‘壹’ 吸附剂再生率的计算方法 吸附剂的再生率怎么计算有哪些计算方法
吸附-氧化再生试验.精确称取一定质量的树脂于锥形瓶中,加入一定量的印染废水,使树脂吸附至平衡,用移液管将吸附后的废水吸出,加入次氯酸钠再生液,搅拌反应进行再生.再生后的树脂用静态吸附法再吸附,测出再生树脂的平衡吸附量,计算再生树脂的再生率.树脂的平衡吸附量Qe以吸附废水的COD表示,其表达式为:Qe=[ρ(COD0)-ρ(CODe)]V/m(1)式中:ρ(COD0)———废水初始的COD的质量浓 度,mg/L;
ρ(CODe)———吸附平衡时的COD的质量浓 度,mg/L;
V———废水体积,L;
m———树脂质量,g.再生效果以COD再生率RCOD和色度再生率 Rcolor两方面进行评价:RCOD=Qre/Q0e×100%(2)式中:Qre、Q0e———再生树脂、新树脂的平衡吸附量(COD),mg/g.
Rcolor=Nre/N0e×100%(3)式中:Nre、N0e———再生树脂、新树脂吸附后废水色度的变化,度.
‘贰’ 空压机吸附塔作用
一、吸附传质及吸附平衡:
吸附过程是压缩空气中的水蒸气扩散到吸附剂上并被吸附的一个传质过程。
当压缩空气与多孔质的固体吸附剂相接触时,水分子碰到固体吸附剂的表面后被吸附。在吸附的同时,被吸附的水分子由于本身的热运动和外界气态分子的碰撞,有一部分离开吸附剂表面返回气流中。当被吸附的水分子数量等于离开吸附剂表面的水分子数量时,即达到吸附平衡。
压缩空气需要吸附干燥的2大作用原理
二、吸附剂的再生:
吸附剂的再生方式分为无热再生法、微热再生法和余热再生法。
A无热再生法。
吸附剂对水的吸附容量与吸附时压缩空气中的水蒸气分压力成正比,利用吸附剂的这一特性,使吸附在压力下进行,再生在常压或真空下进行,由此产生了无热再生压缩空气干燥法。
无热再生压缩空气干燥系统一般采用双塔式,一塔进行吸附,另一塔进行再生。压缩空气通过吸附塔被干燥,大部分干燥空气作为产品气送往用户,部分干燥空气返流入另一塔,脱除吸附剂中所含水分。采用不同的吸附剂和再生条件,无热再生压缩空气干燥法可得到露点温度为-40度的成品压缩空气。
B微热再生法。
微热再生压缩空气干燥法是在无热再生的基础上,对再生进行适当加热,提高再生气温度,以减少再生气耗量。
‘叁’ 吸收的原理
1.吸收基本原理
当采用某种液体处理气体混合物时,在气-液相的接触过程中,气体混合物中的不同组分在同一种液体中的溶解度不同,气体中的一种或数种溶解度大的组分将进入到液相中,从而使气相中各组分相对浓度发生了改变,即混合气体得到分离净化,这个过程称为吸收。用吸收法治理气态污染物即是用适当的液体作为吸收剂,使含有有害组分的废气与其接触,使这些有害组分溶于吸收剂中,气体得到净化。
在用吸收法治理气态污染物的过程中,依据吸收质(被吸收的组分)与吸收剂是否发生化学反应,而将其分为物理吸收与化学吸收。前者在吸收过程中进行的是纯物理溶解过程,如用水吸收CO2或吸收SO2等;而后者在吸收中常伴有明显的化学反应发生,如用碱液吸收CO2,用酸溶液吸收氨等。化学反应的存在增大了吸收的传质系数和吸收推动力,加大了吸收速率,因而在处理以气量大、有害组分浓度低为特点的各种废气时,化学吸收的效果要比物理吸收效果好得多,因此在用吸收法治理气态污染物时,多采用化学吸收法。
2.吸收流程
(1)吸收工艺 根据吸收剂与废气在吸收设备内的流动方向,可将吸收工艺分为:
①逆流操作。即在吸收设备中,被吸收气体由下向上流动,而吸收剂则由上向下流动,在气、液逆向流动的接触中完成传质过程。
②并流操作。被吸收气体与吸收剂同时由吸收设备的上部向下部同向流动。
