚度在10mm以上时,为了保证焊透,可使两工件搭接上3~5mm(图4-42b);若操作方便,还可在两工件之间保持l~2mm的间隙再焊接(图4-42c)。
图4-42 角接接头(单位:mm)
5)卷边接头。如图4-43所示形式。一般适用于厚度在2mm以下的薄金属板。焊前将接头边缘用弯板机或手工进行卷边;焊时可不加填充金属,靠电弧熔化卷边,待金属凝固后即形成焊缝。卷边接头的特点是接边的制备和装配方便,生产率高,但承载能力低,只能用于载荷较小的薄壳结构。
图4-43 卷边接头
(2)焊缝在空间的位置
焊接时按照焊缝在空间的位置可分为平焊、立焊、横焊和仰焊几种形式。如图4-44a所示形式为平焊;如图4-44b所示形式为横焊和立焊;如图4-44c所示形式为仰焊。平焊操作方便,易保证质量,仰焊工艺性差。
图4-44 焊缝在空间的位置
(3)焊接规范
焊接规范包括所用焊条直径的大小、焊接电流和焊接速度三个方面的内容。它是影响焊接质量和生产率的重要因素。因为焊接速度取决于焊条直径和焊接电流。所以焊接规范主要指的是焊条直径和焊接电流。
焊条直径的选择依据是工件厚度和接头形式,原则上在保证焊接质量的前提下尽可能选用大直径焊条,从而可以提高生产率。
2.电焊设备机具
(1)电焊机
目前国内使用的电焊设备有直流弧电焊机、交流弧电焊机和焊接整流器三种。在施工现场常用的是交流弧电焊机(图4-45)。其主体为一个特殊降压变压器。空载电压60~70V,工作电压30V,电流调节范围为50~450A,交流弧电焊机结构简单,维修方便,价格低但电弧稳定性较差。
图4-45 BX1-330交流弧电焊机
1—初级绕组;2,3—次级绕组;4—动铁心;5—静铁心;6—接线板;7—摇把
对电焊设备一般必须满足以下一些要求:
1)要有较高的空载电压以便引弧,同时又要保证工作安全,所以一般控制在50~90V之间。
2)短路电流不能太大,防止损坏设备。
3)电焊机要有保证电弧稳定的特殊性能。
4)焊接电流可以调节,以适应焊接件厚薄的变化。
(2)电焊用具
需配备电焊钳、面罩、焊接电缆、焊条箱、尖头手锤、钢丝刷和刷子等。另外,焊接时,工作人员必须戴皮革手套穿帆布工作服,戴脚盖及穿绝缘胶鞋,以防触电和烧伤。
(二)气焊与气割
1.气焊
(1)气焊工作原理
气焊是利用乙炔在空气中燃烧所产生的热量来熔化工件和焊丝进行焊接。
由于气焊有焊接温度比电弧焊低,加热缓慢,热量比较分散,生产率低,焊后易变形等弱点。所以气焊主要适用于焊薄钢板,有色金属及其合金,工具钢和铸铁等。乙炔为无色气体,其分子式为C2H2,它是由电石(CaC2)和水作用而获得的。
CaC2+2H2O→Ca(OH)2十C2H2
乙炔在空气中燃烧可产生2200℃的温度。而在纯氧中燃烧时则可获得3200℃的高温。
(2)气焊需要配备设备
1)氧气瓶。用来贮存氧气的一种容器,贮氧最高压力为150×105Pa。
2)减压阀种容器。用来将氧气瓶中的高压氧降低到工作压力,约(3~4)×105Pa,并保持焊接过程中压力的稳定。