③错流操作 被吸收气体与吸收剂呈交叉方向流动。
在实际的吸收工艺中,一般均采用逆流操作。
(2)吸收流程 吸收流程布置可分为循环过程与非循环过程两种。
①非循环过程。流程布置的主要特点是对吸收剂不予再生,即没有吸收质的解吸过程。图中右侧所示流程中虽有部分吸收剂进行循环,但循环部分与非循环部分均无吸收剂的再生步骤。
②循环过程。流程的主要特点是吸收剂的封闭循环,在吸收剂的循环中对其进行再生。
待净化气体进入吸收塔进行吸收,塔底排出的吸收液进入解吸塔或再生塔,用适当的方法使吸收质从吸收液中释出,再生后的吸收剂入吸收塔重新使用。
3.常用吸收设备
吸收设备种类很多,每一种类型的吸收设备都有着各自的长处与不足,选择一适宜的吸收设备,应考虑如下的因素:对废气处理能力大;对有害组分吸收净化效率高;设备结构简单,操作稳定;气体通过阻力小;操作弹性大,能适应较大的负荷波动;投资省等。
目前工业上常用的吸收设备主要有三大类。
(1)表面吸收器
凡能使气液两相在固定接触表面上进行吸收操作的设备均称为表面吸收器。属于这种类型的设备有水平表面吸收器、液膜吸收器以及填料塔等。在气态污染物治理中应用最普遍的是填料塔,特别是逆流填料塔。由于在这种类型的塔中,废气在沿塔上升的同时,污染物浓度逐渐下降,而塔顶喷淋的总是较为新鲜的吸收液,因而吸收传质的平均推动力最大,吸收效果好。
(2)鼓泡式吸收器
在这类吸收器内都有液相连续的鼓泡层,分散的气泡在穿过鼓泡层时有害组分被吸收。属于这一类型的设备有鼓泡塔和各种板式吸收塔。在气态污染物治理中应用较多的是鼓泡塔和筛板塔。
(3)喷洒式吸收器
这类吸收器是用喷嘴将液体喷射成为许多细小的液滴,或用高速气流的挟带将液体分散为细小的液滴,以增大气-液相的接触面积,完成物质的传递。比较典型的设备是空心喷洒吸收器和文丘里吸收器。空心喷洒吸收塔(图3-16所示)设备结构简单,造价低廉,气体通过的阻力降很小,并可吸收含有黏污物及颗粒物的气体,但其吸收效率很低,因此应用受到极大限制。
文丘里吸收器(图所示)结构简单,处理废气量大,净化效率高,但其阻力大,动力消耗大,因此对一般气态污染物治理时应用受限制,比较适于处理含尘气体。
4.吸收法特点
采用吸收法治理气态污染物具有工艺成熟、设备简单、一次性投资低等特点,而且只要选择到适宜的吸收剂,对所需净化组分可以具有很高的捕集效率。此外,对于含尘、含湿、含黏污物的废气也可同时处理,因而应用范围广泛。但由于吸收是将气体中的有害物质转移到了液体中,这些物质中有些还具有回收价值,因此对吸收液必须进行处理,否则将导致资源的浪费或引起二次污染。
以上就是关于吸收法原理的简单介绍,若有不对的地方,欢迎指正。
‘肆’ 双碱法脱硫工艺
脱硫工艺主要包括5个部分:
(1)吸收剂制备与补充。
(2)吸收剂浆液喷淋。
(3)塔内雾滴与烟气接触混合。
(4)再生池浆液还原钠基碱。
(5)石膏脱水处理。
双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。
(4)常用吸收剂再生方法有扩展阅读:
一、基本原理
双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。
另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造。
双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO₂来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用。
二、工艺特点
1、脱硫效率90%以上。
2、脱硫剂采用钠碱和石灰,塔内清液吸收,有效避免塔内结垢。
3、液气比小。可脱硫除尘一体化。
4、一次投资省,运行成本低,国产程度高。
‘伍’ 石灰石脱硫原理
石灰石湿法烟气脱硫原理
(1)物理吸收的基本原理
气体吸收可分为物理吸收和化学吸收两种。如果吸收过程不发生显着的化学反应,单纯是被吸收气体溶解于液体的过程,称为物理吸收,如用水吸收SO2。物理吸收的特点是,随着温度的升高,被吸气体的吸收量减少。
物理吸收的程度,取决于气--液平衡,只要气相中被吸收的分压大于液相呈平衡时该气体分压时,吸收过程就会进行。由于物理吸收过程的推动力很小,吸收速率较低,因而在工程设计上要求被净化气体的气相分压大于气液平衡时该气体的分压。物理吸收速率较低,在现代烟气中很少单独采用物理吸收法。
(2)化学吸收法的基本原理
若被吸收的气体组分与吸收液的组分发生化学反应,则称为化学吸收,例如应用碱液吸收SO2。应用固体吸收剂与被吸收组分发生化学反应,而将其从烟气中分离出来的过程,也属于化学吸收,例如炉内喷钙(CaO)烟气脱硫也是化学吸收。
在化学吸收过程中,被吸收气体与液体相组分发生化学反应,有效的降低了溶液表面上被吸收气体的分压。增加了吸收过程的推动力,即提高了吸收效率又降低了被吸收气体的气相分压。因此,化学吸收速率比物理吸收速率大得多。
物理吸收和化学吸收,都受气相扩散速度(或气膜阻力)和液相扩散速度(或液膜阻力)的影响,工程上常用加强气液两相的扰动来消除气膜与液膜的阻力。在烟气脱硫中,瞬间内要连续不断地净化大量含低浓度SO2的烟气,如单独应用物理吸收,因其净化效率很低,难以达到SO2的排放标准。因此,烟气脱硫技术中大量采用化学吸收法。用化学吸收法进行烟气脱硫,技术上比较成熟,操作经验比较丰富,实用性强,已成为应用最多、最普遍的烟气脱硫技术。
(3)化学吸收的过程
化学吸收是由物理吸收过程和化学反应两个过程组成的。在物理吸收过程中,被吸收的气体在液相中进行溶解,当气液达到相平衡时,被吸收气体 的平衡浓度,是物理吸收过程的极限。被吸收气体中的活性组分进行化学反应,当化学反应达到平衡时,被吸收气体的消耗量,是化学吸收过程的极限。这里用Ca(OH)2溶液吸收SO2加以说明。
SO2(气体)
||
SO2(液体)+Ca(OH)2 → CaSO3+H2O
←
化学吸收过程中,被吸收气体的气液平衡关系,即应服从相平衡关系,又应服从化学平衡关系。
(4)化学吸收过程的速率及过程阻力
化学吸收过程的速率,是由物理吸收的气液传质速度和化学反应速度决定的。化学吸收过程的阻力,也是由物理吸收气液传质的阻力和化学反应阻力决定的。
在物理吸收的气液传质过程中,被吸收气体气液两相的吸收速率,主要取决于气相中被吸收组分的分压,和吸收达到平衡时液相中被吸收组分的平衡分压之差。此外,也和传质系数有关,被吸收气体气液两相间的传质阻力,通常取决于通过气膜和液膜分子扩散的阻力。
烟气脱硫通常是在连续及瞬间内进行,发生的化学反应是极快反应、快反应和中等速度的反应,如NaOH、Na2CO3、和Ca(OH)2等碱液吸收SO2。为此,被吸收气体气液相间的传质阻力,远较该气体在液相中与碱液进行反应的阻力大得多。对于极快不可逆反应,吸收过程的阻力,其过程为传质控制,化学反应的阻力可忽略不计。例如,应用碱液或氨水吸收SO2时,化学吸收过程为气膜控制,过程的阻力为气膜传质阻力。
液相中发生的化学反应,是快反应和中等速度的反应时,化学吸收过程的阻力应同时考虑传质阻力和化学反应阻力。
(5)碱液浓度对传质速度的影响