3)乙炔发生器。如图4-46所示的形式,是使水和电石接触产生乙炔的装置。其种类很多,较为普遍的是,浸水式乙炔发生器。乙炔发生器的工作原理是将电石装在与浮筒连在一起的电石筐中,当电石与筒中的水接触后即发生反应放出乙炔气,乙炔气贮存在浮筒内通过导管引出。随着反应的不断进行,浮筒内贮存的乙炔越来越多,压力不断升高,使浮筒逐渐上升。当浮筒内乙炔气的压力超过工作所需压力时,浮筒上升的高度刚好可使电石离开水面,从而使反应停止。当浮筒内压力下降时,浮筒也下降使电石和水接触,反应继续进行,压力回升。从而保证焊接中压力的稳定。从浮筒中导出的乙炔首先要通过一个回火防止器再进入乙炔输送管道。回火防止器的目的是防止乙炔火焰倒流入乙炔发生器中而引起爆炸。回火的原因,往往是由于焊枪喷嘴堵塞,使混合气体喷出的速度小于燃烧速度而造成的。
图4-46 乙炔发生器
1—电石;2—浮筒;3—电石筐;4—乙炔瓶
4)焊炬(又称焊枪)。如图4-47所示形式。它是使乙炔和氧按一定比例而混合获得气焊火焰的工具。使用时,先微开氧气调节阀,再开乙炔调节阀,进行点火,然后再逐渐开大氧气调节阀,将火焰调整合适,一手拿焊枪,一手拿焊丝,沿焊缝移动进行焊接(图4-48)。
图4-47 射吸式焊炬的构造
1—乙炔调节阀;2—乙炔管;3—氧气管;4—氧气调节阀;5—喷嘴;6—射吸管;7—混合气管;8—焊嘴
2.气割
(1)气割工作原理
氧气切割称为气割。
气割时先用氧-乙炔火焰将切割处金属加热到燃烧弹点,再通过喷射高压氧气流将金属剧烈氧化成熔渣从切口中吹掉,从而将金属分开(图4-49),切割时采用切割器(图4-50)。
图4-48 气焊
图4-49 气割
图4-50 射吸式割炬的构造
1—氧气进口;2—乙炔进口;3—乙炔调节阀;4—氧气调节阀;5—高压氧气阀;6—喷嘴;7—射吸管;8—混合气管;9—高压氧气管;10—割嘴
气割的过程是首先将混合的氧、乙炔气体从割嘴喷出(图4-50),利用点燃的预热火焰将切割处金属加热至燃点,再由中央喷出口射出高压纯氧气流将溶渣吹走。
(2)气割适用范围
气割一般只适用于切割低、中碳钢,高碳钢因燃点与熔点接近,切割质量差。铸铁熔点低于它的燃点,故不能气割。有色金属因导热性好,易氧化也不能气割。
6. 常用的焊接方法是什么
⑴熔化焊 焊接过程中,将焊件接头加热至熔化状态,不加压力完成焊接的方法称为熔焊。常用的熔焊方法有电弧焊、气焊、电渣焊等。
⑵压力焊 焊接过程中,必须对焊件施加压力(加热或不加热),以完成焊接的方法称为压焊。常用的压焊方法有电阻焊(对焊、点焊、缝焊)、摩擦焊、旋转电弧焊、超声波焊等。
⑶钎焊 焊接过程中,采用比母材熔点低的金属材料作钎料,将焊件和钎料加热到高于钎料熔点、低于母材熔点的温度,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散实现连接焊件的方法称为钎焊。常用的钎焊方法有火焰钎焊、感应钎焊、炉中钎焊、盐浴钎焊和真空钎焊等。
7. 常见焊接方法有几种
焊接种类方法:
1、焊条电弧焊:
原理——用手工操作焊条进行焊接的电弧焊方法。利用焊条与焊件之间建立起来的稳定燃烧的电弧,使焊条和焊件熔化,从而获得牢固的焊接接头。属气-渣联合保护。
主要特点——操作灵活;待焊接头装配要求低;可焊金属材料广;焊接生产率低;焊缝质量依赖性强(依赖于焊工的操作技能及现场发挥)。
应用——广泛用于造船、锅炉及压力容器、机械制造、建筑结构、化工设备等制造维修行业中。适用于(上述行业中)各种金属材料、各种厚度、各种结构形状的焊接。
2、埋弧焊(自动焊):