研究得出,应用碱液吸收酸性气体时,碱液浓度的高低对化学吸收的传质速度有很大的影响。当碱液的浓度较低时,化学传质的速度较低;当提高碱液浓度时,传质速度也随之增大;当碱液浓度提高到某一值时,传质速度达到最大值,此时碱液的浓度称为临界浓度;当碱液浓度高于临界浓度时传质速度并不增大。
为此,在烟气脱硫的化学吸收过程中,当应用碱液吸收烟气中的SO2时,适当提高碱液的浓度,可以提高对SO2的吸收效率。但是,碱液的浓度不得高于临界浓度。超过临界浓度之后,进一步提高碱液的浓度,脱硫效率并不能提高。可以得出,在烟气脱硫中,吸收SO2的碱液浓度,并非愈高愈好。碱液的最佳浓度为临界浓度,此时脱硫效率最高。
(6)主要化学反应
在湿法烟气脱硫中,SO2和吸收剂的主要化学反应如下
(7)同水的反应
SO2溶于水形成亚硫酸
H2O+SO2 ——→ H2SO3 ——→ H+HSO3 ——→ 2H+ + SO32
←—— ←—— ←——
温度升高时,反应平衡向左移动。
(8)同碱反应
SO2及易与碱性物质发生化学反应,形成亚硫酸盐。碱过剩时生成正盐;SO2过剩时形成酸式盐。
2MeOH+SO2 —→Me2SO3+H2O
Me2SO3+SO2+H2O —→ 2MeHSO3
Me2SO3+MeOH —→ Me2SO4+H2O
亚硫酸盐不稳定,可被烟气中残留的氧气氧化成硫酸盐:
Me2SO3+1/2O2—→MeSO4
(9)同弱酸盐反应
SO2易同弱酸盐反应生成亚硫酸,继之被烟气中的氧气氧化成稳定的硫酸盐。如同石灰石反应:
CaCO3+SO2+1/2H2O —→CaSO3•1/2H2O+CO2↑
2CaSO3•1/2H2O+O2+3H2O —→2CaSO4•2H2O
(10)同氧化剂反应
SO2同氧化剂反应生成SO3
SO2+1/2O2 催化剂 SO3
—————→
在催化剂的作用下,可加速SO2氧化成SO3的反应。在水中,SO2经催化剂作用被迅速氧化成SO3,并生成H2SO4:
SO2+1/2O+H2O 催化剂 H2SO4
—————→
1.6.5 同金属氧化物的反应
金属氧化物,如MgO、ZnO、MnO、CuO等,对SO2均有吸收能力,然后再用加热的方法使吸收剂再生,并得到高浓度的SO2。这里以MgO为例加以说明:
MgO+H2O —→Mg(OH)2
Mg(OH)2+SO2+5H2O —→MgSO3•6H2O
MgSO3•6H2O △ MgSO3+6H2O↑
———→
MgSO3 △ MgO+SO2
———→
吸收剂再生后可循环使用,并可回收SO2,达到高浓度的气态SO2。经液化后得到液态SO2。
希望我的回答能对您有所帮助
‘陆’ 吸附剂再生方法有哪几种
吸附剂再生方法有1)加热解吸再生;2)降压或真空解吸再生;3)溶剂萃取再生;4)置换再生;5)化学转化再生 气态污染物的催化净化 。
‘柒’ 常用的废气处理方式有哪些
楼主您好,根据您提出的问题,下面为您做详细解答:
常用的废气处理方式:
1、吸收净化法
吸收是净化气态污染物z常用的方法。吸收法被定义为:用适当的液体吸收剂进行废气处理,使废气中气态污染物溶解到吸收液中或与吸收液中某种活性组分发生化学反应而进入液相,这样使气态污染物从废气中分离出来的方法;或者说,利用吸收剂将混合气体中一种或数种组分(吸收剂)有选择地吸收分离的过程称作吸收。
吸收常被分为物理吸收和化学吸收,其区别见下表:
2、吸附净化法
吸附是利用多孔性固体吸附剂处理流体混合物,使其中所含的一种或数种组分吸附于固体表面上,以达到分离的目的。吸附过程和吸收的区别在于:吸收后,吸收组分均匀的分布在吸收相中,吸附后,吸附组分聚积或浓缩敷在吸附剂上,只y一个非均相过程。