原理——电弧在焊剂层下燃烧。利用焊丝和焊件之间燃烧的电弧产生的热量,熔化焊丝、焊剂和母材(焊件)而形成焊缝。属渣保护。
主要特点——焊接生产率高;焊缝质量好;焊接成本低;劳动条件好;难以在空间位置施焊;对焊件装配质量要求高;不适合焊接薄板(焊接电流小于100A时,电弧稳定性不好)和短焊缝。
应用——广泛用于造船、锅炉、桥梁、起重机械及冶金机械制造业中。凡是焊缝可以保持在水平位置或倾斜角不大的焊件,均可用埋弧焊。板厚需大于5毫米(防烧穿)。焊接碳素结构钢、低合金结构钢、不锈钢、耐热钢、复合钢材等。
3、二氧化碳气体保护焊(自动或半自动焊):
原理:利用二氧化碳作为保护气体的熔化极电弧焊方法。属气保护。主要特点——焊接生产率高;焊接成本低;焊接变形小(电弧加热集中);焊接质量高;操作简单;飞溅率大;很难用交流电源焊接;抗风能力差;不能焊接易氧化的有色金属。
4、MIG/MAG焊(熔化极惰性气体/活性气体保护焊):
MIG焊原理——采用惰性气体作为保护气,使用焊丝作为熔化电极的一种电弧焊方法。保护气通常是氩气或氦气或它们的混合气。MIG用惰性气体,MAG在惰性气体中加入少量活性气体,如氧气、二氧化碳气等。
5、TIG焊(钨极惰性气体保护焊)
原理——在惰性气体保护下,利用钨极与焊件间产生的电弧热熔化母材和填充焊丝(也可不加填充焊丝),形成焊缝的焊接方法。焊接过程中电极不熔化。
6、等离子弧焊
原理——借助水冷喷嘴对电弧的拘束作用,获得高能量密度的 等离子弧进行焊接的方法。
焊接注意事项:
一、电弧的长度
电弧的长度与焊条涂料种类和药皮厚度有关系。但都应尽可能采取短弧,特别是低氢焊条。电弧长可能造成气孔。短弧可避免大气中的O2、N2等有害气体侵入焊缝金属,形成氧化物等不良杂质而影响焊缝质量。
二、焊接速度
适宜的焊接速度是以焊条直径、涂料类型、焊接电流、被焊接物的热容量、结构开头等条件有其相应变化,不能作出标准的规定。保持适宜的焊接速度,熔渣能很好的覆盖着熔潭。使熔潭内的各种杂质和气体有充分浮出时间,避免形成焊缝的夹渣和气孔。在焊接时如运棒速度太快,焊接部位冷却时,收缩应力会增大,使焊缝产生裂缝。
焊丝选用的要点
焊丝的选择要根据被焊钢材种类、焊接部件的质量要求、焊接施工条件(板厚、坡口形状、焊接位置、焊接条件、焊后热处理及焊接操作等待)、成本等综合考虑。
8. 什么是焊接,常用的焊接方法
焊接按照连接的机理不同大致可分为熔化焊、钎焊和固相焊接。
熔化焊即母材焊缝附近区域熔化,填充材料也熔化。根据焊接热源特点不同可分为电弧焊、氩弧焊、等离子束焊、激光焊、电子束焊、自蔓延焊接等等。熔化焊母材局部加热,温度高,热影响区大,焊后变形大、残余应力大。熔化焊可使待焊母材达到充分的冶金结合,连接强度高。熔化焊适于连接同基体的两种母材,如果两种材料间易生成化合物不适易使用熔化焊。
钎焊即母材不熔化,填充材料熔化,依靠填充材料对母材的润湿力(表面张力)去填充钎焊间隙,并与母材发生反应而获得冶金结合的焊接接头。根据焊接热源不同可分为火焰钎焊、高频钎焊、烙铁钎焊、波峰焊等等。钎焊加热温度低,即使采用局部加热的手段,热影响区、焊后变形、残余应力都较小。钎焊依靠钎料与母材间的物理化学做用形成冶金结合,两种母材不直接反应,因此易于焊接异种材料。
固相焊接是母材不熔化,可用也可不用填充材料,且填充材料一般也不熔化(瞬时液相扩散连接除外)。可分为扩散焊、搅拌摩擦焊等等。