目前,吸附操作在有机化工、石油化工等生产部门已有较为广泛的应用。该方法在环境工程中的使用也很普遍,主要原因是吸附剂的选择性高,它能分开其他过程难以分开的混合物,有效地清除(回收)浓度很低的有害物质,设备简单,操作方便,净化效率高,且能实现自动控制。
吸附过程是一个动态过程,在这个过程中,吸附质从流体中扩散到吸附剂表面和微孔内表面上,释放热量,而被吸附在吸附剂的表面上。脱附过程是一个与吸附过程相反的过程。
吸附质在吸附剂表面吸附后,吸附质分子的内能因分子运动形式,如扩散、振动、旋转发生改变而降低,从而释放出能量,称之为吸附热。汽化热(或冷凝热)和结合热是吸附热的两个组成部分。吸附热大于物质气化热约1.5倍,不排除特殊情况的存在。总体说来,吸附热收到吸附量、吸附温度、吸附时流体空塔速度等因素的影响,如果不及时将吸附热引出去的话,其中被脱附分子所吸收的一部分热量会对吸附过程造成负面影响。
3、冷凝净化法
冷凝净化法即利用物质在不同温度下具有不同饱和蒸汽压这一性质,采用降温、加压方法使处于蒸汽状态的气体冷凝而与废气分离,以达到净化或回收的目的。
冷凝净化对有害气体的去除程度,与冷却温度和有害成分的饱和蒸汽压有关,冷却温度越低,有害成分约接近饱和,其去除程度越高。它特别适用于处理废气浓度在10000*10-6以上的有机溶剂蒸汽,不适宜处理低浓度的废气。在恒定温度的条件下通过提高压力的办法可实现冷凝过程,也可通过恒定压力的下降低温度来进行冷凝。废气通过冷凝可被净化,但室温下的冷却水无法达到高的净化要求,要想净化完q,需要降温、加压,这就使处理难度加大、费用增加。因此,通常将吸附、燃烧等手段与冷凝发联合使用作为净高浓度有机气体的前期处理,以达到实现降低有机负荷、回收有价值的产品的目的。另外,冷凝净化一般只适用于空气中含蒸汽浓度较高时,因此进入冷凝装置的蒸汽浓度可在爆炸极限以上,而且冷凝装置出来时的浓度可在爆炸下限以下,在冷凝中恰好是在爆炸上限与下限之间,这是不利于a全的一个缺点。
4、催化净化法
催化净化法是使气态污染物通过催化剂床层,在催化剂的作用下,经历催化反应,转化为无害物质或是易于处理和回收的物质的净化方法。催化净化法有催化氧化法和催化还原法两种。催化氧化法:是使废气中的污染物在催化剂的作用下被氧化。如废气中的SO2在催化的有机化合物的废气均可通过燃烧的氧化过程分解为H2O与CO2向外排放。催化还原法,是使废气中的污染物在催化剂的作用下,与还原性气体发生反应的净化过程。如废气中的NOx在催化剂(铜铬)作用下与NH3反应生成无害气体N2。催化净化特点是避免了其他方法可能产生的二次污染,又使操作过程得到简化,对于不同浓度的污染物都具有很高的转化率。其主要应用在于将碳氢化合物转化为二氧化碳和水,氮氧化合物转化为氮,二氧化硫转化成三氧化硫而加以回收利用,有机废气和臭气的催化燃烧,以及汽车尾气的催化净化等。其缺点是催化剂价格较高,废气预热要消耗一定的能量。
废气中污染物含量通常较低,用催化净化法处理时,往往有下述特点:1)由于废气污染物含量低,过程热效应小,反应器结构简单,多采用固定床催化反应器。2)要处理的废气量往往很大,要求催化剂能承受流体冲刷和压力降的影响。3)由于净化要求高,而废气的成分复杂,有的反应条件变化大,故要求催化剂有高的选择性和热稳定性。
5、生物法
在Genf-Villette(地名,1964年建起s个生物净化装置)d一次用生物净化装置净化废气。生物法处理废气技术在20世纪80~90年代得到了快速发展,荷兰和德国成为s批大规模应用生物技术处理废气的g家。随后,生物技术在废气处理中的应用也越来越广泛,目前使用的生物净化气体装置在欧洲已c过7500座,其中一半装置都用来处理污水以及堆肥臭气,关于可生化气体的净化原理和工程应用经验的一套重要体系也已经形成。生物净化技术弥补了传统物化处理技术的不足,传统方法需要专门的安q运行程序管理(如化学吸收),并且耗能高,经济投入高,相较之下,生物净化法属于清洁型的治理方法,成为废气治理特别是可生化废气治理的前沿和热点。
生物法废气净化技术是多学科交叉的环保高新技术。具体说来是一项低浓度工业废气净化前沿热点技术,它建立在已成熟的采用微生物处理废水方法上。国内已有的研究表明,低浓度工业废气已无法通过常规技术进行经济、有效地净化处理,但使用生物法废气净化技术处理低浓度工业废气却行之有效的,具有明显的技术和经济优势。
6、膜分离净化
膜净化法是混合气体在压力梯度作用下,透过特定薄膜时,不同气体具有不同的透过速度,从而使气体混合物中的不同组分达到分离的效果。压力差、浓度差以及电位差推动着膜分离过程的进行,膜分离技术是根据混合物中各组分的选择渗透性能的差异利用膜来分离、提纯和浓缩混合物的新型分离技术。能以特定形式限制和传递流体物质的分隔两相或两部分少有两个界面,这两个界面是两侧流体接触以及传递的桥梁。对流体来说,分离膜可以半透明也可以完q透过,但绝不能w全不透过。
膜分离的主要特点是实现混合物以及物质分子尺寸的分离,它将选择透过性的膜作为分离的手段。相变化不会发生在膜分离过程中(渗透蒸发膜除外),因此操作可在常温下进行,这就避免了浓缩和富集物质的性质因高温而改变的不利,在食品、医药等行业膜分离因此优点而被广泛使用。能耗少、成本低、效率高、无污染并可回收有用物质是膜分离的共有优点,对于同分异构体组分、性质相似组分,热敏性组分、生物物质组分等混合物的分离,膜分离方法十分适用,有时可以代替蒸馏、萃取、蒸发、吸附等化工单元操作。实践表明,若常规分离不能通过经济的方法实现,膜分离会成为一项非常有用的技术。将常规分离与膜分离相结合的技术更加经济有效。综合上述优点,膜科学和膜技术在近二三十年得到快速的发展,目前已成为工农业生产、国防、科技和人民日常生活中不ke缺少的分离方法,越来越广泛地应用于化工、环保、食品、医药、电子、电力、冶金、轻纺、海水淡化等ling域。
7、燃烧净化法
用燃烧方法来销毁有毒气体、蒸汽或烟尘、使之变成无毒、无害物质,叫做燃烧净化。燃烧净化仅能销毁哪些可燃的或在高温下能分解的有毒气体与烟尘,其化学作用主要是燃烧氧化,个别情况下是热分解。燃烧净化,可以广泛地应用于有机溶剂蒸汽及碳氢化合物的净化处理,这些有毒物质在燃烧氧化过程中浓度较高、发热量较大的可燃性有害气体(主要是含碳氢的气态物质),燃烧温度一般在600~800。C。燃烧法简便易行,可回收热能,但不能回收有害气体,易造成二次污染。
希望此次回答对您有所帮助!
‘捌’ 怎样用钠碱吸收法处理回收含二氧化硫烟气
钠碱吸收法采用Na2CO3或Na0H来吸收烟气中的SO2并可获得较高浓度SO2气体和Na2SO4。
碱性吸收剂具有更多优点:(1)吸收剂在洗涤过程中不挥发;(2)具有较高的溶解度;(3)不存在吸收系统中结垢、堵塞问题;(4)吸收能力高。根据再生方法不同有亚硫酸钠循环法、钠盐一酸分解法、亚硫酸钠法。其中,亚硫酸钠循环一热再生法发展较快。
亚硫酸钠循环法是利用Na0H 或者Na2CO3溶液作初始吸收剂,在低温下吸收烟气中的SO2并生成Na2CO3,Na2CO3再继续吸收SO2生成NaHSO3,将含Na2CO3-NaHSO3的吸收液热再生,释放出纯SO2气体,可送去制成液态SO2或制硫酸和硫,加热再生过程中得到Na2CO3结晶,经固液分离,并用水溶解后返回吸收系统。
http://www.xyzj8.com